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Introduction

We consider the problem of multivariate nonparametric regression with errors in variables. We observe the i.i.d dataset

(W 1 , Y 1 ), . . . , (W n , Y n ) where Y l = m(X l ) + ε l and W l = X l + δ l ,
with Y l ∈ R. The covariates errors δ l are i.i.d unobservable random variables having error density g. We assume that g is known. The δ l 's are independent of the X l 's and Y l 's. The ε l 's are i.i.d standard normal random variables, independent of the X l 's with variance s 2 which is assumed to be known. We wish to estimate the regression function m(x), x ∈ [0, 1] d , but direct observations of the covariates X l are not available. Instead due to the measuring mechanism or the nature of the environment, the covariates X l are measured with errors. Let us denote f X the density of the X l 's assumed to be positive and f W the density of the W l 's. Use of errors-in-variables models appears in many areas of science such as medicine, econometry or astrostatistics and is appropriate in a lot of practical experimental problems. For instance, in epidemiologic studies where risk factors are partially observed (see [START_REF] Whittemore | Approximations for regression with covariate measurement error[END_REF], [START_REF] Fan | Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes[END_REF]) or in environmental science where air quality is measured with errors ( [START_REF] Delaigle | Confidence bands in non-parametric errors-in-variables regression[END_REF]).

In the error-free case, that is δ l = 0, one retrieves the classical multivariate nonparametric regression problem. Estimating a function in a nonparametric way from data measured with error is not an easy problem. Indeed, constructing a consistent estimator in this context is challenging as we have to face to a deconvolution step in the estimation procedure. Deconvolution problems arise in many fields where data are obtained with measurement errors and has attracted a lot of attention in the statistical literature, see [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF] for an excellent source of references. The nonparametric regression with errors-in-variables model has been the object of a lot of attention as well, we may cite the works of [START_REF] Fan | Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes[END_REF], [START_REF] Fan | Nonparametric regression with errors in variables[END_REF], [START_REF] Ioannides | Nonparametric regression with errors in variables and applications[END_REF], [START_REF] Koo | B-spline estimation of regression functions with errors in variable[END_REF], [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF], [START_REF] Comte | Adaptive estimation in a nonparametric regression model with errors-in-variables[END_REF], [START_REF] Chesneau | On adaptive wavelet estimation of the regression function and its derivatives in an errors-in-variables model[END_REF], [START_REF] Du | Nonparametric regression function estimation for errors-in-variables models with validation data[END_REF], [START_REF] Carroll | Nonparametric prediction in measurement error models[END_REF], [START_REF] Delaigle | Confidence bands in non-parametric errors-in-variables regression[END_REF]. The literature has mainly to do with kernel-based approaches, based on the Fourier transform. All the works cited have tackled the univariate case except for [START_REF] Fan | Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes[END_REF] where the authors explored the asymptotic normality for mixing processes. In the one dimensional setting, [START_REF] Chesneau | On adaptive wavelet estimation of the regression function and its derivatives in an errors-in-variables model[END_REF] used Meyer wavelets in order to devise his statistical procedure but his assumptions on the model are strong since the corrupted observations W l follow a uniform density on [0, 1]. [START_REF] Comte | Adaptive estimation in a nonparametric regression model with errors-in-variables[END_REF] investigated the mean integrated squared error with a penalized estimator based on projection methods upon Shannon basis. But the authors do not give any clue about how to choose the resolution level of the Shannon basis. Furthermore, the constants in the penalized term are calibrated via intense simulations.

In the present article, our aim is to study the multidimensional setting and the pointwise risk. We would like to take into account the anisotropy for the function to estimate. Our approach relies on the use of projection kernels on wavelets bases combined with a deconvolution operator involving the noise in the covariates. When using wavelets, a crucial point lies in the choice of the resolution level. Actually, the main goal of the paper focuses on how to choose in a calibrated way the multiresolution analysis. It is well-known that theoretical results in adaptive estimation do not provide the way to choose the numerical constants in the resolution level and very often lead to conservative choices. We may cite the work of [START_REF] Gach | Spatially adaptive density estimation by localised Haar projections[END_REF] which attempts to tackle this problem. For the density estimation problem and the sup-norm loss, the authors based their statistical procedure on Haar projection kernels and provide a way to choose locally the resolution level. Nonetheless, in practice, their procedure relies on heavy Monte Carlo simulations to calibrate the constants. In our paper the resolution level of our estimator is optimal, partially data-driven and varies x by x. It is automatically selected by a method inspired from [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] to tackle anisotropy problems. This method has been used recently in various contexts (see [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF], [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] and [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF]). Furthermore, we do not resort to thresholding which is very popular when using wavelets and our selection rule is adaptive to the unknown regularity of the regression function. We obtain oracle inequalities and provide optimal rates of convergence for anisotropic Hölder classes. The performances of our adaptive estimator, the negative impact of the errors in the covariates, the effects of the design density are assessed by examples based on simulations.

The paper is organized as follows. In Section 2, we describe our estimation procedure. In Section 3, we provide an oracle inequality and rates of convergences of our estimator for the pointwise risk. Section 4 gives some numerical illustrations. Proofs of theorems, propositions and technical lemmas are to be found in Section 5.

Notation Let N = {0, 1, 2, . . . } and j = (j 1 , . . . , j d ) ∈ N d , we set S j = d i=1 j i and for any y ∈ R d , we set, with a slight abuse of notation,

2 j y := (2 j1 y 1 , . . . , 2 j d y d ) and for any k = (k 1 , • • • , k d ) ∈ Z d , h j,k (y) := 2 S j 2 h(2 j y -k) = 2 S j 2 h(2 j1 y 1 -k 1 , . . . , 2 j d y d -k d ),
for any function h : R d → R. We denote by F the Fourier transform of any Lebesgue integrable function

f ∈ L 1 (R d ) by F(f )(t) = R d e -i<t,y> f (y)dy, t ∈ R d ,
where < ., . > denotes the usual scalar product.

For two integers a, b, we denote a ∧ b := min(a, b) and a ∨ b := max(a, b). And y denotes the largest integer smaller than y: y ≤ y < y + 1.

The estimation procedure

For estimating the regression function m, the idea consists in writing m as the ratio

m(x) = m(x)f X (x) f X (x) , x ∈ [0, 1] d .
In the sequel, we denote

p(x) := m(x) × f X (x).
First, we estimate p, then f X . Since estimating f X is a classical deconvolution problem, the main task consists in estimating p. We propose a wavelet-based procedure with an automatic choice of the maximal resolution level. Section 2.2 describes the construction of the projection kernel on wavelet bases depending on a maximal resolution level. Section 2.3 describes the Goldenshluger-Lepski procedure to select the resolution level adaptively.

Technical conditions

To facilitate the presentation, we collect in this subsection all the conditions that we need throughout the paper.

First, some conditions are imposed on the regression function m and the design density f X . We suppose that

m ∈ M(m) = {S : [0, 1] d → R : S ∞ ≤ m}, m > 0, (1) 
and

f X ∈ M(d) = {f density on [0, 1] d and f ∞ ≤ d}, d > 0. (2) 
Futhermore, there exists

C 1 > 0 such that for any x ∈ [0, 1] d , f X (x) ≥ C 1 .
To ensure the existence of all Fourier transforms, we also suppose that m

• f X and F(m • f X ) ∈ L 1 (R d ).
To derive rates of convergence and lower bounds as we have to face a deconvolution step, we need some assumptions on the smoothness of the density of the errors covariates g. We suppose that

F(g)(t) = d l=1 F(g l )(t l ),
and there exist positive constants c g and C g such that

c g (1 + |t l |) -ν ≤ |F(g l )(t l )| ≤ C g (1 + |t l |) -ν , ν ≥ 0, t l ∈ R. (3) 
The left hand side of the above inequality is usual when proving upper bounds.

But here as we use compactly supported wavelets, we also need the right hand side to prove upper bounds. This supplementary assumption has been already used in deconvolution density estimation problem (see [START_REF] Fan | Wavelet deconvolution[END_REF]). The right hand side of inequality (3) also appears in the proofs of lower bounds. We require another condition on the derivative of the Fourier transform of g to prove lower bounds. There exists a positive constant C g such that

|F (g l )(t l )| ≤ C g (1 + |t l |) -ν-1 , t l ∈ R. (4) 
Laplace and Gamma distributions satisfy the above Assumptions (3) and (4). Assumptions (3) and ( 4) control the decay of the Fourier transform of each components of g at a polynomial rate controlled by the degree of ill-posedness ν. Hence we deal with a midly ill-posed inverse problem. We consider a father wavelet ϕ on the real line satisfying the following conditions:

• (A1) The father wavelet ϕ is compactly supported on [-A, A],
where A is a positive integer. • (A2) There exists a positive integer N , such that for any

x k∈Z ϕ(x -k)ϕ(y -k)(y -x) dy = δ 0 , = 0, . . . , N. • (A3) ϕ is of class C r , where r > ν + 1.
Conditions (A1), (A2) and (A3) are satisfied for instance by Coiflets wavelets (see [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF], Chapter 8). Condition (A3) has already been encountered in the literature (see condition (A2) in [START_REF] Fan | Wavelet deconvolution[END_REF]). It ensures that our estimator is well-defined (more explanations about this are given in Section 2.2). Condition (A3) is also useful to prove Lemma 9.

Remark 1. Note that most of our results remain valid by using wavelets with compactly supported Fourier transform such as Meyer wavelets. However, in this case, the summation in [START_REF] Comte | Adaptive estimation in a nonparametric regression model with errors-in-variables[END_REF] is not finite, which leads to some difficulties in practice. [START_REF] Fan | Wavelet deconvolution[END_REF] also used compactly supported wavelets such as Daubechies ones when dealing with deconvolution density problem.

Approximation kernels and family of estimators for p

The associated projection kernel on the space

V j := span{ϕ jk , k ∈ Z d }, j ∈ N d ,
is given for any x and y by

K j (x, y) = k ϕ jk (x)ϕ jk (y),
where for any x,

ϕ jk (x) = d l=1 2 j l 2 ϕ(2 j l x l -k l ), j ∈ N d , k ∈ Z d .
Therefore, the projection of p on V j can be written for any z,

p j (z) := K j (p)(z) := K j (z, y)p(y)dy = k p jk ϕ jk (z)
with p jk = p(y)ϕ jk (y)dy.

First we estimate unbiasedly projection p j . Secondly to obtain the final estimate of p, it will remain to select a convenient value of j which will be done in Section 2.3. The natural approach is based on unbiased estimation of the projection coefficients p jk . To do so, we adapt the kernel approach proposed by [START_REF] Fan | Nonparametric regression with errors in variables[END_REF] in our wavelets context. To this purpose, we set

pjk := 1 n n u=1 Y u × (D j ϕ) j,k (W u ) = 2 S j 2 (2π) d 1 n n u=1 Y u e -i<t,2 j Wu-k> d l=1 F(ϕ)(t l ) F(g l )(2 j l t l ) dt l , then pj (x) = k pjk ϕ jk (x) = 1 n k n u=1 Y u × (D j ϕ) j,k (W u )ϕ jk (x), (5) 
where the deconvolution operator D j is defined as follows for a function f defined on R

(D j f )(w) = 1 (2π) d e -i<t,w> d l=1 F(f )(t l ) F(g l )(2 j l t l ) dt, w ∈ R d . ( 6 
)
Lemma 3, proved in Section 5.2.1 states that E[p j (x)] = p j (x) which justifies our approach. Note that as ϕ has compact support, the summation in k is finite for all x (see the expression of estimator pj (x) in ( 5)).

The deconvolution operator (D j f )(w) in ( 6) is the multidimensional wavelet analogous of the operator K n (x) defined in (2.4) in [START_REF] Fan | Nonparametric regression with errors in variables[END_REF]: the Fourier transform of their kernel K has been replaced in our procedure by the Fourier transform of the wavelet ϕ jk and their bandwith h by 2 -j . Eventually, our estimator is well-defined: using Lemma 8 and Assumption (3) we have that, for C a constant,

d l=1 F(ϕ)(t l ) F(g l )(2 j l t l ) ≤ C d l=1 (1 + |t l |) -r (1 + |2 j l t l |) ν ≤ C2 Sj ν d l=1 (1 + |t l |) ν-r ,
which is integrable using condition (A3).

The definition of the estimator pj (x) still makes sense when we do not have any noise on the variables X l i.e g(x) = δ 0 (x) because in this case F(g)(t) = 1.

Selection rule by using the Goldenshluger-Lepski methodology

The second and final step consists in selecting the multidimensional resolution level j depending on x thanks to a data-driven selection rule. This selection rule is a modification in the light of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] of a method exposed in [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF]. First we have to introduce some quantities which will intervene in the rule. In the sequel we denote for any w ∈ R d ,

T j (w) := k (D j ϕ) j,k (w)ϕ jk (x) and U j (y, w) := y k (D j ϕ) j,k (w)ϕ jk (x) = y × T j (w), so we have pj (x) = 1 n n u=1 U j (Y u , W u ).
Proposition 1 in Section 5.2.1 shows that pj (x) concentrates around p j (x). So, the idea is to find a maximal resolution ĵ that mimics the oracle index. The oracle index minimizes a bias variance trade-off. So we have to find an estimation for the bias-variance decomposition of pj (x). We denote σ 2 j := Var(U j (Y 1 , W 1 )) and the variance of pj is thus equal to σ 2 j n . We set:

σ2 j := 1 n(n -1) n l=2 l-1 v=1 (U j (Y l , W l ) -U j (Y v , W v )) 2 , ( 7 
)
and since E(σ 2 j ) = σ 2 j , σ2 j is a natural estimator of σ 2 j . To devise our procedure, we introduce a slightly overestimate of σ 2 j given by: σ2 j,γ := σ2 j + 2C j 2γ σ2

j log n n + 8γC 2 j log n n , ( 8 
)
where γ is a positive constant and

C j := m + s 2γ log n T j ∞ .
Let γ > 0 and

Γ γ (j) := 2γ σ2 j,γ log n n + c j γ log n n ,
where

c j := 16 (2m + s) T j ∞ .
Let Γ γ (j, j ) := Γ γ (j) + Γ γ (j ∧ j ), and Γ * γ (j) := sup

j ∈J Γ γ (j, j ). ( 9 
)
We now define the selection rule for the resolution index. Let

Rj := sup j ∈J |p j∧j (x) -pj (x)| -Γ γ (j , j) + + Γ * γ (j). ( 10 
)
Then pĵ (x) is the final estimator of p(x) with ĵ such that ĵ := arg min j∈J Rj , [START_REF] Fan | Nonparametric regression with errors in variables[END_REF] where the set J is defined as

J := j ∈ N d : 2 Sj ≤ n log 2 n . ( 12 
)
Now, we shall highlight how the above quantities interplay in the estimation of the risk decomposition of pj . An inspection of the proof of Theorem 1 shows that a control of the bias of pj is provided by: sup

j |p j∧j (x) -pj (x)| -Γ γ (j , j) + .
The term |p j∧j (x)-p j | is classical when using the Goldenshluger Lepski method (see Sections 2.1 and 5.2 in [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF]). Furthermore for technical reasons (see proof of Theorem 1), we do not estimate the variance of pj (x) by σ2 j n but we replace it by Γ 2 γ (j). Note that we have the straightforward control

Γ γ (j) ≤ C σj log n n + (C j + c j ) log n n ,
where C is a constant depending on ε, γ and γ. Actually we prove that Γ 2 γ (j) is of order log n n σ 2 j (see Lemma 6 and 10). The dependence of σ2 j,γ (8) in m appears only in smaller order terms. In conclusion, up to the knowledge of m and s 2 the procedure is completely data-driven. Next section explains how to choose the constants γ and γ. Our approach is non asymptotic and based on sharp concentration inequalities.

Rates of convergence

Oracle inequality and rates of convergence for p(•)

First, we state an oracle inequality which highlights the bias-variance decomposition of the risk. Theorem 1. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined as above. Then, it holds for any γ > q(ν + 1) and γ > 2q(ν + 2),

E pĵ (x) -p(x) q ≤ R 1 inf η E B(η) + Γ * γ (η) q + R 1 n -q , where B(η) := max sup j |E [p η∧j (x)] -E [p j (x)]| , |E[p η (x)] -p(x)| R 1 a constant depending only on q and R 1 a constant depending on s, m, d, ϕ, c g , C g .
The oracle inequality in Theorem 1 illustrates a bias-variance decomposition of the risk. The term B(η) is a bias term. Indeed, one recognizes on the right side the classical bias term

|E[p η (x)] -p(x)| = |p η (x) -p(x)|. Concerning |E [p η∧j (x)] -E [p j (x)]|,
for sake of clarity let us consider for instance the univariate case: if j ≤ η this term is equal to zero. If j ≥ η, it turns to be

|E [p η (x)] -E [p j (x)] | = |p η (x) -p j (x)| ≤ |p η (x) -p(x)| + |p j (x) -p(x)|.
As we have the following inclusion for the projection spaces V η ⊂ V j , the term p j is closer to p than p η for the L 2 -distance. Hence we expect a good control of |p j (x)p(x)| with respect to |p η (x)p(x)|. Finally, the third term is a remain term and is negligible.

We study the rates of convergence of the estimators over anisotropic Hölder classes which are adapted to local estimation. Let us define them.

Definition 1 (Anisotropic Hölder Space

). Let β = (β 1 , β 2 , . . . , β d ) ∈ (R * + ) d and L > 0. We say that f : [0, 1] d → R belongs to the anisotropic Hölder class H d ( β, L) of functions if f is bounded and for any l = 1, ..., d and for all z ∈ R sup x∈[0,1] d ∂ β l f ∂x β l l (x 1 , . . . , x l +z, . . . , x d )- ∂ β l f ∂x β l l (x 1 , . . . , x l , . . . , x d ) ≤ L|z| β l -β l .
The following theorem gives the rate of convergence of the estimator pĵ (x) for the pointwise L q risk with q ≥ 1. Of course, one gets the usual pointwise L 2 risk for q = 2. Theorem 2. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined in [START_REF] Fan | Nonparametric regression with errors in variables[END_REF]. Then, if for any l, β l ≤ N and L > 0, it holds

sup p∈H d ( β,L) E pĵ (x) -p(x) q ≤ L q(2ν+1) 2 β+2ν+1 R 2 log n n q β/( 2 β+2ν+1) 
,

with β = 1 1 β 1 +•••+ 1 β d and R 2 a constant depending on γ, q, γ, m, d, s, ϕ, c g , C g , β.
Remark 2. The estimate pĵ (x) achieves the optimal rate of convergence up to a logarithmic term (see Section 3.3 in [4]). This logarithmic loss is due to adaptation.

The next section presents convergence rates for the estimator m(x) of the regression function m.

Rates of convergence for m(•)

As mentioned above, the estimation of m requires an adaptive estimate of f X . This is due to kernel estimators, e.g. projection estimators do not need the additional estimate (see [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF]). For this purpose, we use an estimate introduced by [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] (Section 3.4) denoted by fX . This estimate is constructed from a deconvolution kernel and the bandwidth is selected via a method described in [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. We will not give the explicit expression of fX for ease of exposition. Then, we define the estimate of m for all x in [0, 1] d :

m(x) = pĵ (x) fX (x) ∨ n -1/2 . ( 13 
)
The term n -1/2 is added to avoid the drawback when fX is closed to 0.

Theorem 3. Let q ≥ 1 be fixed and let m defined as above. Then, if for any l,

β l ≤ N and L > 0, it holds sup (m,f X )∈H d ( β,L)×H d ( β,L) E | m(x) -m(x)| q ≤ L q(2ν+1) 2 β+2ν+1 R 3 log n n q β/(2 β+2ν+1) , with R 3 a constant depending on γ, q, γ, m, s, d, ϕ, c g , C g , β.
The following theorem gives a lower bound for the pointwise risk:

Theorem 4. Let q ≥ 1, L > 0 and for any l, β l ≤ N . Then for any estimator m of m and for n large enough we have

sup (m,f X )∈H d ( β,L)×H d ( β,L) E | m(x) -m(x)| q ≥ R 4 n -q β/(2 β+2ν+1) ,
with R 4 a positive constant depending on β, L, s, C g and C g .

Consequently, the estimate m achieves the optimal rate of convergence up to a logarithmic term and oracle inequality derived in Theorem 1 is then optimal.

Numerical results

In this section, we implement some simulations to illustrate the theoretical results. We aim at estimating the Doppler regression function m at two points x 0 = 0.25 and x 0 = 0.90 (see Figure 1). We have n = 1024 observations and the regression errors ε l 's follow a standard normal density with variance s 2 = 0.15 2 . As for the design density of the X l 's, we consider the Beta density and the uniform density on [0, 1]. The uniform distribution is quite classical in regression with random design. The Beta [START_REF] Carroll | Nonparametric prediction in measurement error models[END_REF][START_REF] Carroll | Nonparametric prediction in measurement error models[END_REF] and Beta(0.5, 2) distributions reflect two very different behaviors on [0, 1]. Indeed, we recall that the Beta density with parameters (a, b) (denoted here by Beta(a, b)) is proportional to

x a-1 (1 -x) b-1 1 [0,1] (x)
. Moreover, despite the fact that Beta densities vanish in 0 and 1 and the design density f X is assumed to be bounded from below, the choice of Beta distributions is still reasonable for simulations on any compact strictly included into [0, 1]. Our numerical study illustrates the deteriorated performances of the estimator at points very closed to 0 and 1. This is justified in Table 3.

In Figure 2, we plot the noisy regression Doppler function according to the three design scenario. For the covariate errors δ i 's, we focus on the centered Laplace density with scale parameter σ g L > 0 that we denote g L . This latter has the following expression:

g L (x) = 1 2σ g L e - |x| σg L .
The choice of the centered Laplace noise is motivated by the fact that the Fourier transform of g L is given by

F(g L )(t) = 1 1 + σ 2 g L t 2 ,
and according to Assumption (3), it gives an example of an ordinary smooth noise with degree of ill-posedness ν = 2. Furthermore, when facing regression problems with errors in the design, it is common to compute the so-called reliability ratio (see [START_REF] Fan | Nonparametric regression with errors in variables[END_REF]) which is given by

R r := Var(X) Var(X) + 2σ 2 g L .
R r permits to assess the amount of noise in the covariates. The closer to 0 R r is, the bigger the amount of noise in the covariates is and the more difficult the deconvolution step will be. For instance, [START_REF] Fan | Nonparametric regression with errors in variables[END_REF] chose R r = 0.70. We computed the reliability ratio in Table 1 for the considered simulations.

We recall that our estimator of m(x) is given by the ratio of two estimators (see [START_REF] Giné | Mathematical Foundations of Infinite-dimensional Statistical Models[END_REF]): First, we compute pĵ (x) an estimator of p(x) = m(x) × f X (x) which is denoted "GL" in the graphics below. We use coiflet wavelets of order 5. Then we divide pĵ (x) by the adaptive deconvolution density estimator fX (x) of [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]. This latter is constructed with a deconvolution kernel and an adaptive bandwidth. For the selection of the coiflet level ĵ in pĵ (x), we advise to use σ2 j instead of σ2 j,γ and

m(x) = pĵ (x) fX (x) ∨ n -1/2 . ( 14 
)
2 maxi |Yi| Tj ∞ 3
instead of c j . It remains to settle the value of the constant γ. To do so, we compute the pointwise risk of pĵ (x) in function of γ: Figure 3 shows a clear "dimension jump" and accordingly the value γ = 0.5 turns to be reasonable. Hence we fix γ = 0.5 for all simulations and our selection rule is completely data-driven. Boxplots in Figure 4 and 5 summarize our numerical experiments. Theorem 1 gives an oracle inequality for the estimation of p(x). We compare the pointwise risk error of pĵ (x) (computed with 100 Monte Carlo repetitions) with the oracle risk one. The oracle is pj oracle with the index j oracle defined as follows:

j oracle := arg min j∈J |p j (x) -p(x)|.
In Table 2, we have computed the MAE (Mean Absolute Error) of m(x) over 100 Monte Carlo runs.

Our performances are close to those of the oracle (see Figure 4 and5) and are quite satisfying both at x 0 = 0.25 and x 0 = 0.90. When going deeper into details, increasing the Laplace noise parameter σ g L deteriorates sligthly the performances. Hence it seems that our procedure is robust to the noise in the covariates and accordingly to the deconvolution step. Concerning the role of the design density, when considering the Beta(0.5, 2) distribution, we expect the performances to be better near 0 as the observations tend to concentrate near 0 and to be bad close to 1. Indeed, this phenomenon is confirmed by Table 3. And when comparing the Beta(2, 2) and Beta(0.5, 2) distributions, the performances are much better for the Beta(0.5, 2) at x 0 = 0.25 whereas the Beta(2, 2) distribution yields better results at x 0 = 0.90. This is what is expected as the two densities charge points near 0 and 1 differently.

For our simulations, we have chosen coiflets of order K = 5. The Fourier transform for the coiflet ϕ is given by:

F(ϕ)(t) = R exp(-itx)ϕ(x)dx, t ∈ R.
In theory, the Fourier transform is defined for all t ∈ R. But in practice, it is sufficient to select t ∈ [-L, L] since F(ϕ)(t) almost vanishes for all t outside the interval [-L, L] where L is chosen to be large enough. Preliminary simulations allowed us to select L = 50 and we partitioned the interval [-L, L] into M = 4096 points t k = -L + k t, k = 0, . . . , M -1 with t = 2L/(M -1). Then we approximated F(ϕ)(t k ) by a Riemann sum:

F(ϕ)(t k ) ≈ N -1 j=0 exp(-it k x j )ϕ(x j ) x.
Since the support of the coiflet ϕ is [-2K, 4K -1], we approximated F(ϕ)(t k ) on the grid [x 0 , x 1 , . . . , x N -1 ] where x j = -2K + j x, j = 0, . . . , N -1 and x = (6K -1)/(N -1), N = 2048. In a similar way, we approximated the integral

D j ϕ (w) = R exp(-iwt) F(ϕ)(t) F(g L )(2 j t) dt, w ∈ R, by M -1 k=0 exp(-it k w) 1 + σ 2 g L (2 j t k ) 2 F(ϕ)(t k ) t, since F(g L )(t) = 1/(1 + σ 2 g L t 2
) by the choice of the centered Laplace noise.

Proofs

Proofs of theorems

This section is devoted to the proofs of theorems. These proofs use some propositions and technical lemmas which are respectively in Section 5.2.1 and 5.2.2.

In the sequel, C is a constant which may vary from one line to another one.

Proof of Theorem 1

Proof. We firstly recall the basic inequality (a

1 + • • •+ a p ) q ≤ p q-1 (a q 1 + • • •+ a q p
) for all a 1 , . . . , a p ∈ R p + , p ∈ N and q ≥ 1. For ease of exposition, we denote pĵ (x) = pĵ . So, we can show for any η ∈ N d :

pĵ -p(x) ≤ pĵ -pĵ ∧η + pĵ ∧η -pη + |p η -p(x)| ≤ pη∧ ĵ -pĵ -Γ γ ( ĵ, η) + Γ γ ( ĵ, η) + pĵ ∧η -pη -Γ γ (η, ĵ) + Γ γ (η, ĵ) + |p η -p(x)| ≤ pη∧ ĵ -pĵ -Γ γ ( ĵ, η) + Γ γ (η, ĵ) + pĵ ∧η -pη -Γ γ (η, ĵ) + Γ γ ( ĵ, η) + |p η -p(x)| ≤ pη∧ ĵ -pĵ -Γ γ ( ĵ, η) + Γ * γ (η) + pĵ ∧η -pη -Γ γ (η, ĵ) + Γ * γ ( ĵ) + |p η -p(x)| ≤ Rη + Rĵ + |p η -p(x)| ≤ Rη + Rĵ + |E[p η ] -p(x)| + |p η -E[p η ]| ≤ Rη + Rĵ + |E[p η ] -p(x)| + |p η -E[p η ]| -Γ γ (η) + Γ γ (η) ≤ Rη + Rĵ + |E[p η ] -p(x)| + sup j |p j -E[p j ]| -Γ γ (j ) + + Γ * γ (η).
By definition of ĵ, we recall that Rĵ ≤ inf η Rη and

Rη ≤ sup j,j |p j∧j -E[p j∧j ]| -Γ γ (j ∧ j ) + + sup j |p j -E[p j ]| -Γ γ (j ) + + sup j |E[p η∧j ] -E[p j ]| + Γ * γ (η). Hence pĵ -p(x) ≤ 2 sup j,j |p j∧j -E[p j∧j ]| -Γ γ (j ∧ j ) + + sup j |p j -E[p j ]| -Γ γ (j ) + + sup j |E[p η∧j ] -E[p j ]| + 2 Γ * γ (η) + |E[p η ] -p(x)| + sup j |p j -E[p j ]| -Γ γ (j ) + + Γ * γ (η). By definition of B(η) = max sup j |Ep η∧j -Ep j | , |Ep η -p(x)| , we get pĵ -p(x) ≤2 sup j,j |p j∧j -E[p j∧j ]| -Γ γ (j ∧ j ) + + 3 sup j |p j -E[p j ]| -Γ γ (j ) + + 3B(η) + 3Γ * γ (η). Consequently pĵ -p(x) q ≤3 2q-1 B(η) + Γ * γ (η) q + sup j |p j -Ep j | -Γ γ (j ) q + + sup j,j |p j∧j -Ep j∧j | -Γ γ (j ∧ j ) q + .
Using Proposition 2, we have

E pĵ -p(x) q ≤ C E B(η) + Γ * γ (η) q + R 1 n -q .
Then, we get

E pĵ -p(x) q ≤ R 1 inf η E B(η) + Γ * γ (η) q + R 1 n -q ,
where R 1 is a constant only depending on q and R 1 a constant depending on m, d, s, ϕ, c g , C g .

Proof of Theorem 2

Proof. The proof is a direct application of Theorem 1 together with a standard bias-variance trade-off. We first recall the assertion of this theorem:

E pĵ (x) -p(x) q ≤ C inf η E B(η) + Γ * γ (η) q + R 1 n -q .
For the bias term, we use Proposition 3 to get:

B(η) ≤ CL d l=1 2 -η l β l , for all η ∈ J.
Now let us focus on E Γ * γ (η) q . We have

E [Γ γ (η) q ] = E ⎡ ⎣ ⎛ ⎝ 2γ(1 + ε)σ 2 η,γ log n n + c η γ log n n ⎞ ⎠ q ⎤ ⎦ ≤ 2 q-1 2γ(1 + ε) log n n q 2 E[σ q η,γ ] + c η γ log n n q ≤ C log n n q 2 2 (2Sην+Sη) q 2 + c η log n n q ,
using Lemma 6. But

c η = 16 (2m + s) T η ∞ ≤ C2 Sην+Sη ,
using Lemma 10. Hence

E [Γ γ (η) q ] ≤ C log n n q 2 2 (2Sην+Sη) q 2 + log n n q 2 (Sην+Sη)q .
We have

log n n q 2 2 (2Sην+Sη) q 2 ≥ log n n q 2 (Sην+Sη)q ⇐⇒2 Sη ≤ n log n ,
which is true since by ( 12), 2 Sη ≤ n log 2 n . This yields

E[Γ * γ (η) q ] ≤ C 2 (2Sην+Sη) log n n q 2 .
Eventually, we obtain the bound for the pointwise risk:

E pĵ (x) -p(x) q ≤ C inf η L d l=1 2 -η l β l + 2 (2Sην+Sη) log(n) n q + R 1 n -q .
Setting the gradient of the right hand side of the inequality above with respect to η it turns out that the optimal η l is proportional to

2 log 2 β β l (2 β+2ν+1) (log L + 1 2 log( n log(n) )
), which leads for n large enough to

E pĵ (x) -p(x) q ≤ L q(2ν+1) 2 β+2ν+1 R 2 log(n) n βq 2 β+2ν+1
, with R 2 a constant depending on γ, q, γ, m, s, d, ϕ, c g , C g , β. The proof of Theorem 2 is completed.

Proof of Theorem 3

Proof. We recall that m(x) = p(x) f X (x) and m(x) = pĵ (x) fX (x)∨n -1/2 . We now state the main properties of the adaptive estimate fX showed by [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] (Theorem 2): for all q ≥ 1, all β ∈ (0, 1] d , all L > 0 and n large enough, it holds

P (E 1 ) := P | fX (x) -f X (x)| ≥ Cφ n ( β) ≤ n -2q , ( 15 
)
and

P | fX (x) -f X (x)| ≤ Cn = 1, (16) 
where φ n ( β) := (log(n)/n) β/(2 β+2ν+1) . Although the construction of the estimate fX (x) depends on q, we remove the dependency for ease of exposition (see [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] Section 3.4 for further details). From (15), we easily deduce, since f X (x) ≥ C 1 > 0, for n large enough that

P (E 2 ) := P fX (x) < C 1 2 ≤ n -2q . ( 17 
)
We now start the proof of the theorem. We have together with ( 16)

| m(x) -m(x)| = pĵ (x) fX (x) ∨ n -1/2 - p(x) f X (x) ≤ pĵ (x) fX (x) ∨ n -1/2 - p(x) fX (x) ∨ n -1/2 + p(x) fX (x) ∨ n -1/2 - p(x) f X (x) ≤ pĵ (x) -p(x) fX (x) ∨ n -1/2 + m ∞ f X ∞ ( fX (x) ∨ n -1/2 ) -f X (x) f X (x)( fX (x) ∨ n -1/2 ) := A 1 + m ∞ f X ∞ A 2 .

Control of E[A q

1 ]. Using Cauchy-Schwarz inequality and the inequality fX (x)∨ n -1/2 ≥ n -1/2 , we obtain for n large enough

E[A q 1 ] = E[A q 1 1 E c 2 ] + E[A q 1 1 E2 ] ≤ E[A q 1 1 E c 2 ] + E[A 2q 1 ] P(E 2 ) ≤ CE pĵ (x) -p(x) q + n q/2 E pĵ (x) -p(x) 2q P(E 2 ).
Then, using Theorem 2 and ( 17), we finally have

E[A q 1 ] ≤ Cφ q n ( β).

Control of E[A q

2 ]. Using [START_REF] Houdré | Exponential inequalities, with constants, for U-statistics of order two[END_REF] and the inequality fX (x) ∨ n -1/2 ≥ n -1/2 , it holds for n large enough

E[A q 2 ] ≤ E[A q 2 1 E c 1 ∩E c 2 ] + E[A q 2 (1 E1 + 1 E2 )] ≤ E[A q 2 1 E c 1 ∩E c 2 ] + Cn 3q/2 (P(E 1 ) + P(E 2 )
). Then, using the definition of A 2 , ( 15) and ( 17), we obtain

E[A q 2 ] ≤ Cφ q n ( β).
Eventually, by definitions of A 1 and A 2 , the proof is completed and

E[| m(x) -m(x)| q ] ≤ C(E[A q 1 ] + E[A q 2 ]) ≤ L q(2ν+1) 2 β+2ν+1 R 3 log(n) n q β/(2 β+2ν+1)
where R 3 is a constant depending on γ, q, γ, m, s, d, ϕ, c g , C g , β. This completes the proof of Theorem 3.

Proof of Theorem 4

Following Meister [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF], the proof is straightforward. Indeed, for the regression problem with errors in variables, Theorem 3.5 in [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF] proves a lower bound in probability for the pointwise risk which claims that the minimax rate in dimension 1 is n -2β 2β+2ν+1 for Hölder class of index β and noise degree-of-illposedness parameter ν. Following step by step the proof of Theorem 3.5 in [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF] in dimension 2 (the extension to general case can be easily deduced), one obtains the lower bound of Theorem 4. In fact, Meister uses densities such as Cauchy distributions which admit multivariate counterparts.

Statements and proofs of auxiliary results

This section is devoted to statements and proofs of auxiliary results used in Section 5.1

Statements and proofs of propositions

Let us start with Proposition 1 which states a concentration inequality of pj around p j . Proposition 1. Let j be fixed. For any u > 0,

P ⎛ ⎝ |p j (x) -p j (x)| ≥ 2σ 2 j u n + c j u n ⎞ ⎠ ≤ 2e -u , ( 18 
)
where σ 2 j = Var(Y 1 T j (W 1 )). For any γ > 1 we have for any ε > 0 that there exists R 4 only depending on γ and ε such that

P(σ 2 j ≥ (1 + ε)σ 2 j,γ ) ≤ R 4 n -γ , σ2 j,γ being defined in (8). Proof. First, note that pj (x) = k pjk ϕ jk (x) = 1 n n l=1 Y l k (D j ϕ) j,k (W l )ϕ jk (x) = 1 n n l=1 U j (Y l , W l ).
To prove Proposition 1, we apply the Bernstein inequality to the variables

U j (Y l , W l ) -E[U j (Y l , W l )] that are independent. Since, U j (Y l , W l ) = Y l T j (W l ),
and

E [ε l T j (W l )] = 0,
we have for any q ≥ 2,

A q := n l=1 E[|U j (Y l , W l ) -E[U j (Y l , W l )]| q ] = n l=1 E [|m(X l )T j (W l ) + ε l T j (W l ) -E[m(X l )T j (W l )]| q ] . ( 19 
)
With q = 2,

A 2 = n l=1 E[|U j (Y l , W l ) -E[U j (Y l , W l )]| 2 ] = nVar(Y 1 T j (W 1 )) = nE[(m(X 1 )T j (W 1 ) + ε 1 T j (W 1 ) -E[m(X 1 )T j (W 1 )]) 2 ] = nE[ε 2 1 T 2 j (W 1 )] + nVar(m(X 1 )T j (W 1 )) = n s 2 E[T 2 j (W 1 )] + Var(m(X 1 )T j (W 1 )) .
Now, for any q ≥ 3, with Z ∼ N (0, 1),

A q ≤ n2 q-1 (E[|m(X 1 )T j (W 1 ) -E[m(X 1 )T j (W 1 )]| q ] + E[|ε 1 T j (W 1 )| q ]) ≤ n2 q-1 (E[|m(X 1 )T j (W 1 ) -E[m(X 1 )T j (W 1 )]| q ] + s q E[|Z| q ]E[|T j (W 1 )| q ]) ≤ n2 q-1 (E[|m(X 1 )T j W 1 ) -E[m(X 1 )T j (W 1 )]| q ] +s q E[|Z| q ]E[T 2 j (W 1 )] T j q-2 ∞ .
Furthermore,

E[|m(X 1 )T j (W 1 ) -E[m(X 1 )T j (W 1 )]| q ] ≤ E[(m(X 1 )T j (W 1 ) -E[m(X 1 )T j (W 1 )]) 2 ] × (2 m ∞ T j ∞ ) q-2 = Var(m(X 1 )T j (W 1 )) × (2 m ∞ T j ∞ ) q-2 .
Finally,

A q ≤ n2 q-1 T j q-2 ∞ Var(m(X 1 )T j (W 1 )) × (2 m ∞ ) q-2 + s q E[|Z| q ]E[T 2 j (W 1 )] ≤ n2 q-1 T j q-2 ∞ E[|Z| q ] Var(m(X 1 )T j (W 1 )) × (2 m ∞ ) q-2 + s q E[T 2 j (W 1 )] ≤ n2 q-1 T j q-2 ∞ E[|Z| q ] (Var(m(X 1 )T j (W 1 )) +s 2 E[T 2 j (W 1 )] × (2 m ∞ ) q-2 + s q-2 ≤ 2 q-1 T j q-2 ∞ E[|Z| q ] × A 2 × (2 m ∞ + s) q-2 .
Besides we have (see page 23 in [START_REF] Patel | Handbook of the normal distribution[END_REF]) denoting Γ the Gamma function

E[|Z| q ] = 2 q/2 √ π Γ q + 1 2 ≤ 2 q/2 2 -1/2 q! ≤ 2 (q-1)/2 q!, ( 20 
)
as 1 √ π ≤ 1 √
2 and Γ( q+1 2 ) ≤ Γ(q + 1) = q!. So, for q ≥ 3,

A q ≤ 2 q-1 T j q-2 ∞ 2 (q-1)/2 q! × A 2 × (2 m ∞ + s) q-2 ≤ q! 2 × A 2 × 2 3q-1 2(q-2) T j ∞ (2 m ∞ + s) q-2 ,
The function 3q-1 2(q-2) is decreasing in q. Hence for any q ≥ 3, 2 3q-1

2(q-2) ≤ 16. Thus A q ≤ q! 2 × A 2 × c j q-2 , ( 21 
)
with c j := 16 T j ∞ (2m + s) .

We can now apply Proposition 2.9 of Massart [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF]. We denote f W the density of the W l 's. We have

E[T 2 j (W 1 )] = T 2 j (w)f W (w)dw ≤ f X ∞ T j 2 2 , since the density f W is the convolution of f X and g, f W ∞ = f X g ∞ ≤ f X ∞ . We have Var(m(X 1 )T j (W 1 )) ≤ E[m 2 (X 1 )T 2 j (W 1 )] ≤ m 2 ∞ T 2 j (w)f W (w)dw ≤ m 2 ∞ f X ∞ T j 2 2 .
Therefore, with

σ 2 j = A 2 n = Var(Y 1 T j (W 1 )), ( 22 
)
σ 2 j = σ 2 ε E[T 2 j (W 1 )] + Var(m(X 1 )T j (W 1 )) (23) ≤ σ 2 ε f X ∞ T j 2 2 + m 2 ∞ f X ∞ T j 2 2 ≤ f X ∞ T j 2 2 (s 2 + m 2 ∞ ).
We conclude that for any u > 0,

P ⎛ ⎝ |p j (x) -p j (x)| ≥ 2σ 2 j u n + c j u n ⎞ ⎠ ≤ 2e -u . ( 24 
)
Now, we can write

σ2 j = 1 n(n -1) n l=2 l-1 v=1 U j (Y l , W l ) -U j (Y v , W v ) 2 = 1 n(n -1) n l=2 l-1 v=1 U j (Y l , W l ) -E[U j (Y l , W l )] -U j (Y v , W v ) + E[U j (Y v , W v )] 2 = s 2 j - 2 n(n -1) ξ j , with s 2 j := 1 n(n -1) n l=2 l-1 v=1 (U j (Y l , W l ) -E[U j (Y l , W l )]) 2 + (U j (Y v , W v ) -E[U j (Y v , W v )]) 2 = 1 n n l=1 (U j (Y l , W l ) -E[U j (Y l , W l )]) 2
and

ξ j := n l=2 l-1 v=1 (U j (Y l , W l ) -E[U j (Y l , W l )]) × (U j (Y v , W v ) -E[U j (Y v , W v )]).
In the sequel, we denote for any γ > 0,

Ω n (γ) = max 1≤l≤n |ε l | ≤ s 2γ log n .
We have that

P(Ω n (γ) c ) ≤ n 1-γ . ( 25 
)
Note that on Ω n (γ),

U j (•, •) ∞ ≤ C j ,
we recall that

C j = (m + s 2γ log n) T j ∞ .
Lemma 1. For any γ > 1 and any u > 0, there exists a sequence e n,j > 0 such that lim sup j e n,j = 0 and

P σ 2 j ≥ s 2 j + 2C j σ j 2u(1 + e n,j ) n + σ 2 j u 3n Ω n (γ) ≤ e -u .
Proof. We denote

P Ωn(γ) (•) = P (•|Ω n (γ)) , E Ωn(γ) (•) = E (•|Ω n (γ)) .
Note that conditionally to Ω n (γ) the variables U j (Y 1 , W 1 ), . . . , U j (Y n , W n ) are independent. So, we can apply the classical Bernstein inequality to the variables

V l := σ 2 j -(U j (Y l , W l ) -E[U j (Y l , W l )]) 2 n ≤ σ 2 j n .
Furthermore, as

E Ωn(γ) [U j (Y 1 , W 1 )] = E[m(X 1 )T j (W 1 )|Ω n (γ)] + E[ε 1 T j (W 1 )|Ω n (γ)] = E[m(X 1 )T j (W 1 )] = E[U j (Y 1 , W 1 )] ( 26 
)
we get

n l=1 E Ωn(γ) [V 2 l ] = E Ωn(γ) σ 2 j -(U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 2 n = σ 4 j + E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 4 n - 2σ 2 j E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 n ≤ σ 4 j + (4C 2 j -2σ 2 j )E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 n .
We shall find an upperbound for

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 : E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 = Var(m(X 1 )T j (W 1 )) + E[ε 2 1 T 2 j (W 1 )|Ω n (γ)] = Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )] E[ε 2 1 1 Ωn(γ) ] P(Ω n (γ)) ≤ Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )] s 2 P(Ω n (γ)) ≤ Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )] s 2 1 -n 1-γ = Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )]s 2 (1 + ẽn ),
where ẽn = n 1-γ + o(n 1-γ ). Using [START_REF] Whittemore | Approximations for regression with covariate measurement error[END_REF] we have

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 ≤ (1 + e n,j )σ 2 j , ( 27 
)
where (e n,j ) is a sequence such that lim sup j e n,j = 0. Now let us find a lower bound for

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 : E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 = Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )] E[ε 2 1 1 Ωn(γ) ] P(Ω n (γ)) ≥ Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )]E[ε 2 1 1 Ωn(γ) ] = Var(m(X 1 )T j (W 1 )) + E[T 2 j (W 1 )]E[ε 2 1 (1 -1 Ω c n (γ) )] = σ 2 j -E[T 2 j (W 1 )]E[ε 2 1 1 Ω c n (γ)
]. Now using Cauchy Scharwz, ( 20) and (25) we have

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 ≥ σ 2 j -E[T 2 j (W 1 )](E[ε 4 1 ]) 1 2 (P(Ω c n (γ))) 1 2 ≥ σ 2 j -Cs 2 E[T 2 j (W 1 )]n 1-γ 2 = σ 2 j (1 + ẽn,j ), (28) 
where (ẽ n,j ) is a sequence such that lim sup j ẽn,j = 0. Finally, using the bounds we just got for

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 yields n l=1 E Ωn(γ) [V 2 l ] ≤ σ 4 j + 4C 2 j σ 2 j (1 + e n,j ) -2σ 4 j (1 + ẽn,j ) n ≤ 4C 2 j σ 2 j (1 + e n,j ) -σ 4 j (1 + 2ẽ n,j ) n ≤ 4C 2 j σ 2 j (1 + e n,j ) n .
We obtain the claimed result. Now, we deal with ξ j .

Lemma 2.

There exists an absolute constant c > 0 such that for any u > 1,

P ξ j ≥ c(nσ 2 j u + C 2 j u 2 ) Ω n (γ) ≤ 3e -u .
Proof. Note that conditionally to Ω n (γ), the vectors (Y l , W l ) 1≤l≤n are independent. We remind that by (26), ( 27) and (28) we have

E Ωn(γ) [U j (Y 1 , W 1 )] = E[U j (Y 1 , W 1 )] (29) 
and

E Ωn(γ) (U j (Y 1 , W 1 ) -E[U j (Y 1 , W 1 )]) 2 = (1 + e n,j
)σ 2 j . The ξ j can be written as

ξ j = n l=2 l-1 v=1 g j (Y l , W l , Y v , W v ), with g j (y, w, y , w ) = (U j (y, w) -E[U j (Y 1 , W 1 )])) × (U j (y , w ) -E[U j (Y 1 , W 1 )]).
Previous computations show that conditions (2.3) and (2.4) of Houdré and Reynaud-Bouret [START_REF] Houdré | Exponential inequalities, with constants, for U-statistics of order two[END_REF] are satisfied. So that we are able to apply Theorem 3.1 of [START_REF] Houdré | Exponential inequalities, with constants, for U-statistics of order two[END_REF]: there exist absolute constants c 1 , c 2 , c 3 and c 4 such that for any u > 0,

P Ωn(γ) ξ j ≥ c 1 C √ u + c 2 Du + c 3 Bu 3/2 + c 4 Au 2 ≤ 3e -u ,
where A, B, C, and D are defined and controlled as follows. We have:

A = g j ∞ ≤ 4C 2 j . C 2 = n l=2 l-1 v=1 E Ωn(γ) [g 2 j (Y l , W l , Y v , W v )] = n(n -1) 2 σ 4 j (1 + e n,j ) 2 . Let A = (a l ) l , (b v ) v : E Ωn(γ) n l=2 a 2 l (Y l , W l ) ≤ 1, E Ωn(γ) n-1 l=1 b 2 l (Y l , W l ) ≤ 1 .
We have:

D = sup (a l ) l ,(bv)v∈A E Ωn(γ) n l=2 l-1 v=1 g j (Y l , W l , Y v , W v )a l (Y l , W l )b v (Y v , W v ) = sup (a l ) l ,(bv)v∈A n l=2 l-1 v=1 E Ωn(γ) [(U j (Y l , W l ) -[U j (Y l , W l )]))a l (Y l , W l )] × E Ωn(γ) [(U j (Y v , W v ) -E[U j (Y v , W v )]))b v (Y v , W v )] ≤ sup (a l ) l ,(bv)v∈A n l=2 l-1 v=1 σ 2 j (1 + e n,j ) E Ωn(γ) [a 2 l (Y l , W l )]E Ωn(γ) [b 2 v (Y v , W v )] ≤ σ 2 j (1 + e n,j ) sup (a l ) l ,(bv)v∈A n l=2 √ l -1 × E Ωn(γ) [a 2 l (Y l , W l )] l-1 v=1 E Ωn(γ) [b 2 v (Y v , W v )] ≤ σ 2 j (1 + e n,j ) n(n -1) 2 .
Finally,

B 2 = sup y,w n-1 v=1 E Ωn(γ) (U j (y, w) -E[U j (Y 1 , W 1 )])) 2 × (U j (Y v , W v ) -E[U j (Y 1 , W 1 )]) 2 ≤ 4(n -1)C 2 j σ 2 j (1 + e n,j ).
Therefore, there exists an absolute constant c > 0 such that for any u > 1,

c 1 C √ u + c 2 Du + c 3 Bu 3/2 + c 4 Au 2 ≤ c(nσ 2 j u + C 2 j u 2 ).
Let us go back to the proof of Proposition 1. We apply Lemmas 1 and 2 with u > 1 and we obtain, by setting

M j (u) = σ2 j + 2C j σ j 2u(1 + e n,j ) n + σ 2 j u 3n + 2c(nσ 2 j u + C 2 j u 2 ) n(n -1) , P σ 2 j ≥ M j (u) ≤ P σ 2 j ≥ s 2 j - 2 n(n -1) ξ j + 2C j σ j 2u(1 + e n,j ) n + σ 2 j u 3n + 2c(nσ 2 j u + C 2 j u 2 ) n(n -1) ≤ P σ 2 j ≥ s 2 j + 2C j σ j 2u(1 + e n,j ) n + σ 2 j u 3n Ω n (γ) + P ξ j ≥ c(nσ 2 j u + C 2 j u 2 ) Ω n (γ) + 1 -P(Ω n (γ)).
Therefore, with u = γ log n and γ > 1, we obtain for n large enough:

P σ 2 j ≥ M j (γ log n) ≤ 5n -γ .
And there exist a and b two absolute constants such that

P σ 2 j ≥ σ2 j +2C j σ j 2γ log n(1 + e n,j ) n + σ 2 j aγ log n n + C 2 j b 2 γ2 log 2 n n 2 ≤ 5n -γ .
Now, we set

θ 1 = 1 - aγ log n n , θ 2 = C j 2γ log n(1 + e n,j ) n , θ 3 = σ2 j + C 2 j b 2 γ2 log 2 n n 2 so P θ 1 σ 2 j -2θ 2 σ j -θ 3 ≥ 0 ≤ 5n -γ . We study the polynomial p(σ) = θ 1 σ 2 -2θ 2 σ -θ 3 . Since σ ≥ 0, p(σ) ≥ 0 means that σ ≥ 1 θ 1 θ 2 + θ 2 2 + θ 1 θ 3 ,
which is equivalent to

σ 2 ≥ 1 θ 2 1 2θ 2 2 + θ 1 θ 3 + 2θ 2 θ 2 2 + θ 1 θ 3 . Hence P σ 2 j ≥ 1 θ 2 1 2θ 2 2 + θ 1 θ 3 + 2θ 2 θ 2 2 + θ 1 θ 3 ≤ 5n -γ .
So,

P σ 2 j ≥ θ 3 θ 1 + 2θ 2 √ θ 3 θ 1 √ θ 1 + 4θ 2 2 θ 2 1 ≤ 5n -γ .
So, there exist absolute constants δ, η, and τ depending only on γ so that for n large enough,

P σ 2 j ≥ σ2 j 1 + δ log n n + 1 + η log n n 2C j 2γ σ2 j (1 + e n,j ) log n n + 8γC 2 j log n n 1 + τ log n n 1/2 ≤ 5n -γ .
Finally, for all ε > 0 there exists R 4 depending on ε and γ such that for n large enough

P(σ 2 j ≥ (1 + ε )σ 2 j,γ ) ≤ R 4 n -γ .
Combining this inequality with (24), we obtain the desired result of Proposition 1.

Proposition 2 shows that the residual term in the oracle inequality is negligible.

Proposition 2. We have for any q ≥ 1,

E sup j∈J (|p j (x) -p j (x)| -Γ γ (j)) q + ≤ R 1 n -q , ( 30 
)
with R 1 a constant depending on s, m, d, ϕ, c g , C g and ϕ.

Proof. We recall that J = j ∈ N d : 2 Sj ≤ n log 2 n . Let γ > 0 and let us consider the event

Ωγ = σ 2 j ≤ (1 + ε)σ 2 j,γ , ∀ j ∈ J .
Let γ > 0. We set in the sequel

E := E ⎡ ⎣ sup j∈J ⎛ ⎝ |p j (x) -p j (x)| - 2γ(1 + ε)σ 2 j,γ log n n - c j γ log n n ⎞ ⎠ q + 1 Ωγ ⎤ ⎦ ,
and R j := |p j (x)p j (x)|. We have:

E = ∞ 0 P ⎡ ⎣ sup j∈J ⎛ ⎝ R j - 2γ(1 + ε)σ 2 j,γ log n n - c j γ log n n ⎞ ⎠ q + 1 Ωγ > y ⎤ ⎦ dy ≤ j∈J ∞ 0 P ⎡ ⎣ ⎛ ⎝ R j - 2γ(1 + ε)σ 2 j,γ log n n - c j γ log n n ⎞ ⎠ q + 1 Ωγ > y ⎤ ⎦ dy ≤ j∈J ∞ 0 P ⎡ ⎣ ⎛ ⎝ R j - 2γσ 2 j log n n - c j γ log n n ⎞ ⎠ q > y ⎤ ⎦ dy.
Let us take u such that y = h(u) q , where

h(u) = 2σ 2 j u n + c j u n .
Note that for any u > 0,

h (u) ≤ h(u) u .
Hence

E ≤ C j∈J ∞ 0 P ⎡ ⎣ Rj > 2γσ 2 j log n n + cjγ log n n + 2uσ 2 j n + ucj n ⎤ ⎦ h(u) q-1 h (u)du ≤ C j∈J ∞ 0 P ⎡ ⎣ Rj > 2σ 2 j (γ log n + u) n + cj(γ log n + u) n ⎤ ⎦ h(u) q-1 h (u)du.
Now using concentration inequality [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF], we get

E ≤ C j∈J ∞ 0 e -(γ log n+u) h(u) q-1 h (u)du ≤ C j∈J ∞ 0 e -(γ log n+u) h(u) q 1 u du ≤ Ce -γ log n j∈J ∞ 0 e -u ⎛ ⎝ 2σ 2 j u n + c j u n ⎞ ⎠ q 1 u du ≤ C ⎛ ⎝ e -γ log n j∈J σ 2 j n q/2 ∞ 0 e -u u q 2 -1 du + c j n q ∞ 0 e -u u q-1 du ⎞ ⎠ .
Now using Lemma 10, we have that σ 2 j ≤ R 10 2 (2Sj ν+Sj ) and c j ≤ C2 Sj ν+Sj . Hence,

E ≤ C ⎛ ⎝ e -γ log n j∈J 2 (2Sj ν+Sj ) n q/2 + 2 (Sj ν+Sj ) n q ⎞ ⎠ ≤ Cn -γ+qν (log n) -(2ν+1)q ≤ Cn -q ,
as soon as γ > q(ν + 1).

It remains to find an upperbound for the following quantity:

E := E ⎡ ⎣ sup j∈J ⎛ ⎝ |p j (x) -p j (x)| - 2γ(1 + ε)σ 2 j,γ log n n - c j γ log n n ⎞ ⎠ q + 1 Ωc γ ⎤ ⎦ .
We have

E ≤ E sup j∈J (|p j (x) -p j (x)| q 1 Ωc γ ≤ 2 q-1 E sup j∈J (|p j (x)|) q 1 Ωc γ + E sup j∈J (|p j (x)|) q 1 Ωc γ .
First, let us deal with the term E sup j∈J (|p j (x)|) q 1 Ωc γ .

Following the lines of the proof of Lemma 7 we easily get that k ϕ 2 jk (x) ≤ C2 Sj , hence

|p j (x)| = k p jk ϕ jk (x) ≤ k p 2 jk 1 2 k ϕ 2 jk (x) 1 2 ≤ C p 2 2 S j 2 .
Now using Proposition 1 which states that P( Ωc

γ ) ≤ Cn -γ E sup j∈J (|p j (x)|) q 1 Ωc γ ≤ sup j∈J ( p 2 2 S j
2 ) q P( Ωc γ ) (31)

≤ C n log 2 n q 2 n -γ . ( 32 
)
It remains to find an upperbound for E sup j∈J (|p j (x)|) q 1 Ωc γ . We have

E sup j∈J (|p j (x)|) q 1 Ωc γ = E sup j∈J 1 n n l=1 Y l T j (W l ) q 1 Ωc γ ≤ 1 n q E sup j∈J n l=1 |m(X l ) + ε l | |T j (W l )| q 1 Ωc γ ≤ n q-1 n q E sup j∈J n l=1 |m(X l ) + ε l | q |T j (W l )| q 1 Ωc γ ≤ C n E sup j∈J n l=1 ( m q ∞ + |ε l | q )|T j (W l )| q 1 Ωc γ ≤ C sup j∈J ( T j q ∞ )P( Ωc γ ) + sup j∈J ( T j q ∞ )E |ε 1 | q 1 Ωc γ ≤ C sup j∈J ( T j q ∞ )P( Ωc γ ) + s q sup j∈J ( T j q ∞ ) E |Z| 2q 1 2 P( Ωc γ ) 1 2 
, where Z ∼ N (0, 1). Using [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] and T j ∞ ≤ T 4 2 Sj (ν+1) , we get

E sup j∈J (|p j (x)|) q 1 Ωc γ ≤ C n log 2 n (ν+1)q n -γ 2 ,
We have

E ≤ Cn -γ 2 n log 2 n q 2 + n log 2 n (ν+1)q ≤ Cn -q ,
as soon as γ > 2q(ν + 2). This ends the proof of Proposition 2.

Proposition 3 controls the bias term in the oracle inequality. Proposition 3. For any j = (j 1 , . . . , j d ) ∈ Z d and j = (j 1 , . . . , j d ) ∈ Z d and any x, if p ∈ H d ( β, L)

|p j∧j (x) -p j (x)| ≤ R 12 L d l=1 2 -j l β l ,
where R 12 is a constant only depending on ϕ and β. We have denoted j ∧ j = (j 1 ∧ j 1 , . . . , j d ∧ j d ).

Proof. We first state three lemmas. Lemma 3. For any j and any k, we have:

E[p jk ] = p jk . Proof. Recall that pjk := 1 n n u=1 Y u ×(D j ϕ) j,k (W u ) = 2 S j 2 (2π) d 1 n n u=1 Y u e -i<t,2 j Wu-k> F(ϕ)(t) F(g)(2 j t) dt.
Let us prove now that E(p jk ) = p jk .

We have

E(p jk ) = 2 S j 2 (2π) d E(Y 1 e -i<t,2 j W1-k> ) F(ϕ)(t) F(g)(2 j t) dt .
We shall develop the right member of the last equality. We have:

E Y 1 e -i<t,2 j W1-k> = E (m(X 1 ) + ε 1 )e -i<t,2 j W1-k> = E m(X 1 )e -i<t,2 j W1-k> = E m(X 1 )e -i<t,2 j X1-k> E e -i<t,2 j δ1> = m(x)e -i<t,2 j x-k> f X (x)dx × F(g)(2 j t) = e i<t,k> F(p)(2 j t)F(g)(2 j t).
Consequently

E [p jk ] = 2 S j 2 (2π) d e i<t,k> F(p)(2 j t)F(g)(2 j t) F(ϕ)(t) F(g)(2 j t) dt = 2 S j 2 (2π) d e i<t,k> F(p)(2 j t)F(ϕ)(t)dt = 1 (2π) d F(p)(t)F(ϕ jk )(t)dt.
Since by Parseval equality, we have

p jk = p(t)ϕ jk (t)dt = 1 (2π) d F(p)(t)F(ϕ jk )(t)dt,
the result follows.

Note that in the case where we don't have any noise on the variable i.e g(x) = δ 0 (x), since F(g)(t) = 1, the proof above remains valid and we get E[p jk ] = p jk . Lemma 4. If for any l, β l ≤ N , the following holds: for any j ∈ Z d and any p ∈ H d ( β, L),

|E[p j (x)] -p(x)| ≤ L( ϕ ∞ ϕ 1 ) d (2A + 1) d d l=1 (2A × 2 -j l ) β l β l ! .
Proof. Let x be fixed and j = (j 1 , . . . , j d ) ∈ Z d . We have:

K j (x, y)dy = k1 • • • k d d l=1 [2 j l ϕ(2 j l x l -k l )ϕ(2 j l y l -k l )dy l ] = 1.
Therefore, using lemma 3 

E[p j (x)] -p(x) = p j (x) -p(x) = K j (x, y)(p(y) -p(x))dy = k ϕ jk (x) ϕ jk (y)(p(y) -p(x))dy = k1∈Zj,1(x) • • • k d ∈Z j,d (x) ϕ jk (x) d l=1 2 j l 2 ϕ(2 j l y l -k l )(p ( 
) = β l k=1 ∂ k p ∂x k l (x 1 , . . . x l-1 , x l , y l+1 , . . . , y d ) × (y l -x l ) k k! + ∂ β l p ∂x β l l (x 1 , . . . x l-1 , x l + (y l -x l )u l , y l+1 , . . . , y d ) × (y l -x l ) β l β l ! - ∂ β l p ∂x β l l (x 1 , . . . x l-1 , x l , y l+1 , . . . , y d ) × (y l -x l ) β l β l ! .
Using vanishing moments of K j and p ∈ H d ( β, L), we obtain:

|p j (x) -p(x)| ≤ k1∈Zj,1(x) • • • k d ∈Z j,d (x) |ϕ jk (x)| d l=1 2 j l 2 |ϕ(2 j l y l -k l )| d l=1 L |y l -x | β l β l ! dy ≤ ϕ d ∞ k1∈Zj,1(x) • • • k d ∈Z j,d (x) [-A;A] d d l=1 |ϕ(u l )| d l=1 L |2 -j l (u l + k l ) -x l | β l β l ! du.
Since for any l, k l ∈ Z j,l (x), we finally obtain

|p j (x) -p(x)| ≤ ϕ d ∞ k1∈Zj,1(x) • • • k d ∈Z j,d (x) [-A;A] d d l=1 |ϕ(u l )| d l=1 L (2A × 2 -j l ) β l β l ! du ≤ L( ϕ ∞ ϕ 1 ) d (2A + 1) d d l=1 (2A × 2 -j l ) β l β l ! .
Lemma 5. We have for any j = (j 1 , . . . , j d ) ∈ Z d and j = (j 1 , . . . , j d ) ∈ Z d and any x, K j (p j )(x) = p j∧j (x).

Proof. We only deal with the case d = 2. The extension to the general case can be easily deduced. If for i = 1, 2, j i ≤ j i the result is obvious. It is also the case if for l = 1, 2, j l ≤ j l . So, without loss of generality, we assume that j 1 ≤ j 1 and j 2 ≤ j 2 . We have:

K j (p j )(x) = K j (x, y)p j (y)dy = k ϕ j k (x)ϕ j k (y)p j (y)dy = k1 k2 ϕ j 1 k1 (x 1 )ϕ j 2 k2 (x 2 )ϕ j 1 k1 (y 1 )ϕ j 2 k2 (y 2 )p j (y)dy 1 dy 2 = k1 k2 ϕ j 1 k1 (x 1 )ϕ j 2 k2 (x 2 )ϕ j 1 k1 (y 1 )ϕ j 2 k2 (y 2 ) × 1 2 ϕ j1 1 (y 1 )ϕ j2 2 (y 2 )ϕ j1 1 (u 1 )ϕ j2 2 (u 2 )p(u 1 , u 2 )du 1 du 2 dy 1 dy 2 .
Since j 1 ≤ j 1 , we have in the one-dimensional case, by a slight abuse of notation, V j1 ⊂ V j 1 and k1 ϕ j 1 k1 (x 1 )ϕ j 1 k1 (y 1 )ϕ j1 1 (y 1 )dy 1 = K j 1 (x 1 , y 1 )ϕ j1 1 (y 1 )dy 1 = ϕ j1 1 (x 1 ).

Similarly, since j 2 ≤ j 2 , we have

V j 2 ⊂ V j2 and 2 ϕ j2 2 (y 2 )ϕ j2 2 (u 2 )ϕ j 2 k2 (y 2 )dy 2 = K j2 (u 2 , y 2 )ϕ j 2 k2 (y 2 )dy 2 = ϕ j 2 k2 (u 2 ).
Therefore, with j = j ∧ j ,

K j (p j )(x) = k2 1 ϕ j 2 k2 (x 2 )ϕ j1 1 (u 1 )ϕ j1 1 (x 1 )ϕ j 2 k2 (u 2 )p(u 1 , u 2 )du 1 du 2 = 1 2 ϕ j2 2 (x 2 )ϕ j1 1 (u 1 )ϕ j1 1 (x 1 )ϕ j2 2 (u 2 )p(u 1 , u 2 )du 1 du 2 = ϕ j (x)ϕ j (u)p(u)du = p j (x),
which ends the proof of the lemma. Now, we shall go back to the proof of Proposition 3. We easily deduce the result:

p j∧j (x) -p j (x) = K j (p j )(x) -K j (p)(x) = K j (x, y)(p j (y) -p(y))dy. Therefore, |p j∧j (x) -p j (x)| ≤ |K j (x, y)||p j (y) -p(y)|dy ≤ R 12 L d l=1 2 -j l β l × |K j (x, y)|dy,
where R 12 is a constant only depending on ϕ and β. We conclude by observing that

|K j (x, y)|dy = k1 • • • k d d l=1 [2 j l |ϕ(2 j l x l -k l )||ϕ(2 j l y l -k l )|dy i ] ≤ ϕ d ∞ k1∈Z j ,1 (x) • • • k d ∈Z j ,d (x) |ϕ(v)|dv d ≤ ( ϕ ∞ ϕ 1 (2A + 1)) d .
We thus obtain the claimed result of Proposition 3.

Appendix

Technical lemmas are stated and proved below.

Lemma 6. We have

E[(σ j,γ ) q ] ≤ R 5 2 Sj (2ν+1) q 2 ,
with R 5 a constant depending on q, γ, m, s, d, ϕ, c g , C g .

Proof. First, let us focus on the case q ≥ 2. We recall the expression of σ2

j,γ σ2 j,γ = σ2 j + 2C j 2γ σ2 j log n n + 8γC 2 j log n n .
We shall first prove that

E[(σ j ) q ] ≤ C2 Sj (2ν+1) q 2 .
Let us remind that

σ2 j = 1 2n(n -1) l =v (U j (Y l , W l ) -U j (Y v , W v )) 2 .
We easily get

σ2 j ≤ C n l (U j (Y l , W l ) -E[U j (Y 1 , W 1 )]) 2 .
First let us remark that

l (U j (Y l , W l ) -E[U j (Y 1 , W 1 )]) 2 q 2 ≤ C ⎛ ⎝ l ((U j (Y l , W l ) -E[U j (Y 1 , W 1 )]) 2 -σ 2 j ) q 2 + n q 2 σ q j ⎞ ⎠
We will use Rosenthal inequality (see [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]) to find an upper bound for

E ⎡ ⎣ l ((U j (Y l , W l ) -E[U j (Y 1 , W 1 )]) 2 -σ 2 j ) q 2 ⎤ ⎦ .
We set B l := (U j (Y l , W l ) -E[U j (Y 1 , W 1 )]) 2σ 2 j . The variables B l are i.i.d and centered. We have to check that E[|B l | q 2 ] < ∞.

We have

E[|B l | q 2 ] ≤ C(E[|(U j (Y l , W l ) -E[U j (Y 1 , W 1 )]| q ] + σ q j ), but E[|(U j (Y l , W l ) -E[U j (Y 1 , W 1 )]| q ] = A q n ,
with A q defined in [START_REF] Koo | B-spline estimation of regression functions with errors in variable[END_REF]. Hence

E[|B l | q 2 ] ≤ C A q n + σ q j . ( 33 
)
Using the control of A q in (21), equation [START_REF] Patel | Handbook of the normal distribution[END_REF] and Lemma 10 we have

A q ≤ Cnσ 2 j T j q-2 ∞ ≤ Cn2 Sj (qν+q-1) . ( 34 
)
Now, we are able to apply the Rosenthal inequality to the variables B l which yields

E ⎡ ⎣ l B l q 2 ⎤ ⎦ ≤ C ⎛ ⎝ l E[|B l | q 2 ] + l E[B 2 l ] q 4 ⎞ ⎠ ,
and using (33) and (34) we get e -it l w l F(ϕ)(t l ) F(g l )(2 j l t l ) dt l .

E ⎡ ⎣ l B l q 2 ⎤ ⎦ ≤ C ⎛ ⎝ l A q n + σ q j + l A 4 n + σ 4
For the left-hand product on |w l | ≤ 1 we use the result (41). Now let us consider the right-hand product with |w l | ≥ 1. We set in the sequel η l (t l ) := F(ϕ)(t l ) F(g l )(2 j l t l ) .

We have

d l=1,|w l |≥1
e -it l w l F(ϕ)(t l ) F(g l )(2

j l t l ) dt l = d l=1,|w l |≥1
e -it l w l η l (t l )dt l .

Since |η l (t l )| → 0 when t l → ±∞, an integration by part yields e -it l w l η l (t l )dt l = iw -1 l e -it l w l η l (t l )dt l .

Let us compute the derivative of η l (t l ) η l (t l ) = F(ϕ)(t l ) F(g)(2 j l t l ) -2 j l F (g)(2 j l t l )F(ϕ)(t l ) (F(g)(2 j l t l )) 2 .

Using Lemma 8, (3) and (4)

|η l (t l )| ≤ F(ϕ)(t l ) F(g)(2 j l t l ) + 2 j l F (g)(2 j l t l )F(ϕ)(t l ) (F(g)(2

j l t l )) 2 ≤ C (1 + |t l |) -r (1 + 2 j l |t l |) ν + 2 j l (1 + 2 j l |t l |) -ν-1 (1 + |t l |) -r (1 + 2 j l |t l |) 2ν ≤ C 2 j l ν (1 + |t l |) -r (2 -j l + |t l |) ν + 2 j l (1 + 2 j l |t l |) ν-1 (1 + |t l |) -r ≤ C 2 j l ν (1 + |t l |) -r (2 -j l + |t l |) ν + 2 j l ν (2 -j l + |t l |) ν-1 (1 + |t l |) -r ≤ C2 j l ν (1 + |t l |) -r (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 (1 + |t l |) -r .
Therefore, e -it l w l η l (t l )dt l (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 dt l ≤ C2 -j l (2 -j l ν + 2 -j l (ν-1) ) ≤ C.

D 2 := 2 -j l ≤|t l |≤1 (1 + |t l |) -r (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 (1 + |t l |) -r dt l ≤ C 2 -j l ≤|t l |≤1 (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 dt l ≤ C 2 j l 1
((2 -j l + 2 -j l s) ν + (2 -j l + 2 -j l s) ν-1 )2 -j l ds ≤ C2 -j l (ν+1) Proof. We have

σ 2 j = Var(U j (Y 1 , W 1 )) ≤ E |U j (Y 1 , W 1 )| 2 = E ⎡ ⎣ Y 1 k (D j ϕ) j,k (W 1 )ϕ jk (x) 2 ⎤ ⎦ = E ⎡ ⎣ (m(X 1 ) + ε 1 ) k (D j ϕ) j,k (W 1 )ϕ jk (x) 2 ⎤ ⎦ ≤ 2( m 2 ∞ + σ 2 ε )E ⎡ ⎣ k (D j ϕ) j,k (W 1 )ϕ jk (x) 2 ⎤ ⎦ ≤ 2( m 2 ∞ + σ 2 ε ) k (D j ϕ) j,k (w)ϕ jk (x) 2 f W (w)dw ≤ 2( m 2 ∞ + σ 2 ε ) f X ∞ 2 Sj k (D j ϕ) (2 j w -k)ϕ jk (x) 2 dw.
Now making the change of variable z = 2 j wk, we get using Lemma 7 and Lemma 9 to bound (D j ϕ)(z)

σ 2 j ≤ 2( m 2 ∞ + σ 2 ε ) f X ∞ k (D j ϕ) (z)ϕ jk (x) 2 dz ≤ C 2 2Sj ν d i=l 1 (1 + |z l |) 2 k |ϕ jk (x)| 2 dz ≤ R 10 2 Sj (2ν+1) ,
where R 10 is a constant depending on s, m, d, ϕ, c g , C g . This gives the bound for σ 2 j . For T j ∞ , using again Lemma 7 and Lemma 9, we have

T j ∞ ≤ max k (D j ϕ) j,k ∞ k |ϕ jk (x)| ≤ 2 S j 2 (D j ϕ) ∞ k |ϕ jk (x)| ≤ R 11 2 Sj (ν+1) ,
where R 11 is a constant depending on ϕ, c g , C g .

Fig 1 .

 1 Fig 1. a) Representation of Doppler function. b) A zoom of Doppler function on [0.15, 0.30]. c) A zoom of Doppler function on [0.80, 1].

Fig 2 .

 2 Fig 2. a/ Noisy Doppler with X i ∼ U[0, 1]. b/ Noisy Doppler with X i ∼ Beta(2, 2). c/ Noisy Doppler function with X i ∼ Beta(0.5, 2).

Fig 3 .

 3 Fig 3. Pointwise risk of pĵ at x 0 = 0.25 in function of parameter γ for the Beta(2, 2) design and σg L = 0.075.

Fig 4 .Fig 5 .

 45 Fig 4. Estimation of p(x) at x 0 = 0.25

j q 4 ⎞⎠

 4 Now we consider the case where there exists at least one w l such that |w l | ≥ 1. We have(D j ϕ)(w)= d l=1,|w l |≤1 e -it l w l F(ϕ)(t l ) F(g l )(2 j l t l ) dt l × d l=1,|w l |≥1

≤ |w l | - 1 ( 1 +

 11 |η l (t l )|dt l ≤ C|w l | -1 2 j l ν (1 + |t l |) -r (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 (1 + |t l |) -r dt l ≤ C|w l | -1 2 j l ν (D 1 + D 2 + D 3 ),with D 1 , D 2 and D 3 defined below.D 1 := |t l |≤2 -j l |t l |) -r (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 (1 + |t l |) -r dt l ≤ C |t l |≤2 -j l

2 j l 1 s ν ds + C2 -j l ν 2 j l 1 s( 1 +- 1 le 2 . 10 .

 21111210 |t l |) -r (2 -j l + |t l |) ν + (2 -j l + |t l |) ν-1 (1 + |t l |) -r dt i ≤ C |t l |≥1 |t l | ν-r + |t l | ν-1-r dt l ≤ C, since νr < -1.When ν = 0 we still havee -it l w l η l (t l )dt l ≤ C|w l | -1 2 j l ν = C|w l | -1 . Indeed when ν = 0 η l (t l ) = F(ϕ)(t l ),andiw -it l w l η l (t l )dt l = iw -1 l e -it l w l F(ϕ)(t l ) dt l ≤ |w l | -1 F(ϕ)(t l ) dt l ≤ C|w l | -1 (1 + |t|) -r dt < C|w l | -1 ,using Lemma 8 and r ≥ Lemma There exist constants R 10 depending on s, m, d, ϕ, c g , C g and R 11 depending on ϕ, c g , C g such that σ 2 j ≤ R 10 2 Sj (2ν+1) , T j ∞ ≤ R 11 2 Sj (ν+1) .

Table 1

 1 Reliability ratio.

	σg L		Design of the X i	
		U[0, 1]	Beta(2, 2) Beta(0.5, 2)
	0.075	0.88	0.81	0.80
	0.10	0.80	0.71	0.69

Table 2

 2 MAE of m(x): on the left at x 0 = 0.25 and on the right x 0 = 0.90.

	σg L		design of the X i	σg L		design of the X i	
		U[0, 1]	Beta(2, 2)	Beta(0.5, 2)		U[0, 1]	Beta(2, 2) Beta(0.5, 2)
	0.075 0.0144	0.0204	0.0071	0.075	0.0212	0.0177	0.1012
	0.10	0.0156	0.0206	0.0072	0.10	0.0192	0.0195	0.104

Table 3

 3 MAE of m(x) at the points very closed to 0 and 1: on the left: x 0 = 0.01 and on the right: x 0 = 0.98.

	σg L		design of the X i	σg L		design of the X i	
		U[0, 1]	Beta(2, 2)	Beta(0.5, 2)		U[0, 1]	Beta(2, 2) Beta(0.5, 2)
	0.075	0.3461	0.5312	0.3445	0.075	0.2153	0.3429	0.5130
	0.10	0.3668	0.5493	0.3589	0.10	0.2191	0.3453	0.5293

  , . . . , x l-1 , y l , y l+1 , . . . , y d )-p(x 1 , . . . x l-1 , x l , y l+1 , . . . , y

		y) -p(x))dy.
	Now, we use that
	d	
	p(y)-p(x) =	p(x 1
	l=1	

d ), with p(x 1 , . . . , x l , y l+1 , . . . , y d ) = p(x 1 , . . . , x d ) if l = d and p(x 1 , . . . , x l-1 , y l , . . . , y d ) = p(y 1 , . . . , y d ) if l = 1. Furthermore, the Taylor expansion gives: for any l ∈ {1, . . . , d}, for some u l ∈ [0; 1], p(x 1 , . . . , x l-1 , y l , y l+1 , . . . , y d )p(x 1 , . . . x l-1 , x l , y l+1 , . . . , y d
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≤ C A q + nσ q j + (A 4 ) q 4 + n q 4 σ q j ≤ C n2 Sj (qν+q-1) + n2 Sj (2ν+1) q 2 + (n2 Sj (4ν+3 ) q 4

. Consequently E[σ q j ] ≤ Cn -q 2 n2 Sj (qν+q-1) + n2 Sj (2ν+1) q 2 + (n2 Sj (4ν+3 )

Let us compare each term of the r.h.s of the last inequality. We have

which is true by [START_REF] Gach | Spatially adaptive density estimation by localised Haar projections[END_REF]. Similarly we have

and obviously

Thus we get that the dominant term in r.h.s is 2 Sj (2ν+1) q 2 . Hence

Now using that

and since C j ≤ C √ log n2 Sj (ν+1) , we have

Let us compare the three terms of the right hand side. We have

which is true by [START_REF] Gach | Spatially adaptive density estimation by localised Haar projections[END_REF]. Furthermore we have

which is true again by [START_REF] Gach | Spatially adaptive density estimation by localised Haar projections[END_REF]. Consequently

with R 5 a constant depending on q, γ, m, s, d, ϕ, c g , C g and the lemma is proved for q ≥ 2.

For the case q ≤ 2 the result follows from Jensen inequality.

Lemma 7. Under Assumption (A1) on the father wavelet ϕ, we have for any j = (j 1 , . . . , j d ) and any

Proof. A proof of this standard result can be found in Section 4.2 in [START_REF] Giné | Mathematical Foundations of Infinite-dimensional Statistical Models[END_REF].

Lemma 8. Under condition (A1) and ϕ is C r , there constants R 6 and R 7 depending on ϕ such that

and

Proof. A proof of this result can be found in Section 4.2 of [START_REF] Giné | Mathematical Foundations of Infinite-dimensional Statistical Models[END_REF].

Lemma 9. Under conditions (A1) and (A3), for ν ≥ 0, we have

where R 8 is a constant depending on ϕ, C g and c g .