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Michaël Chichignoud∗

ETH Zürich
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1. Introduction

We consider the problem of multivariate nonparametric regression with errors
in variables. We observe the i.i.d dataset

(W1, Y1), . . . , (Wn, Yn)

where
Yl = m(Xl) + εl

and
Wl = Xl + δl,

with Yl ∈ R. The covariates errors δl are i.i.d unobservable random variables
having error density g. We assume that g is known. The δl’s are independent
of the Xl’s and Yl’s. The εl’s are i.i.d standard normal random variables, inde-
pendent of the Xl’s with variance s2 which is assumed to be known. We wish
to estimate the regression function m(x), x ∈ [0, 1]d, but direct observations of
the covariates Xl are not available. Instead due to the measuring mechanism or
the nature of the environment, the covariates Xl are measured with errors. Let
us denote fX the density of the Xl’s assumed to be positive and fW the density
of the Wl’s.

Use of errors-in-variables models appears in many areas of science such as
medicine, econometry or astrostatistics and is appropriate in a lot of practical
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experimental problems. For instance, in epidemiologic studies where risk fac-
tors are partially observed (see [23], [10]) or in environmental science where air
quality is measured with errors ([6]).

In the error-free case, that is δl = 0, one retrieves the classical multivariate
nonparametric regression problem. Estimating a function in a nonparametric
way from data measured with error is not an easy problem. Indeed, construct-
ing a consistent estimator in this context is challenging as we have to face to a
deconvolution step in the estimation procedure. Deconvolution problems arise in
many fields where data are obtained with measurement errors and has attracted
a lot of attention in the statistical literature, see [21] for an excellent source of ref-
erences. The nonparametric regression with errors-in-variables model has been
the object of a lot of attention as well, we may cite the works of [10], [11], [17],
[19], [21], [5], [3], [8], [2], [6]. The literature has mainly to do with kernel-based
approaches, based on the Fourier transform. All the works cited have tackled
the univariate case except for [10] where the authors explored the asymptotic
normality for mixing processes. In the one dimensional setting, [3] used Meyer
wavelets in order to devise his statistical procedure but his assumptions on the
model are strong since the corrupted observations Wl follow a uniform density
on [0, 1]. [5] investigated the mean integrated squared error with a penalized
estimator based on projection methods upon Shannon basis. But the authors
do not give any clue about how to choose the resolution level of the Shannon ba-
sis. Furthermore, the constants in the penalized term are calibrated via intense
simulations.

In the present article, our aim is to study the multidimensional setting and
the pointwise risk. We would like to take into account the anisotropy for the
function to estimate. Our approach relies on the use of projection kernels on
wavelets bases combined with a deconvolution operator involving the noise in
the covariates. When using wavelets, a crucial point lies in the choice of the res-
olution level. Actually, the main goal of the paper focuses on how to choose in
a calibrated way the multiresolution analysis. It is well-known that theoretical
results in adaptive estimation do not provide the way to choose the numerical
constants in the resolution level and very often lead to conservative choices. We
may cite the work of [12] which attempts to tackle this problem. For the density
estimation problem and the sup-norm loss, the authors based their statistical
procedure on Haar projection kernels and provide a way to choose locally the
resolution level. Nonetheless, in practice, their procedure relies on heavy Monte
Carlo simulations to calibrate the constants. In our paper the resolution level of
our estimator is optimal, partially data-driven and varies x by x. It is automat-
ically selected by a method inspired from [14] to tackle anisotropy problems.
This method has been used recently in various contexts (see [7], [4] and [1]).
Furthermore, we do not resort to thresholding which is very popular when us-
ing wavelets and our selection rule is adaptive to the unknown regularity of the
regression function. We obtain oracle inequalities and provide optimal rates of
convergence for anisotropic Hölder classes. The performances of our adaptive
estimator, the negative impact of the errors in the covariates, the effects of the
design density are assessed by examples based on simulations.
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The paper is organized as follows. In Section 2, we describe our estimation
procedure. In Section 3, we provide an oracle inequality and rates of conver-
gences of our estimator for the pointwise risk. Section 4 gives some numerical
illustrations. Proofs of theorems, propositions and technical lemmas are to be
found in Section 5.

Notation Let N = {0, 1, 2, . . . } and j = (j1, . . . , jd) ∈ N
d, we set Sj =

∑d
i=1 ji

and for any y ∈ R
d, we set, with a slight abuse of notation,

2jy := (2j1y1, . . . , 2
jdyd)

and for any k = (k1, · · · , kd) ∈ Z
d,

hj,k(y) := 2
Sj
2 h(2jy − k) = 2

Sj
2 h(2j1y1 − k1, . . . , 2

jdyd − kd),

for any function h : Rd → R. We denote by F the Fourier transform of any
Lebesgue integrable function f ∈ L1(R

d) by

F(f)(t) =

∫
Rd

e−i<t,y>f(y)dy, t ∈ R
d,

where < ., . > denotes the usual scalar product.
For two integers a, b, we denote a∧ b := min(a, b) and a∨ b := max(a, b). And

�y� denotes the largest integer smaller than y: �y� ≤ y < �y�+ 1.

2. The estimation procedure

For estimating the regression function m, the idea consists in writing m as the
ratio

m(x) =
m(x)fX(x)

fX(x)
, x ∈ [0, 1]d.

In the sequel, we denote

p(x) := m(x)× fX(x).

First, we estimate p, then fX . Since estimating fX is a classical deconvolution
problem, the main task consists in estimating p. We propose a wavelet-based
procedure with an automatic choice of the maximal resolution level. Section 2.2
describes the construction of the projection kernel on wavelet bases depending
on a maximal resolution level. Section 2.3 describes the Goldenshluger-Lepski
procedure to select the resolution level adaptively.

2.1. Technical conditions

To facilitate the presentation, we collect in this subsection all the conditions
that we need throughout the paper.
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First, some conditions are imposed on the regression function m and the
design density fX . We suppose that

m ∈ M(m) = {S : [0, 1]d → R : ‖S‖∞ ≤ m}, m > 0, (1)

and

fX ∈ M(d) = {f density on [0, 1]d and ‖f‖∞ ≤ d}, d > 0. (2)

Futhermore, there exists C1 > 0 such that for any x ∈ [0, 1]d, fX(x) ≥ C1.
To ensure the existence of all Fourier transforms, we also suppose that m · fX
and F(m · fX) ∈ L1(R

d).
To derive rates of convergence and lower bounds as we have to face a decon-

volution step, we need some assumptions on the smoothness of the density of
the errors covariates g. We suppose that

F(g)(t) =

d∏
l=1

F(gl)(tl),

and there exist positive constants cg and Cg such that

cg(1 + |tl|)−ν ≤ |F(gl)(tl)| ≤ Cg(1 + |tl|)−ν , ν ≥ 0, tl ∈ R. (3)

The left hand side of the above inequality is usual when proving upper bounds.
But here as we use compactly supported wavelets, we also need the right hand
side to prove upper bounds. This supplementary assumption has been already
used in deconvolution density estimation problem (see [9]). The right hand side
of inequality (3) also appears in the proofs of lower bounds.

We require another condition on the derivative of the Fourier transform of g
to prove lower bounds. There exists a positive constant Cg such that

|F ′(gl)(tl)| ≤ Cg(1 + |tl|)−ν−1, tl ∈ R. (4)

Laplace and Gamma distributions satisfy the above Assumptions (3) and (4).
Assumptions (3) and (4) control the decay of the Fourier transform of each
components of g at a polynomial rate controlled by the degree of ill-posedness
ν. Hence we deal with a midly ill-posed inverse problem.

We consider a father wavelet ϕ on the real line satisfying the following con-
ditions:

• (A1) The father wavelet ϕ is compactly supported on [−A,A], where A is
a positive integer.

• (A2) There exists a positive integer N , such that for any x∫ ∑
k∈Z

ϕ(x− k)ϕ(y − k)(y − x)�dy = δ0�, � = 0, . . . , N.

• (A3) ϕ is of class Cr, where r > ν + 1.
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Conditions (A1), (A2) and (A3) are satisfied for instance by Coiflets wavelets
(see [15], Chapter 8). Condition (A3) has already been encountered in the lit-
erature (see condition (A2) in [9]). It ensures that our estimator is well-defined
(more explanations about this are given in Section 2.2). Condition (A3) is also
useful to prove Lemma 9.

Remark 1. Note that most of our results remain valid by using wavelets with
compactly supported Fourier transform such as Meyer wavelets. However, in
this case, the summation in (5) is not finite, which leads to some difficulties
in practice. [9] also used compactly supported wavelets such as Daubechies ones
when dealing with deconvolution density problem.

2.2. Approximation kernels and family of estimators for p

The associated projection kernel on the space

Vj := span{ϕjk, k ∈ Z
d}, j ∈ N

d,

is given for any x and y by

Kj(x, y) =
∑
k

ϕjk(x)ϕjk(y),

where for any x,

ϕjk(x) =

d∏
l=1

2
jl
2 ϕ(2jlxl − kl), j ∈ N

d, k ∈ Z
d.

Therefore, the projection of p on Vj can be written for any z,

pj(z) := Kj(p)(z) :=

∫
Kj(z, y)p(y)dy =

∑
k

pjkϕjk(z)

with

pjk =

∫
p(y)ϕjk(y)dy.

First we estimate unbiasedly projection pj . Secondly to obtain the final es-
timate of p, it will remain to select a convenient value of j which will be done
in Section 2.3. The natural approach is based on unbiased estimation of the
projection coefficients pjk. To do so, we adapt the kernel approach proposed by
[11] in our wavelets context. To this purpose, we set

p̂jk :=
1

n

n∑
u=1

Yu × (Djϕ)j,k(Wu)

=
2

Sj
2

(2π)d
1

n

n∑
u=1

Yu

∫
e−i<t,2jWu−k>

d∏
l=1

F(ϕ)(tl)

F(gl)(2jltl)
dtl,



688 M. Chichignoud et al.

then

p̂j(x) =
∑
k

p̂jkϕjk(x) =
1

n

∑
k

n∑
u=1

Yu × (Djϕ)j,k(Wu)ϕjk(x), (5)

where the deconvolution operator Dj is defined as follows for a function f defined
on R

(Djf)(w) =
1

(2π)d

∫
e−i<t,w>

d∏
l=1

F(f)(tl)

F(gl)(2jltl)
dt, w ∈ R

d. (6)

Lemma 3, proved in Section 5.2.1 states that E[p̂j(x)] = pj(x) which justifies
our approach. Note that as ϕ has compact support, the summation in k is finite
for all x (see the expression of estimator p̂j(x) in (5)).

The deconvolution operator (Djf)(w) in (6) is the multidimensional wavelet
analogous of the operator Kn(x) defined in (2.4) in [11]: the Fourier transform
of their kernel K has been replaced in our procedure by the Fourier transform
of the wavelet ϕjk and their bandwith h by 2−j . Eventually, our estimator is
well-defined: using Lemma 8 and Assumption (3) we have that, for C a constant,

d∏
l=1

∣∣∣∣ F(ϕ)(tl)

F(gl)(2jltl)

∣∣∣∣ ≤ C

d∏
l=1

(1 + |tl|)−r(1 + |2jltl|)ν ≤ C2Sjν
d∏

l=1

(1 + |tl|)ν−r,

which is integrable using condition (A3).
The definition of the estimator p̂j(x) still makes sense when we do not have

any noise on the variables Xl i.e g(x) = δ0(x) because in this case F(g)(t) = 1.

2.3. Selection rule by using the Goldenshluger-Lepski methodology

The second and final step consists in selecting the multidimensional resolution
level j depending on x thanks to a data-driven selection rule. This selection rule
is a modification in the light of [14] of a method exposed in [18]. First we have
to introduce some quantities which will intervene in the rule. In the sequel we
denote for any w ∈ R

d,

Tj(w) :=
∑
k

(Djϕ)j,k(w)ϕjk(x)

and
Uj(y, w) := y

∑
k

(Djϕ)j,k(w)ϕjk(x) = y × Tj(w),

so we have

p̂j(x) =
1

n

n∑
u=1

Uj(Yu,Wu).

Proposition 1 in Section 5.2.1 shows that p̂j(x) concentrates around pj(x). So,

the idea is to find a maximal resolution ĵ that mimics the oracle index. The oracle



Adaptive wavelet multivariate regression with errors in variables 689

index minimizes a bias variance trade-off. So we have to find an estimation for
the bias-variance decomposition of p̂j(x). We denote σ2

j := Var(Uj(Y1,W1)) and

the variance of p̂j is thus equal to
σ2
j

n . We set:

σ̂2
j :=

1

n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− Uj(Yv,Wv))
2, (7)

and since E(σ̂2
j ) = σ2

j , σ̂
2
j is a natural estimator of σ2

j . To devise our procedure,

we introduce a slightly overestimate of σ2
j given by:

σ̃2
j,γ̃ := σ̂2

j + 2Cj

√
2γ̃σ̂2

j

logn

n
+ 8γ̃C2

j

logn

n
, (8)

where γ̃ is a positive constant and

Cj :=
(
m+ s

√
2γ̃ logn

)
‖Tj‖∞.

Let γ > 0 and

Γγ(j) :=

√
2γσ̃2

j,γ̃ logn

n
+

cjγ logn

n
,

where
cj := 16 (2m+ s) ‖Tj‖∞.

Let
Γγ(j, j

′) := Γγ(j) + Γγ(j ∧ j′),

and
Γ∗
γ(j) := sup

j′∈J
Γγ(j, j

′). (9)

We now define the selection rule for the resolution index. Let

R̂j := sup
j′∈J

{
|p̂j∧j′(x)− p̂j′(x)| − Γγ(j

′, j)
}
+
+ Γ∗

γ(j). (10)

Then p̂ĵ(x) is the final estimator of p(x) with ĵ such that

ĵ := argmin
j∈J

R̂j , (11)

where the set J is defined as

J :=

{
j ∈ N

d : 2Sj ≤
⌊

n

log2 n

⌋}
. (12)

Now, we shall highlight how the above quantities interplay in the estimation of
the risk decomposition of p̂j . An inspection of the proof of Theorem 1 shows
that a control of the bias of p̂j is provided by:

sup
j′

{
|p̂j∧j′(x)− p̂j′(x)| − Γγ(j

′, j)
}
+
.
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The term |p̂j∧j′(x)−p̂j′ | is classical when using the Goldenshluger Lepski method
(see Sections 2.1 and 5.2 in [1]). Furthermore for technical reasons (see proof of

Theorem 1), we do not estimate the variance of p̂j(x) by
σ̂2
j

n but we replace it
by Γ2

γ(j). Note that we have the straightforward control

Γγ(j) ≤ C

(
σ̂j

√
log n

n
+ (Cj + cj)

log n

n

)
,

where C is a constant depending on ε, γ̃ and γ. Actually we prove that Γ2
γ(j) is

of order logn
n σ2

j (see Lemma 6 and 10). The dependence of σ̃2
j,γ̃ (8) in m appears

only in smaller order terms. In conclusion, up to the knowledge of m and s2

the procedure is completely data-driven. Next section explains how to choose
the constants γ and γ̃. Our approach is non asymptotic and based on sharp
concentration inequalities.

3. Rates of convergence

3.1. Oracle inequality and rates of convergence for p(·)

First, we state an oracle inequality which highlights the bias-variance decompo-
sition of the risk.

Theorem 1. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined as above.
Then, it holds for any γ > q(ν + 1) and γ̃ > 2q(ν + 2),

E

[∣∣∣p̂ĵ(x)− p(x)
∣∣∣q] ≤ R1

(
inf
η
E
[{

B(η) + Γ∗
γ(η)

}q])
+R′

1n
−q,

where

B(η) := max

(
sup
j′

|E [p̂η∧j′(x)]− E [p̂j′(x)]| , |E[p̂η(x)]− p(x)|
)

R1 a constant depending only on q and R′
1 a constant depending on s, m, d, ϕ,

cg, Cg.
The oracle inequality in Theorem 1 illustrates a bias-variance decomposition

of the risk. The term B(η) is a bias term. Indeed, one recognizes on the right
side the classical bias term

|E[p̂η(x)]− p(x)| = |pη(x)− p(x)|.

Concerning |E [p̂η∧j′(x)]− E [p̂j′(x)]|, for sake of clarity let us consider for in-
stance the univariate case: if j′ ≤ η this term is equal to zero. If j′ ≥ η, it turns
to be

|E [p̂η(x)]− E [p̂j′(x)] | = |pη(x)− pj′(x)| ≤ |pη(x)− p(x)|+ |pj′(x)− p(x)|.
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As we have the following inclusion for the projection spaces Vη ⊂ Vj′ , the term
pj′ is closer to p than pη for the L2-distance. Hence we expect a good control of
|pj′(x)− p(x)| with respect to |pη(x)− p(x)|. Finally, the third term is a remain
term and is negligible.

We study the rates of convergence of the estimators over anisotropic Hölder
classes which are adapted to local estimation. Let us define them.

Definition 1 (Anisotropic Hölder Space). Let �β = (β1, β2, . . . , βd) ∈ (R∗
+)

d

and L > 0. We say that f : [0, 1]d → R belongs to the anisotropic Hölder class

Hd(�β, L) of functions if f is bounded and for any l = 1, ..., d and for all z ∈ R

sup
x∈[0,1]d

∣∣∣∣∣∂
�βl�f

∂x
�βl�
l

(x1, . . . , xl+z, . . . , xd)−
∂�βl�f

∂x
�βl�
l

(x1, . . . , xl, . . . , xd)

∣∣∣∣∣≤L|z|βl−�βl�.

The following theorem gives the rate of convergence of the estimator p̂ĵ(x)
for the pointwise Lq risk with q ≥ 1. Of course, one gets the usual pointwise L2

risk for q = 2.

Theorem 2. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined in (11).
Then, if for any l, �βl� ≤ N and L > 0, it holds

sup
p∈Hd(�β,L)

E

∣∣∣p̂ĵ(x)− p(x)
∣∣∣q ≤ L

q(2ν+1)

2β̄+2ν+1R2

(
logn

n

)qβ̄/(2β̄+2ν+1)

,

with β̄ = 1
1
β1

+···+ 1
βd

and R2 a constant depending on γ, q, γ̃,m, d, s, ϕ, cg, Cg, �β.

Remark 2. The estimate p̂ĵ(x) achieves the optimal rate of convergence up
to a logarithmic term (see Section 3.3 in [4]). This logarithmic loss is due to
adaptation.

The next section presents convergence rates for the estimator m̂(x) of the
regression function m.

3.2. Rates of convergence for m(·)

As mentioned above, the estimation of m requires an adaptive estimate of fX .
This is due to kernel estimators, e.g. projection estimators do not need the addi-
tional estimate (see [1]). For this purpose, we use an estimate introduced by [4]

(Section 3.4) denoted by f̂X . This estimate is constructed from a deconvolution
kernel and the bandwidth is selected via a method described in [14]. We will

not give the explicit expression of f̂X for ease of exposition. Then, we define the
estimate of m for all x in [0, 1]d:

m̂(x) =
p̂ĵ(x)

f̂X(x) ∨ n−1/2
. (13)

The term n−1/2 is added to avoid the drawback when f̂X is closed to 0.
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Theorem 3. Let q ≥ 1 be fixed and let m̂ defined as above. Then, if for any l,
�βl� ≤ N and L > 0, it holds

sup
(m,fX)∈Hd(�β,L)×Hd(�β,L)

E |m̂(x)−m(x)|q ≤ L
q(2ν+1)

2β̄+2ν+1R3

(
log n

n

)qβ̄/(2β̄+2ν+1)

,

with R3 a constant depending on γ, q, γ̃,m, s, d, ϕ, cg, Cg, �β.

The following theorem gives a lower bound for the pointwise risk:

Theorem 4. Let q ≥ 1, L > 0 and for any l, �βl� ≤ N . Then for any estimator
m̃ of m and for n large enough we have

sup
(m,fX)∈Hd(�β,L)×Hd(�β,L)

E |m̃(x)−m(x)|q ≥ R4n
−qβ̄/(2β̄+2ν+1),

with R4 a positive constant depending on �β, L, s, Cg and Cg.

Consequently, the estimate m̂ achieves the optimal rate of convergence up to
a logarithmic term and oracle inequality derived in Theorem 1 is then optimal.

4. Numerical results

In this section, we implement some simulations to illustrate the theoretical re-
sults. We aim at estimating the Doppler regression function m at two points
x0 = 0.25 and x0 = 0.90 (see Figure 1). We have n = 1024 observations
and the regression errors εl’s follow a standard normal density with variance
s2 = 0.152. As for the design density of the Xl’s, we consider the Beta density
and the uniform density on [0, 1]. The uniform distribution is quite classical in
regression with random design. The Beta(2, 2) and Beta(0.5, 2) distributions
reflect two very different behaviors on [0, 1]. Indeed, we recall that the Beta
density with parameters (a, b) (denoted here by Beta(a, b)) is proportional to
xa−1(1−x)b−11[0,1](x). Moreover, despite the fact that Beta densities vanish in

Fig 1. a) Representation of Doppler function. b) A zoom of Doppler function on [0.15, 0.30].
c) A zoom of Doppler function on [0.80, 1].
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Fig 2. a/ Noisy Doppler with Xi ∼ U [0, 1]. b/ Noisy Doppler with Xi ∼ Beta(2, 2). c/ Noisy
Doppler function with Xi ∼ Beta(0.5, 2).

0 and 1 and the design density fX is assumed to be bounded from below, the
choice of Beta distributions is still reasonable for simulations on any compact
strictly included into [0, 1]. Our numerical study illustrates the deteriorated per-
formances of the estimator at points very closed to 0 and 1. This is justified in
Table 3.

In Figure 2, we plot the noisy regression Doppler function according to the
three design scenario. For the covariate errors δi’s, we focus on the centered
Laplace density with scale parameter σgL > 0 that we denote gL. This latter
has the following expression:

gL(x) =
1

2σgL

e
− |x|

σgL .

The choice of the centered Laplace noise is motivated by the fact that the Fourier
transform of gL is given by

F(gL)(t) =
1

1 + σ2
gLt

2
,

and according to Assumption (3), it gives an example of an ordinary smooth
noise with degree of ill-posedness ν = 2. Furthermore, when facing regression
problems with errors in the design, it is common to compute the so-called reli-
ability ratio (see [11]) which is given by

Rr :=
Var(X)

Var(X) + 2σ2
gL

.

Rr permits to assess the amount of noise in the covariates. The closer to 0 Rr

is, the bigger the amount of noise in the covariates is and the more difficult the
deconvolution step will be. For instance, [11] chose Rr = 0.70. We computed
the reliability ratio in Table 1 for the considered simulations.

We recall that our estimator of m(x) is given by the ratio of two estimators
(see (13)):

m̂(x) =
p̂ĵ(x)

f̂X(x) ∨ n−1/2
. (14)
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Table 1

Reliability ratio.

σgL Design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.88 0.81 0.80
0.10 0.80 0.71 0.69

First, we compute p̂ĵ(x) an estimator of p(x) = m(x)× fX(x) which is denoted
“GL” in the graphics below. We use coiflet wavelets of order 5. Then we divide
p̂ĵ(x) by the adaptive deconvolution density estimator f̂X(x) of [4]. This latter
is constructed with a deconvolution kernel and an adaptive bandwidth. For the
selection of the coiflet level ĵ in p̂ĵ(x), we advise to use σ̂2

j instead of σ̃2
j,γ̃ and

2maxi |Yi|‖Tj‖∞
3 instead of cj . It remains to settle the value of the constant γ.

To do so, we compute the pointwise risk of p̂ĵ(x) in function of γ: Figure 3
shows a clear ”dimension jump” and accordingly the value γ = 0.5 turns to be
reasonable. Hence we fix γ = 0.5 for all simulations and our selection rule is
completely data-driven.

Fig 3. Pointwise risk of p̂ĵ at x0 = 0.25 in function of parameter γ for the Beta(2, 2) design

and σgL = 0.075.

Boxplots in Figure 4 and 5 summarize our numerical experiments. Theorem 1
gives an oracle inequality for the estimation of p(x). We compare the pointwise
risk error of p̂ĵ(x) (computed with 100 Monte Carlo repetitions) with the oracle
risk one. The oracle is p̂joracle

with the index joracle defined as follows:

joracle := argmin
j∈J

|p̂j(x)− p(x)|.

In Table 2, we have computed the MAE (Mean Absolute Error) of m̂(x) over
100 Monte Carlo runs.

Our performances are close to those of the oracle (see Figure 4 and 5) and
are quite satisfying both at x0 = 0.25 and x0 = 0.90. When going deeper
into details, increasing the Laplace noise parameter σgL deteriorates sligthly
the performances. Hence it seems that our procedure is robust to the noise in
the covariates and accordingly to the deconvolution step. Concerning the role
of the design density, when considering the Beta(0.5, 2) distribution, we expect
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Fig 4. Estimation of p(x) at x0 = 0.25

Fig 5. Estimation of p(x) at x0 = 0.90

the performances to be better near 0 as the observations tend to concentrate
near 0 and to be bad close to 1. Indeed, this phenomenon is confirmed by
Table 3. And when comparing the Beta(2, 2) and Beta(0.5, 2) distributions,
the performances are much better for the Beta(0.5, 2) at x0 = 0.25 whereas
the Beta(2, 2) distribution yields better results at x0 = 0.90. This is what is
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Table 2

MAE of m̂(x): on the left at x0 = 0.25 and on the right x0 = 0.90.

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.0144 0.0204 0.0071
0.10 0.0156 0.0206 0.0072

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.0212 0.0177 0.1012
0.10 0.0192 0.0195 0.104

Table 3

MAE of m̂(x) at the points very closed to 0 and 1: on the left: x0 = 0.01 and on the right:
x0 = 0.98.

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.3461 0.5312 0.3445
0.10 0.3668 0.5493 0.3589

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.2153 0.3429 0.5130
0.10 0.2191 0.3453 0.5293

expected as the two densities charge points near 0 and 1 differently.

For our simulations, we have chosen coiflets of order K = 5. The Fourier
transform for the coiflet ϕ is given by:

F(ϕ)(t) =

∫
R

exp(−itx)ϕ(x)dx, t ∈ R.

In theory, the Fourier transform is defined for all t ∈ R. But in practice, it is
sufficient to select t ∈ [−L,L] since F(ϕ)(t) almost vanishes for all t outside the
interval [−L,L] where L is chosen to be large enough. Preliminary simulations
allowed us to select L = 50 and we partitioned the interval [−L,L] into M =
4096 points tk = −L+ k�t, k = 0, . . . ,M − 1 with �t = 2L/(M − 1). Then we
approximated F(ϕ)(tk) by a Riemann sum:

F(ϕ)(tk) ≈
N−1∑
j=0

exp(−itkxj)ϕ(xj)�x.

Since the support of the coiflet ϕ is [−2K, 4K − 1], we approximated F(ϕ)(tk)
on the grid [x0, x1, . . . , xN−1] where xj = −2K + j�x, j = 0, . . . , N − 1 and
�x = (6K − 1)/(N − 1), N = 2048.

In a similar way, we approximated the integral

(
Djϕ

)
(w) =

∫
R

exp(−iwt)
F(ϕ)(t)

F(gL)(2jt)
dt, w ∈ R,

by

M−1∑
k=0

exp(−itkw)
(
1 + σ2

gL(2
jtk)

2
)
F(ϕ)(tk)�t,

since F(gL)(t) = 1/(1 + σ2
gLt

2) by the choice of the centered Laplace noise.
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5. Proofs

5.1. Proofs of theorems

This section is devoted to the proofs of theorems. These proofs use some propo-
sitions and technical lemmas which are respectively in Section 5.2.1 and 5.2.2.
In the sequel, C is a constant which may vary from one line to another one.

5.1.1. Proof of Theorem 1

Proof. We firstly recall the basic inequality (a1+ · · ·+ap)
q ≤ pq−1(aq1+ · · ·+aqp)

for all a1, . . . , ap ∈ R
p
+, p ∈ N and q ≥ 1. For ease of exposition, we denote

p̂ĵ(x) = p̂ĵ . So, we can show for any η ∈ N
d:∣∣∣p̂ĵ − p(x)

∣∣∣ ≤ ∣∣∣p̂ĵ − p̂ĵ∧η

∣∣∣+ ∣∣∣p̂ĵ∧η − p̂η

∣∣∣+ |p̂η − p(x)|

≤
∣∣∣p̂η∧ĵ − p̂ĵ

∣∣∣− Γγ(ĵ, η) + Γγ(ĵ, η) +
∣∣∣p̂ĵ∧η − p̂η

∣∣∣
− Γγ(η, ĵ) + Γγ(η, ĵ) + |p̂η − p(x)|

≤
∣∣∣p̂η∧ĵ − p̂ĵ

∣∣∣− Γγ(ĵ, η) + Γγ(η, ĵ) +
∣∣∣p̂ĵ∧η − p̂η

∣∣∣
− Γγ(η, ĵ) + Γγ(ĵ, η) + |p̂η − p(x)|

≤
∣∣∣p̂η∧ĵ − p̂ĵ

∣∣∣− Γγ(ĵ, η) + Γ∗
γ(η) +

∣∣∣p̂ĵ∧η − p̂η

∣∣∣
− Γγ(η, ĵ) + Γ∗

γ(ĵ) + |p̂η − p(x)|
≤ R̂η + R̂ĵ + |p̂η − p(x)|
≤ R̂η + R̂ĵ + |E[p̂η]− p(x)|+ |p̂η − E[p̂η]|
≤ R̂η + R̂ĵ + |E[p̂η]− p(x)|+ |p̂η − E[p̂η]| − Γγ(η) + Γγ(η)

≤ R̂η + R̂ĵ + |E[p̂η]− p(x)|+ sup
j′

{
|p̂j′ − E[p̂j′ ]| − Γγ(j

′)
}
+
+ Γ∗

γ(η).

By definition of ĵ, we recall that R̂ĵ ≤ infη R̂η and

R̂η ≤ sup
j,j′

{
|p̂j∧j′ − E[p̂j∧j′ ]| − Γγ(j ∧ j′)

}
+

+ sup
j′

{
|p̂j′ − E[p̂j′ ]| − Γγ(j

′)
}
+
+ sup

j′
|E[p̂η∧j′ ]− E[p̂j′ ]|+ Γ∗

γ(η).

Hence∣∣∣p̂ĵ − p(x)
∣∣∣ ≤ 2

[
sup
j,j′

{
|p̂j∧j′ − E[p̂j∧j′ ]| − Γγ(j ∧ j′)

}
+

+sup
j′

{
|p̂j′ − E[p̂j′ ]| − Γγ(j

′)
}
+
+ sup

j′
|E[p̂η∧j′ ]− E[p̂j′ ]|

]
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+ 2Γ∗
γ(η) + |E[p̂η]− p(x)|+ sup

j′

{
|p̂j′ − E[p̂j′ ]| − Γγ(j

′)
}
+
+ Γ∗

γ(η).

By definition of B(η) = max
(
supj′ |Ep̂η∧j′ − Ep̂j′ | , |Ep̂η − p(x)|

)
, we get

∣∣∣p̂ĵ − p(x)
∣∣∣ ≤2 sup

j,j′

{
|p̂j∧j′ − E[p̂j∧j′ ]| − Γγ(j ∧ j′)

}
+

+ 3 sup
j′

{
|p̂j′ − E[p̂j′ ]| − Γγ(j

′)
}
+
+ 3B(η) + 3Γ∗

γ(η).

Consequently∣∣∣p̂ĵ − p(x)
∣∣∣q ≤32q−1

([
B(η) + Γ∗

γ(η)
]q

+ sup
j′

{
|p̂j′ − Ep̂j′ | − Γγ(j

′)
}q

+

+ sup
j,j′

{
|p̂j∧j′ − Ep̂j∧j′ | − Γγ(j ∧ j′)

}q

+

)
.

Using Proposition 2, we have

E

∣∣∣p̂ĵ − p(x)
∣∣∣q ≤ C

(
E
[(
B(η) + Γ∗

γ(η)
)q])

+R′
1n

−q.

Then, we get

E

∣∣∣p̂ĵ − p(x)
∣∣∣q ≤ R1

(
inf
η
E
[(
B(η) + Γ∗

γ(η)
)q])

+R′
1n

−q,

where R1 is a constant only depending on q and R′
1 a constant depending on

m, d, s, ϕ, cg, Cg.

5.1.2. Proof of Theorem 2

Proof. The proof is a direct application of Theorem 1 together with a standard
bias-variance trade-off. We first recall the assertion of this theorem:

E

[∣∣∣p̂ĵ(x)− p(x)
∣∣∣q] ≤ C

(
inf
η
E
[(
B(η) + Γ∗

γ(η)
)q])

+R′
1n

−q.

For the bias term, we use Proposition 3 to get:

B(η) ≤ CL

d∑
l=1

2−ηlβl , for all η ∈ J.

Now let us focus on E
[
Γ∗
γ(η)

q
]
. We have

E [Γγ(η)
q] = E

⎡
⎣
⎛
⎝
√

2γ(1 + ε)σ̃2
η,γ̃ logn

n
+

cηγ log n

n

⎞
⎠

q⎤
⎦
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≤ 2q−1

((
2γ(1 + ε) logn

n

) q
2

E[σ̃q
η,γ̃ ] +

(
cηγ logn

n

)q
)

≤ C

((
logn

n

) q
2

2(2Sην+Sη)
q
2 +

(
cη logn

n

)q
)
,

using Lemma 6. But

cη = 16 (2m+ s) ‖Tη‖∞ ≤ C2Sην+Sη ,

using Lemma 10. Hence

E [Γγ(η)
q] ≤ C

((
logn

n

) q
2

2(2Sην+Sη)
q
2 +

(
logn

n

)q

2(Sην+Sη)q

)
.

We have(
logn

n

) q
2

2(2Sην+Sη)
q
2 ≥

(
logn

n

)q

2(Sην+Sη)q⇐⇒2Sη ≤ n

log n
,

which is true since by (12), 2Sη ≤ n
log2 n

.

This yields

E[Γ∗
γ(η)

q] ≤ C

(
2(2Sην+Sη) logn

n

) q
2

.

Eventually, we obtain the bound for the pointwise risk:

E

∣∣∣p̂ĵ(x)− p(x)
∣∣∣q ≤ C

(
inf
η

{
L

d∑
l=1

2−ηlβl +

√
2(2Sην+Sη) log(n)

n

}q)
+R′

1n
−q.

Setting the gradient of the right hand side of the inequality above with respect

to η it turns out that the optimal ηl is proportional to
2

log 2
β̄

βl(2β̄+2ν+1)
(logL+

1
2 log(

n
log(n) )), which leads for n large enough to

E

∣∣∣p̂ĵ(x)− p(x)
∣∣∣q ≤ L

q(2ν+1)

2β̄+2ν+1R2

(
log(n)

n

) β̄q
2β̄+2ν+1

,

with R2 a constant depending on γ, q, γ̃,m, s, d, ϕ, cg, Cg, �β. The proof of Theo-
rem 2 is completed.

5.1.3. Proof of Theorem 3

Proof. We recall that m(x) = p(x)
fX(x) and m̂(x) =

p̂ĵ(x)

f̂X(x)∨n−1/2
. We now state the

main properties of the adaptive estimate f̂X showed by [4] (Theorem 2): for all

q ≥ 1, all �β ∈ (0, 1]d, all L > 0 and n large enough, it holds

P (E1) := P

(
|f̂X(x)− fX(x)| ≥ Cφn(�β)

)
≤ n−2q, (15)
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and
P

(
|f̂X(x)− fX(x)| ≤ Cn

)
= 1, (16)

where φn(�β) := (log(n)/n)
β̄/(2β̄+2ν+1)

. Although the construction of the esti-

mate f̂X(x) depends on q, we remove the dependency for ease of exposition
(see [4] Section 3.4 for further details). From (15), we easily deduce, since
fX(x) ≥ C1 > 0, for n large enough that

P (E2) := P

(
f̂X(x) <

C1

2

)
≤ n−2q. (17)

We now start the proof of the theorem. We have together with (16)

|m̂(x)−m(x)| =
∣∣∣∣∣ p̂ĵ(x)

f̂X(x) ∨ n−1/2
− p(x)

fX(x)

∣∣∣∣∣
≤
∣∣∣∣∣ p̂ĵ(x)

f̂X(x) ∨ n−1/2
− p(x)

f̂X(x) ∨ n−1/2

∣∣∣∣∣+
∣∣∣∣∣ p(x)

f̂X(x) ∨ n−1/2
− p(x)

fX(x)

∣∣∣∣∣
≤
∣∣∣∣∣ p̂ĵ(x)− p(x)

f̂X(x) ∨ n−1/2

∣∣∣∣∣+ ‖m‖∞‖fX‖∞

∣∣∣∣∣ (f̂X(x) ∨ n−1/2)− fX(x)

fX(x)(f̂X(x) ∨ n−1/2)

∣∣∣∣∣
:= A1 + ‖m‖∞‖fX‖∞A2.

Control of E[Aq
1]. Using Cauchy-Schwarz inequality and the inequality f̂X(x)∨

n−1/2 ≥ n−1/2, we obtain for n large enough

E[Aq
1] = E[Aq

11Ec
2
] + E[Aq

11E2 ]

≤ E[Aq
11Ec

2
] +

√
E[A2q

1 ]
√
P(E2)

≤ CE

[∣∣∣p̂ĵ(x)− p(x)
∣∣∣q]+ nq/2

√
E

[∣∣∣p̂ĵ(x)− p(x)
∣∣∣2q]√P(E2).

Then, using Theorem 2 and (17), we finally have E[Aq
1] ≤ Cφq

n(
�β).

Control of E[Aq
2]. Using (16) and the inequality f̂X(x) ∨ n−1/2 ≥ n−1/2, it

holds for n large enough

E[Aq
2] ≤ E[Aq

21Ec
1∩Ec

2
] + E[Aq

2(1E1 + 1E2)]

≤ E[Aq
21Ec

1∩Ec
2
] + Cn3q/2(P(E1) + P(E2)).

Then, using the definition of A2, (15) and (17), we obtain E[Aq
2] ≤ Cφq

n(
�β).

Eventually, by definitions of A1 and A2, the proof is completed and

E[|m̂(x)−m(x)|q] ≤ C(E[Aq
1] + E[Aq

2]) ≤ L
q(2ν+1)

2β̄+2ν+1R3

(
log(n)

n

)qβ̄/(2β̄+2ν+1)

where R3 is a constant depending on γ, q, γ̃,m, s, d, ϕ, cg, Cg, �β. This completes
the proof of Theorem 3.
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5.1.4. Proof of Theorem 4

Following Meister [21], the proof is straightforward. Indeed, for the regression
problem with errors in variables, Theorem 3.5 in [21] proves a lower bound
in probability for the pointwise risk which claims that the minimax rate in

dimension 1 is n− 2β
2β+2ν+1 for Hölder class of index β and noise degree-of-ill-

posedness parameter ν. Following step by step the proof of Theorem 3.5 in [21]
in dimension 2 (the extension to general case can be easily deduced), one obtains
the lower bound of Theorem 4. In fact, Meister uses densities such as Cauchy
distributions which admit multivariate counterparts.

5.2. Statements and proofs of auxiliary results

This section is devoted to statements and proofs of auxiliary results used in
Section 5.1

5.2.1. Statements and proofs of propositions

Let us start with Proposition 1 which states a concentration inequality of p̂j
around pj .

Proposition 1. Let j be fixed. For any u > 0,

P

⎛
⎝|p̂j(x)− pj(x)| ≥

√
2σ2

ju

n
+

cju

n

⎞
⎠ ≤ 2e−u, (18)

where
σ2
j = Var(Y1Tj(W1)).

For any γ̃ > 1 we have for any ε̃ > 0 that there exists R4 only depending on γ̃
and ε̃ such that

P(σ2
j ≥ (1 + ε̃)σ̃2

j,γ̃) ≤ R4n
−γ̃ ,

σ̃2
j,γ̃ being defined in (8).

Proof. First, note that

p̂j(x) =
∑
k

p̂jkϕjk(x) =
1

n

n∑
l=1

Yl

∑
k

(Djϕ)j,k(Wl)ϕjk(x) =
1

n

n∑
l=1

Uj(Yl,Wl).

To prove Proposition 1, we apply the Bernstein inequality to the variables
Uj(Yl,Wl)− E[Uj(Yl,Wl)] that are independent. Since,

Uj(Yl,Wl) = YlTj(Wl),

and
E [εlTj(Wl)] = 0,
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we have for any q ≥ 2,

Aq :=

n∑
l=1

E[|Uj(Yl,Wl)− E[Uj(Yl,Wl)]|q]

=

n∑
l=1

E [|m(Xl)Tj(Wl) + εlTj(Wl)− E[m(Xl)Tj(Wl)]|q] . (19)

With q = 2,

A2 =

n∑
l=1

E[|Uj(Yl,Wl)− E[Uj(Yl,Wl)]|2]

= nVar(Y1Tj(W1))

= nE[(m(X1)Tj(W1) + ε1Tj(W1)− E[m(X1)Tj(W1)])
2]

= nE[ε21T
2
j (W1)] + nVar(m(X1)Tj(W1))

= n
(
s2E[T 2

j (W1)] + Var(m(X1)Tj(W1))
)
.

Now, for any q ≥ 3, with Z ∼ N (0, 1),

Aq ≤ n2q−1 (E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q] + E[|ε1Tj(W1)|q])
≤ n2q−1 (E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q] + sqE[|Z|q]E[|Tj(W1)|q])
≤ n2q−1 (E[|m(X1)TjW1)− E[m(X1)Tj(W1)]|q]

+sqE[|Z|q]E[T 2
j (W1)]‖Tj‖q−2

∞
)
.

Furthermore,

E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q]
≤ E[(m(X1)Tj(W1)− E[m(X1)Tj(W1)])

2]× (2‖m‖∞‖Tj‖∞)q−2

= Var(m(X1)Tj(W1))× (2‖m‖∞‖Tj‖∞)q−2.

Finally,

Aq ≤ n2q−1‖Tj‖q−2
∞

(
Var(m(X1)Tj(W1))× (2‖m‖∞)q−2 + sqE[|Z|q]E[T 2

j (W1)]
)

≤ n2q−1‖Tj‖q−2
∞ E[|Z|q]

(
Var(m(X1)Tj(W1))× (2‖m‖∞)q−2 + sqE[T 2

j (W1)]
)

≤ n2q−1‖Tj‖q−2
∞ E[|Z|q] (Var(m(X1)Tj(W1))

+s2E[T 2
j (W1)]

)
×
(
(2‖m‖∞)q−2 + sq−2

)
≤ 2q−1‖Tj‖q−2

∞ E[|Z|q]×A2 × (2‖m‖∞ + s)
q−2

.

Besides we have (see page 23 in [22]) denoting Γ the Gamma function

E[|Z|q] = 2q/2√
π
Γ

(
q + 1

2

)
≤ 2q/22−1/2q! ≤ 2(q−1)/2q!, (20)
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as 1√
π
≤ 1√

2
and Γ( q+1

2 ) ≤ Γ(q + 1) = q!. So, for q ≥ 3,

Aq ≤ 2q−1‖Tj‖q−2
∞ 2(q−1)/2q!×A2 × (2‖m‖∞ + s)

q−2

≤ q!

2
×A2 ×

(
2

3q−1
2(q−2) ‖Tj‖∞ (2‖m‖∞ + s)

)q−2

,

The function 3q−1
2(q−2) is decreasing in q. Hence for any q ≥ 3, 2

3q−1
2(q−2) ≤ 16.

Thus

Aq ≤ q!

2
×A2 × cj

q−2, (21)

with
cj := 16‖Tj‖∞ (2m+ s) .

We can now apply Proposition 2.9 of Massart [20]. We denote fW the density
of the Wl’s. We have

E[T 2
j (W1)] =

∫
T 2
j (w)fW (w)dw

≤ ‖fX‖∞‖Tj‖22,

since the density fW is the convolution of fX and g, ‖fW ‖∞ = ‖fX � g‖∞ ≤
‖fX‖∞. We have

Var(m(X1)Tj(W1)) ≤ E[m2(X1)T
2
j (W1)]

≤ ‖m‖2∞
∫

T 2
j (w)fW (w)dw

≤ ‖m‖2∞‖fX‖∞‖Tj‖22.

Therefore, with

σ2
j =

A2

n
= Var(Y1Tj(W1)), (22)

σ2
j = σ2

εE[T
2
j (W1)] + Var(m(X1)Tj(W1)) (23)

≤ σ2
ε‖fX‖∞‖Tj‖22 + ‖m‖2∞‖fX‖∞‖Tj‖22

≤ ‖fX‖∞‖Tj‖22(s2 + ‖m‖2∞).

We conclude that for any u > 0,

P

⎛
⎝|p̂j(x)− pj(x)| ≥

√
2σ2

ju

n
+

cju

n

⎞
⎠ ≤ 2e−u. (24)

Now, we can write

σ̂2
j =

1

n(n− 1)

n∑
l=2

l−1∑
v=1

(
Uj(Yl,Wl)− Uj(Yv,Wv)

)2
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=
1

n(n− 1)

n∑
l=2

l−1∑
v=1

(
Uj(Yl,Wl)− E[Uj(Yl,Wl)]

− Uj(Yv,Wv) + E[Uj(Yv,Wv)]
)2

= s2j −
2

n(n− 1)
ξj ,

with

s2j :=
1

n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])
2

+ (Uj(Yv,Wv)− E[Uj(Yv,Wv)])
2

=
1

n

n∑
l=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])
2

and

ξj :=
n∑

l=2

l−1∑
v=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])× (Uj(Yv,Wv)− E[Uj(Yv,Wv)]).

In the sequel, we denote for any γ̃ > 0,

Ωn(γ̃) =

{
max
1≤l≤n

|εl| ≤ s
√

2γ̃ logn

}
.

We have that
P(Ωn(γ̃)

c) ≤ n1−γ̃ . (25)

Note that on Ωn(γ̃),
‖Uj(·, ·)‖∞ ≤ Cj ,

we recall that
Cj = (m+ s

√
2γ̃ logn)‖Tj‖∞.

Lemma 1. For any γ̃ > 1 and any u > 0, there exists a sequence en,j > 0 such
that lim supj en,j = 0 and

P

(
σ2
j ≥ s2j + 2Cjσj

√
2u(1 + en,j)

n
+

σ2
ju

3n

∣∣∣∣∣Ωn(γ̃)

)
≤ e−u.

Proof. We denote

PΩn(γ̃)(·) = P (·|Ωn(γ̃)) , EΩn(γ̃)(·) = E (·|Ωn(γ̃)) .

Note that conditionally to Ωn(γ̃) the variables Uj(Y1,W1), . . . , Uj(Yn,Wn) are
independent. So, we can apply the classical Bernstein inequality to the variables

Vl :=
σ2
j − (Uj(Yl,Wl)− E[Uj(Yl,Wl)])

2

n
≤

σ2
j

n
.
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Furthermore, as

EΩn(γ̃)[Uj(Y1,W1)] = E[m(X1)Tj(W1)|Ωn(γ̃)] + E[ε1Tj(W1)|Ωn(γ̃)]

= E[m(X1)Tj(W1)]

= E[Uj(Y1,W1)] (26)

we get

n∑
l=1

EΩn(γ̃)[V
2
l ] =

EΩn(γ̃)

[(
σ2
j − (Uj(Y1,W1)− E[Uj(Y1,W1)])

2
)2]

n

=
σ4
j + EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

4
]

n

−
2σ2

jEΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]

n

≤
σ4
j + (4C2

j − 2σ2
j )EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]

n
.

We shall find an upperbound for EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]
:

EΩn(γ̃)

[
(Uj(Y1,W1) − E[Uj(Y1,W1)])

2
]

= Var(m(X1)Tj(W1)) + E[ε21T
2
j (W1)|Ωn(γ̃)]

= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]

E[ε211Ωn(γ̃)]

P(Ωn(γ̃))

≤ Var(m(X1)Tj(W1)) + E[T 2
j (W1)]

s2

P(Ωn(γ̃))

≤ Var(m(X1)Tj(W1)) + E[T 2
j (W1)]

s2

1− n1−γ̃

= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]s

2(1 + ẽn),

where ẽn = n1−γ̃ + o(n1−γ̃). Using (23) we have

EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]
≤ (1 + en,j)σ

2
j , (27)

where (en,j) is a sequence such that lim supj en,j = 0.

Now let us find a lower bound for EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]
:

EΩn(γ̃)

[
(Uj(Y1,W1) − E[Uj(Y1,W1)])

2
]

= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]

E[ε211Ωn(γ̃)]

P(Ωn(γ̃))

≥ Var(m(X1)Tj(W1)) + E[T 2
j (W1)]E[ε

2
11Ωn(γ̃)]
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= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]E[ε

2
1(1− 1Ωc

n(γ̃)
)]

= σ2
j − E[T 2

j (W1)]E[ε
2
11Ωc

n(γ̃)
].

Now using Cauchy Scharwz, (20) and (25) we have

EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]
≥ σ2

j − E[T 2
j (W1)](E[ε

4
1])

1
2 (P(Ωc

n(γ̃)))
1
2

≥ σ2
j − Cs2E[T 2

j (W1)]n
1−γ̃
2

= σ2
j (1 + ẽn,j), (28)

where (ẽn,j) is a sequence such that lim supj ẽn,j = 0.

Finally, using the bounds we just got for EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]

yields

n∑
l=1

EΩn(γ̃)[V
2
l ] ≤

σ4
j + 4C2

j σ
2
j (1 + en,j)− 2σ4

j (1 + ẽn,j)

n

≤
4C2

j σ
2
j (1 + en,j)− σ4

j (1 + 2ẽn,j)

n

≤
4C2

j σ
2
j (1 + en,j)

n
.

We obtain the claimed result.

Now, we deal with ξj .

Lemma 2. There exists an absolute constant c > 0 such that for any u > 1,

P
(
ξj ≥ c(nσ2

ju+ C2
j u

2)
∣∣Ωn(γ̃)

)
≤ 3e−u.

Proof. Note that conditionally to Ωn(γ̃), the vectors (Yl,Wl)1≤l≤n are indepen-
dent. We remind that by (26), (27) and (28) we have

EΩn(γ̃)[Uj(Y1,W1)] = E[Uj(Y1,W1)] (29)

and
EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])

2
]
= (1 + en,j)σ

2
j .

The ξj can be written as

ξj =

n∑
l=2

l−1∑
v=1

gj(Yl,Wl, Yv,Wv),

with

gj(y, w, y
′, w′) = (Uj(y, w)− E[Uj(Y1,W1)]))× (Uj(y

′, w′)− E[Uj(Y1,W1)]).

Previous computations show that conditions (2.3) and (2.4) of Houdré and
Reynaud-Bouret [16] are satisfied. So that we are able to apply Theorem 3.1
of [16]: there exist absolute constants c1, c2, c3 and c4 such that for any u > 0,

PΩn(γ̃)

(
ξj ≥ c1C

√
u+ c2Du+ c3Bu3/2 + c4Au

2
)
≤ 3e−u,
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where A, B, C, and D are defined and controlled as follows. We have:

A = ‖gj‖∞ ≤ 4C2
j .

C2 =

n∑
l=2

l−1∑
v=1

EΩn(γ̃)[g
2
j (Yl,Wl, Yv,Wv)] =

n(n− 1)

2
σ4
j (1 + en,j)

2.

Let

A =

{
(al)l, (bv)v : EΩn(γ̃)

[
n∑

l=2

a2l (Yl,Wl)

]
≤ 1, EΩn(γ̃)

[
n−1∑
l=1

b2l (Yl,Wl)

]
≤ 1

}
.

We have:

D = sup
(al)l,(bv)v∈A

EΩn(γ̃)

[
n∑

l=2

l−1∑
v=1

gj(Yl,Wl, Yv,Wv)al(Yl,Wl)bv(Yv,Wv)

]

= sup
(al)l,(bv)v∈A

[
n∑

l=2

l−1∑
v=1

EΩn(γ̃) [(Uj(Yl,Wl)− [Uj(Yl,Wl)]))al(Yl,Wl)]

× EΩn(γ̃) [(Uj(Yv,Wv)− E[Uj(Yv,Wv)]))bv(Yv,Wv)]

]

≤ sup
(al)l,(bv)v∈A

n∑
l=2

l−1∑
v=1

σ2
j (1 + en,j)

√
EΩn(γ̃)[a

2
l (Yl,Wl)]EΩn(γ̃)[b

2
v(Yv,Wv)]

≤ σ2
j (1 + en,j) sup

(al)l,(bv)v∈A

n∑
l=2

√
l − 1

×

√√√√
EΩn(γ̃)[a

2
l (Yl,Wl)]

l−1∑
v=1

EΩn(γ̃)[b
2
v(Yv,Wv)]

≤ σ2
j (1 + en,j)

√
n(n− 1)

2
.

Finally,

B2 = sup
y,w

n−1∑
v=1

EΩn(γ̃)

[
(Uj(y, w)− E[Uj(Y1,W1)]))

2

× (Uj(Yv,Wv)− E[Uj(Y1,W1)])
2
]

≤ 4(n− 1)C2
j σ

2
j (1 + en,j).

Therefore, there exists an absolute constant c > 0 such that for any u > 1,

c1C
√
u+ c2Du+ c3Bu3/2 + c4Au

2 ≤ c(nσ2
ju+ C2

j u
2).
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Let us go back to the proof of Proposition 1. We apply Lemmas 1 and 2 with
u > 1 and we obtain, by setting

Mj(u) = σ̂2
j + 2Cjσj

√
2u(1 + en,j)

n
+

σ2
ju

3n
+

2c(nσ2
ju+ C2

j u
2)

n(n− 1)
,

P
(
σ2
j ≥ Mj(u)

)
≤ P

(
σ2
j ≥ s2j −

2

n(n− 1)
ξj + 2Cjσj

√
2u(1 + en,j)

n

+
σ2
ju

3n
+

2c(nσ2
ju+ C2

j u
2)

n(n− 1)

)

≤ P

(
σ2
j ≥ s2j + 2Cjσj

√
2u(1 + en,j)

n
+

σ2
ju

3n

∣∣∣∣∣Ωn(γ̃)

)

+ P
(
ξj ≥ c(nσ2

ju+ C2
j u

2)
∣∣Ωn(γ̃)

)
+ 1− P(Ωn(γ̃)).

Therefore, with u = γ̃ logn and γ̃ > 1, we obtain for n large enough:

P
(
σ2
j ≥ Mj(γ̃ logn)

)
≤ 5n−γ̃ .

And there exist a and b two absolute constants such that

P

(
σ2
j ≥ σ̂2

j+2Cjσj

√
2γ̃ logn(1 + en,j)

n
+
σ2
jaγ̃ logn

n
+
C2

j b
2γ̃2 log2 n

n2

)
≤5n−γ̃ .

Now, we set

θ1 =

(
1− aγ̃ logn

n

)
, θ2 = Cj

√
2γ̃ logn(1 + en,j)

n
, θ3 = σ̂2

j +
C2

j b
2γ̃2 log2 n

n2

so
P
(
θ1σ

2
j − 2θ2σj − θ3 ≥ 0

)
≤ 5n−γ̃ .

We study the polynomial

p(σ) = θ1σ
2 − 2θ2σ − θ3.

Since σ ≥ 0, p(σ) ≥ 0 means that

σ ≥ 1

θ1

(
θ2 +

√
θ22 + θ1θ3

)
,

which is equivalent to

σ2 ≥ 1

θ21

(
2θ22 + θ1θ3 + 2θ2

√
θ22 + θ1θ3

)
.

Hence

P

(
σ2
j ≥ 1

θ21

(
2θ22 + θ1θ3 + 2θ2

√
θ22 + θ1θ3

))
≤ 5n−γ̃ .
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So,

P

(
σ2
j ≥ θ3

θ1
+

2θ2
√
θ3

θ1
√
θ1

+
4θ22
θ21

)
≤ 5n−γ̃ .

So, there exist absolute constants δ, η, and τ ′ depending only on γ̃ so that for
n large enough,

P

(
σ2
j ≥ σ̂2

j

(
1 + δ

logn

n

)
+

(
1 + η

logn

n

)
2Cj

√
2γ̃σ̂2

j (1 + en,j)
log n

n

+ 8γ̃C2
j

logn

n

(
1 + τ ′

(
logn

n

)1/2
))

≤ 5n−γ̃ .

Finally, for all ε̃ > 0 there exists R4 depending on ε′ and γ̃ such that for n
large enough

P(σ2
j ≥ (1 + ε′)σ̃2

j,γ̃) ≤ R4n
−γ̃ .

Combining this inequality with (24), we obtain the desired result of Proposi-
tion 1.

Proposition 2 shows that the residual term in the oracle inequality is negli-
gible.

Proposition 2. We have for any q ≥ 1,

E

[
sup
j∈J

(|p̂j(x)− pj(x)| − Γγ(j))
q
+

]
≤ R′

1n
−q, (30)

with R′
1 a constant depending on s, m, d, ϕ, cg, Cg and ϕ.

Proof. We recall that J =
{
j ∈ N

d : 2Sj ≤ � n
log2 n

�
}
.

Let γ̃ > 0 and let us consider the event

Ω̃γ̃ =
{
σ2
j ≤ (1 + ε)σ̃2

j,γ̃ , ∀ j ∈ J
}
.

Let γ > 0. We set in the sequel

E := E

⎡
⎣sup

j∈J

⎛
⎝|p̂j(x)− pj(x)| −

√
2γ(1 + ε)σ̃2

j,γ̃ logn

n
− cjγ logn

n

⎞
⎠

q

+

1Ω̃γ̃

⎤
⎦ ,

and Rj := |p̂j(x)− pj(x)|. We have:

E =

∫ ∞

0

P

⎡
⎣sup

j∈J

⎛
⎝Rj −

√
2γ(1 + ε)σ̃2

j,γ̃ logn

n
− cjγ logn

n

⎞
⎠

q

+

1Ω̃γ̃
> y

⎤
⎦ dy

≤
∑
j∈J

∫ ∞

0

P

⎡
⎣
⎛
⎝Rj −

√
2γ(1 + ε)σ̃2

j,γ̃ logn

n
− cjγ logn

n

⎞
⎠

q

+

1Ω̃γ̃
> y

⎤
⎦ dy
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≤
∑
j∈J

∫ ∞

0

P

⎡
⎣
⎛
⎝Rj −

√
2γσ2

j logn

n
− cjγ logn

n

⎞
⎠

q

> y

⎤
⎦ dy.

Let us take u such that

y = h(u)q,

where

h(u) =

√
2σ2

ju

n
+

cju

n
.

Note that for any u > 0,

h′(u) ≤ h(u)

u
.

Hence

E ≤ C
∑
j∈J

∫ ∞

0

P

⎡
⎣Rj >

√
2γσ2

j log n

n
+

cjγ log n

n
+

√
2uσ2

j

n
+

ucj
n

⎤
⎦ h(u)q−1h′(u)du

≤ C
∑
j∈J

∫ ∞

0

P

⎡
⎣Rj >

√
2σ2

j (γ log n+ u)

n
+

cj(γ logn+ u)

n

⎤
⎦ h(u)q−1h′(u)du.

Now using concentration inequality (18), we get

E ≤ C
∑
j∈J

∫ ∞

0

e−(γ logn+u)h(u)q−1h′(u)du

≤ C
∑
j∈J

∫ ∞

0

e−(γ logn+u)h(u)q
1

u
du

≤ Ce−γ logn
∑
j∈J

∫ ∞

0

e−u

⎛
⎝
√

2σ2
ju

n
+

cju

n

⎞
⎠

q

1

u
du

≤ C

⎛
⎝e−γ logn

∑
j∈J

(
σ2
j

n

)q/2 ∫ ∞

0

e−uu
q
2−1du+

(cj
n

)q ∫ ∞

0

e−uuq−1du

⎞
⎠ .

Now using Lemma 10, we have that σ2
j ≤ R102

(2Sjν+Sj) and cj ≤ C2Sjν+Sj .
Hence,

E ≤ C

⎛
⎝e−γ logn

∑
j∈J

(
2(2Sjν+Sj)

n

)q/2

+

(
2(Sjν+Sj)

n

)q
⎞
⎠

≤ Cn−γ+qν(logn)−(2ν+1)q ≤ Cn−q,

as soon as γ > q(ν + 1).
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It remains to find an upperbound for the following quantity:

E′ := E

⎡
⎣sup

j∈J

⎛
⎝|p̂j(x)− pj(x)| −

√
2γ(1 + ε)σ̃2

j,γ̃ logn

n
− cjγ logn

n

⎞
⎠

q

+

1Ω̃c
γ̃

⎤
⎦ .

We have

E′ ≤ E

[
sup
j∈J

(|p̂j(x)− pj(x)|q 1Ω̃c
γ̃

]

≤ 2q−1

(
E

[
sup
j∈J

(|p̂j(x)|)q1Ω̃c
γ̃

]
+ E

[
sup
j∈J

(|pj(x)|)q1Ω̃c
γ̃

])
.

First, let us deal with the term E

[
supj∈J (|pj(x)|)q1Ω̃c

γ̃

]
.

Following the lines of the proof of Lemma 7 we easily get that
∑

k ϕ
2
jk(x) ≤

C2Sj , hence

|pj(x)| =
∣∣∣∣∣
∑
k

pjkϕjk(x)

∣∣∣∣∣ ≤
(∑

k

p2jk

) 1
2
(∑

k

ϕ2
jk(x)

) 1
2

≤ C‖p‖22
Sj
2 .

Now using Proposition 1 which states that P(Ω̃c
γ̃) ≤ Cn−γ̃

E

[
sup
j∈J

(|pj(x)|)q1Ω̃c
γ̃

]
≤ sup

j∈J
(‖p‖22

Sj
2 )qP(Ω̃c

γ̃) (31)

≤ C

(
n

log2 n

) q
2

n−γ̃ . (32)

It remains to find an upperbound for E
[
supj∈J (|p̂j(x)|)q1Ω̃c

γ̃

]
. We have

E

[
sup
j∈J

(|p̂j(x)|)q1Ω̃c
γ̃

]

= E

[
sup
j∈J

∣∣∣∣∣ 1n
n∑

l=1

YlTj(Wl)

∣∣∣∣∣
q

1Ω̃c
γ̃

]

≤ 1

nq
E

[
sup
j∈J

(
n∑

l=1

|m(Xl) + εl| |Tj(Wl)|
)q

1Ω̃c
γ̃

]

≤ nq−1

nq
E

[
sup
j∈J

n∑
l=1

|m(Xl) + εl|q |Tj(Wl)|q1Ω̃c
γ̃

]

≤ C

n
E

[
sup
j∈J

n∑
l=1

(‖m‖q∞ + |εl|q)|Tj(Wl)|q1Ω̃c
γ̃

]
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≤ C

(
sup
j∈J

(‖Tj‖q∞)P(Ω̃c
γ̃) + sup

j∈J
(‖Tj‖q∞)E

[
|ε1|q1Ω̃c

γ̃

])

≤ C

(
sup
j∈J

(‖Tj‖q∞)P(Ω̃c
γ̃) + sq sup

j∈J
(‖Tj‖q∞)

(
E
[
|Z|2q

]) 1
2

(
P(Ω̃c

γ̃)
) 1

2

)
,

where Z ∼ N (0, 1). Using (20) and ‖Tj‖∞ ≤ T42
Sj(ν+1), we get

E

[
sup
j∈J

(|p̂j(x)|)q1Ω̃c
γ̃

]
≤ C

(
n

log2 n

)(ν+1)q

n− γ̃
2 ,

We have

E′ ≤ Cn− γ̃
2

((
n

log2 n

) q
2

+

(
n

log2 n

)(ν+1)q
)

≤ Cn−q,

as soon as γ̃ > 2q(ν + 2). This ends the proof of Proposition 2.

Proposition 3 controls the bias term in the oracle inequality.

Proposition 3. For any j = (j1, . . . , jd) ∈ Z
d and j′ = (j′1, . . . , j

′
d) ∈ Z

d and

any x, if p ∈ Hd(�β, L)

|pj∧j′(x)− pj′(x)| ≤ R12L

d∑
l=1

2−jlβl ,

where R12 is a constant only depending on ϕ and �β. We have denoted

j ∧ j′ = (j1 ∧ j′1, . . . , jd ∧ j′d).

Proof. We first state three lemmas.

Lemma 3. For any j and any k, we have:

E[p̂jk] = pjk.

Proof. Recall that

p̂jk :=
1

n

n∑
u=1

Yu×(Djϕ)j,k(Wu) =
2

Sj
2

(2π)d
1

n

n∑
u=1

Yu

∫
e−i<t,2jWu−k> F(ϕ)(t)

F(g)(2jt)
dt.

Let us prove now that E(p̂jk) = pjk.
We have

E(p̂jk) =
2

Sj
2

(2π)d

(∫
E(Y1e

−i<t,2jW1−k>)
F(ϕ)(t)

F(g)(2jt)
dt

)
.
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We shall develop the right member of the last equality. We have:

E

[
Y1e

−i<t,2jW1−k>
]
= E

[
(m(X1) + ε1)e

−i<t,2jW1−k>
]

= E

[
m(X1)e

−i<t,2jW1−k>
]

= E

[
m(X1)e

−i<t,2jX1−k>
]
E

[
e−i<t,2jδ1>

]
=

∫
m(x)e−i<t,2jx−k>fX(x)dx×F(g)(2jt)

= ei<t,k>F(p)(2jt)F(g)(2jt).

Consequently

E [p̂jk] =
2

Sj
2

(2π)d

∫
ei<t,k>F(p)(2jt)F(g)(2jt)

F(ϕ)(t)

F(g)(2jt)
dt

=
2

Sj
2

(2π)d

∫
ei<t,k>F(p)(2jt)F(ϕ)(t)dt

=
1

(2π)d

∫
F(p)(t)F(ϕjk)(t)dt.

Since by Parseval equality, we have

pjk =

∫
p(t)ϕjk(t)dt =

1

(2π)d

∫
F(p)(t)F(ϕjk)(t)dt,

the result follows.
Note that in the case where we don’t have any noise on the variable i.e

g(x) = δ0(x), since F(g)(t) = 1, the proof above remains valid and we get
E[p̂jk] = pjk.

Lemma 4. If for any l, �βl� ≤ N , the following holds: for any j ∈ Z
d and any

p ∈ Hd(�β, L),

|E[p̂j(x)]− p(x)| ≤ L(‖ϕ‖∞‖ϕ‖1)d(2A+ 1)d
d∑

l=1

(2A× 2−jl)βl

�βl�!
.

Proof. Let x be fixed and j = (j1, . . . , jd) ∈ Z
d. We have:

∫
Kj(x, y)dy =

∫ ∑
k1

· · ·
∑
kd

d∏
l=1

[2jlϕ(2jlxl − kl)ϕ(2
jlyl − kl)dyl] = 1.

Therefore, using lemma 3

E[p̂j(x)]− p(x)

= pj(x)− p(x)
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=

∫
Kj(x, y)(p(y)− p(x))dy

=
∑
k

ϕjk(x)

∫
ϕjk(y)(p(y)− p(x))dy

=
∑

k1∈Zj,1(x)

· · ·
∑

kd∈Zj,d(x)

ϕjk(x)

∫ d∏
l=1

2
jl
2 ϕ(2jlyl − kl)(p(y)− p(x))dy.

Now, we use that

p(y)−p(x) =

d∑
l=1

p(x1, . . . , xl−1, yl, yl+1, . . . , yd)−p(x1, . . . xl−1, xl, yl+1, . . . , yd),

with p(x1, . . . , xl, yl+1, . . . , yd) = p(x1, . . . , xd) if l = d and p(x1, . . . , xl−1,
yl, . . . , yd) = p(y1, . . . , yd) if l = 1. Furthermore, the Taylor expansion gives:
for any l ∈ {1, . . . , d}, for some ul ∈ [0; 1],

p(x1, . . . , xl−1, yl, yl+1, . . . , yd)− p(x1, . . . xl−1, xl, yl+1, . . . , yd) =

�βl�∑
k=1

∂kp

∂xk
l

(x1, . . . xl−1, xl, yl+1, . . . , yd)×
(yl − xl)

k

k!
+

∂�βl�p

∂x
�βl�
l

(x1, . . . xl−1, xl + (yl − xl)ul, yl+1, . . . , yd)×
(yl − xl)

�βl�

�βl�!

−∂�βl�p

∂x
�βl�
l

(x1, . . . xl−1, xl, yl+1, . . . , yd)×
(yl − xl)

�βl�

�βl�!
.

Using vanishing moments of Kj and p ∈ Hd(�β, L), we obtain:

|pj(x)− p(x)|

≤
∑

k1∈Zj,1(x)

· · ·
∑

kd∈Zj,d(x)

|ϕjk(x)|
∫ d∏

l=1

2
jl
2 |ϕ(2jlyl − kl)|

d∑
l=1

L
|yl − x�|βl

�βl�!
dy

≤ ‖ϕ‖d∞
∑

k1∈Zj,1(x)

· · ·
∑

kd∈Zj,d(x)

∫
[−A;A]d

d∏
l=1

|ϕ(ul)|
d∑

l=1

L
|2−jl(ul + kl)− xl|βl

�βl�!
du.

Since for any l, kl ∈ Zj,l(x), we finally obtain

|pj(x)− p(x)|

≤ ‖ϕ‖d∞
∑

k1∈Zj,1(x)

· · ·
∑

kd∈Zj,d(x)

∫
[−A;A]d

d∏
l=1

|ϕ(ul)|
d∑

l=1

L
(2A× 2−jl)βl

�βl�!
du

≤ L(‖ϕ‖∞‖ϕ‖1)d(2A+ 1)d
d∑

l=1

(2A× 2−jl)βl

�βl�!
.
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Lemma 5. We have for any j = (j1, . . . , jd) ∈ Z
d and j′ = (j′1, . . . , j

′
d) ∈ Z

d

and any x,

Kj′(pj)(x) = pj∧j′(x).

Proof. We only deal with the case d = 2. The extension to the general case can
be easily deduced. If for i = 1, 2, ji ≤ j′i the result is obvious. It is also the case
if for l = 1, 2, j′l ≤ jl. So, without loss of generality, we assume that j1 ≤ j′1 and
j′2 ≤ j2. We have:

Kj′(pj)(x) =

∫
Kj′(x, y)pj(y)dy

=

∫ ∑
k

ϕj′k(x)ϕj′k(y)pj(y)dy

=

∫ ∑
k1

∑
k2

ϕj′1k1
(x1)ϕj′2k2

(x2)ϕj′1k1
(y1)ϕj′2k2

(y2)pj(y)dy1dy2

=

∫ ∑
k1

∑
k2

ϕj′1k1
(x1)ϕj′2k2

(x2)ϕj′1k1
(y1)ϕj′2k2

(y2)

×
∑
�1

∑
�2

ϕj1�1(y1)ϕj2�2(y2)ϕj1�1(u1)ϕj2�2(u2)p(u1, u2)du1du2dy1dy2.

Since j1 ≤ j′1, we have in the one-dimensional case, by a slight abuse of notation,
Vj1 ⊂ Vj′1

and

∫ ∑
k1

ϕj′1k1
(x1)ϕj′1k1

(y1)ϕj1�1(y1)dy1 =

∫
Kj′1

(x1, y1)ϕj1�1(y1)dy1 = ϕj1�1(x1).

Similarly, since j′2 ≤ j2, we have Vj′2
⊂ Vj2 and

∫ ∑
�2

ϕj2�2(y2)ϕj2�2(u2)ϕj′2k2
(y2)dy2 =

∫
Kj2(u2, y2)ϕj′2k2

(y2)dy2 = ϕj′2k2
(u2).

Therefore, with j̃ = j ∧ j′,

Kj′(pj)(x) =

∫ ∑
k2

∑
�1

ϕj′2k2
(x2)ϕj1�1(u1)ϕj1�1(x1)ϕj′2k2

(u2)p(u1, u2)du1du2

=

∫ ∑
�1

∑
�2

ϕj̃2�2
(x2)ϕj̃1�1

(u1)ϕj̃1�1
(x1)ϕj̃2�2

(u2)p(u1, u2)du1du2

=

∫ ∑
�

ϕj̃�(x)ϕj̃�(u)p(u)du

= pj̃(x),

which ends the proof of the lemma.
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Now, we shall go back to the proof of Proposition 3. We easily deduce the
result:

pj∧j′(x)− pj′(x) = Kj′(pj)(x)−Kj′(p)(x)

=

∫
Kj′(x, y)(pj(y)− p(y))dy.

Therefore,

|pj∧j′(x)− pj′(x)| ≤
∫

|Kj′(x, y)||pj(y)− p(y)|dy

≤ R12L

d∑
l=1

2−jlβl ×
∫

|Kj′(x, y)|dy,

where R12 is a constant only depending on ϕ and �β. We conclude by observing
that ∫

|Kj′(x, y)|dy =

∫ ∑
k1

· · ·
∑
kd

d∏
l=1

[2j
′
l |ϕ(2j′lxl − kl)||ϕ(2j

′
lyl − kl)|dyi]

≤ ‖ϕ‖d∞
∑

k1∈Zj′,1(x)

· · ·
∑

kd∈Zj′,d(x)

(∫
|ϕ(v)|dv

)d

≤ (‖ϕ‖∞‖ϕ‖1(2A+ 1))
d
.

We thus obtain the claimed result of Proposition 3.

5.2.2. Appendix

Technical lemmas are stated and proved below.

Lemma 6. We have
E[(σ̃j,γ̃)

q] ≤ R52
Sj(2ν+1) q

2 ,

with R5 a constant depending on q, γ̃,m, s, d, ϕ, cg, Cg.
Proof. First, let us focus on the case q ≥ 2. We recall the expression of σ̃2

j,γ̃

σ̃2
j,γ̃ = σ̂2

j + 2Cj

√
2γ̃σ̂2

j

logn

n
+ 8γ̃C2

j

logn

n
.

We shall first prove that

E[(σ̂j)
q] ≤ C2Sj(2ν+1) q

2 .

Let us remind that

σ̂2
j =

1

2n(n− 1)

∑
l �=v

(Uj(Yl,Wl)− Uj(Yv,Wv))
2.
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We easily get

σ̂2
j ≤ C

n

∑
l

(Uj(Yl,Wl)− E[Uj(Y1,W1)])
2.

First let us remark that

(∑
l

(Uj(Yl,Wl)− E[Uj(Y1,W1)])
2

) q
2

≤ C

⎛
⎝(∑

l

((Uj(Yl,Wl)− E[Uj(Y1,W1)])
2 − σ2

j )

) q
2

+ n
q
2 σq

j

⎞
⎠

We will use Rosenthal inequality (see [15]) to find an upper bound for

E

⎡
⎣(∑

l

((Uj(Yl,Wl)− E[Uj(Y1,W1)])
2 − σ2

j )

) q
2

⎤
⎦ .

We set
Bl := (Uj(Yl,Wl)− E[Uj(Y1,W1)])

2 − σ2
j .

The variables Bl are i.i.d and centered. We have to check that E[|Bl|
q
2 ] < ∞.

We have

E[|Bl|
q
2 ] ≤ C(E[|(Uj(Yl,Wl)− E[Uj(Y1,W1)]|q] + σq

j ),

but

E[|(Uj(Yl,Wl)− E[Uj(Y1,W1)]|q] =
Aq

n
,

with Aq defined in (19). Hence

E[|Bl|
q
2 ] ≤ C

(
Aq

n
+ σq

j

)
. (33)

Using the control of Aq in (21), equation (22) and Lemma 10 we have

Aq ≤ Cnσ2
j ‖Tj‖q−2

∞

≤ Cn2Sj(qν+q−1). (34)

Now, we are able to apply the Rosenthal inequality to the variables Bl which
yields

E

⎡
⎣(∑

l

Bl

) q
2

⎤
⎦ ≤ C

⎛
⎝∑

l

E[|Bl|
q
2 ] +

(∑
l

E[B2
l ]

) q
4

⎞
⎠ ,

and using (33) and (34) we get

E

⎡
⎣(∑

l

Bl

) q
2

⎤
⎦ ≤ C

⎛
⎝∑

l

(
Aq

n
+ σq

j

)
+

(∑
l

(
A4

n
+ σ4

j

)) q
4

⎞
⎠
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≤ C
(
Aq + nσq

j + (A4)
q
4 + n

q
4 σq

j

)
≤ C

(
n2Sj(qν+q−1) + n2Sj(2ν+1) q

2 + (n2Sj(4ν+3)
q
4

)
.

Consequently

E[σ̂q
j ] ≤ Cn− q

2

(
n2Sj(qν+q−1) + n2Sj(2ν+1) q

2 + (n2Sj(4ν+3)
q
4 + n

q
2 2Sj(2ν+1) q

2

)
≤ C(n1− q

2 2Sj(qν+q−1) + n1− q
2 2Sj(2ν+1) q

2 + n− q
4 2Sj(4ν+3) q

4 + 2Sj(2ν+1) q
2 ).

Let us compare each term of the r.h.s of the last inequality. We have

n1− q
2 2Sj(qν+q−1) ≤ 2Sj(2ν+1) q

2 ⇐⇒ 2Sj ≤ n,

which is true by (12). Similarly we have

n− q
4 2Sj(4ν+3) q

4 ≤ 2Sj(2ν+1) q
2 ⇐⇒ 2Sj ≤ n,

and obviously
n1− q

2 2Sj(2ν+1) q
2 ≤ 2Sj(2ν+1) q

2 .

Thus we get that the dominant term in r.h.s is 2Sj(2ν+1) q
2 . Hence

E[σ̂q
j ] ≤ C2Sj(2ν+1) q

2 .

Now using that

E[σ̃q
j,γ̃ ] ≤ C

⎛
⎝E[σ̂q

j ] +

(
2Cj

√
2γ̃

logn

n

) q
2

E[σ̂
q
2
j ] +

(
8γ̃C2

j

logn

n

) q
2

⎞
⎠ ,

and since Cj ≤ C
√
log n2Sj(ν+1), we have

E[σ̃q
j,γ̃ ] ≤ C

(
2Sj(2ν+1) q

2 + ((logn)n− 1
2 2Sj(ν+1))

q
2 2Sj(2ν+1) q

4

+

(
log2 n

n
22Sj(ν+1)

) q
2
)
.

Let us compare the three terms of the right hand side. We have

2Sj
q(2ν+1)

2 ≥ ((logn)n− 1
2 2Sj(ν+1))

q
2 2Sj(2ν+1) q

4

⇐⇒ 2Sj(qν+
q
2 ) ≥ (log n)

q
2n− q

4 2Sj(qν+
3q
4 ) ⇐⇒ 2Sj ≤ n

log2 n
,

which is true by (12). Furthermore we have

2Sj
q(2ν+1)

2 ≥
(
log2 n

n
22Sj(ν+1)

) q
2
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⇐⇒ 2Sj(qν+
q
2 ) ≥

(
log2 n

n

) q
2

2Sj(qν+q) ⇐⇒ 2Sj ≤ n

log2 n
, (35)

which is true again by (12). Consequently

E[σ̃q
j,γ̃ ] ≤ R52

Sj(2ν+1) q
2 ,

with R5 a constant depending on q, γ̃,m, s, d, ϕ, cg, Cg and the lemma is proved
for q ≥ 2.

For the case q ≤ 2 the result follows from Jensen inequality.

Lemma 7. Under Assumption (A1) on the father wavelet ϕ, we have for any
j = (j1, . . . , jd) and any x ∈ R

d,

∑
k

|ϕjk(x)| ≤ (2A+ 1)d‖ϕ‖d∞2
Sj
2 .

Proof. A proof of this standard result can be found in Section 4.2 in [13].

Lemma 8. Under condition (A1) and ϕ is Cr, there exist constants R6 and R7

depending on ϕ such that

|F (ϕ)(t)| ≤ R6(1 + |t|)−r, for any t ∈ R. (36)

and ∣∣∣F (ϕ)(t)
′∣∣∣ ≤ R7(1 + |t|)−r, for any t ∈ R. (37)

Proof. A proof of this result can be found in Section 4.2 of [13].

Lemma 9. Under conditions (A1) and (A3), for ν ≥ 0, we have

|(Djϕ)(w)| ≤ R82
Sjν

d∏
l=1

(1 + |wl|)−1, w ∈ R
d

where R8 is a constant depending on ϕ, Cg and cg.

Proof. If all the |wl| < 1 then using (3), Lemma 8 and r > ν + 1 with ν ≥ 0 we
have

|(Djϕ)(w)| ≤
∫ ∏d

l=1 |F(ϕ)(tl)|
|F(g)(2jt)| dt (38)

≤ C

d∏
l=1

∫ ∣∣F(ϕ)(tl)(1 + 2jl |tl|)νl
∣∣ dtl (39)

≤ C2Sjν
d∏

l=1

∫
(1 + |tl|)νl−rdtl (40)

≤ C2Sjν ≤ C2Sjν
d∏

l=1

(1 + |wl|)−1. (41)
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Now we consider the case where there exists at least one wl such that |wl| ≥ 1.
We have

(Djϕ)(w)=

d∏
l=1,|wl|≤1

∫
e−itlwl

F(ϕ)(tl)

F(gl)(2jltl)
dtl×

d∏
l=1,|wl|≥1

∫
e−itlwl

F(ϕ)(tl)

F(gl)(2jltl)
dtl.

For the left-hand product on |wl| ≤ 1 we use the result (41). Now let us consider
the right-hand product with |wl| ≥ 1. We set in the sequel

ηl(tl) :=
F(ϕ)(tl)

F(gl)(2jltl)
.

We have

d∏
l=1,|wl|≥1

∫
e−itlwl

F(ϕ)(tl)

F(gl)(2jltl)
dtl =

d∏
l=1,|wl|≥1

∫
e−itlwlηl(tl)dtl.

Since |ηl(tl)| → 0 when tl → ±∞, an integration by part yields∫
e−itlwlηl(tl)dtl = iw−1

l

∫
e−itlwlη′l(tl)dtl.

Let us compute the derivative of ηl(tl)

η′l(tl) =
F(ϕ)(tl)

′F(g)(2jltl)− 2jlF ′(g)(2jltl)F(ϕ)(tl)

(F(g)(2jltl))2
.

Using Lemma 8, (3) and (4)

|η′l(tl)| ≤
∣∣∣∣∣ F(ϕ)(tl)

′

F(g)(2jltl)

∣∣∣∣∣+ 2jl
∣∣∣∣F ′(g)(2jltl)F(ϕ)(tl)

(F(g)(2jltl))2

∣∣∣∣
≤ C

(
(1 + |tl|)−r(1 + 2jl |tl|)ν + 2jl(1 + 2jl |tl|)−ν−1(1 + |tl|)−r(1 + 2jl |tl|)2ν

)
≤ C

(
2jlν(1 + |tl|)−r(2−jl + |tl|)ν + 2jl(1 + 2jl |tl|)ν−1(1 + |tl|)−r

)
≤ C

(
2jlν(1 + |tl|)−r(2−jl + |tl|)ν + 2jlν(2−jl + |tl|)ν−1(1 + |tl|)−r

)
≤ C2jlν

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
.

Therefore,∣∣∣ ∫ e−itlwlηl(tl)dtl

∣∣∣
≤ |wl|−1

∫
|η′l(tl)|dtl

≤ C|wl|−12jlν
∫ (

(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r
)
dtl

≤ C|wl|−12jlν(D1 +D2 +D3),
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with D1, D2 and D3 defined below.

D1 :=

∫
|tl|≤2−jl

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dtl

≤ C

∫
|tl|≤2−jl

(
(2−jl + |tl|)ν + (2−jl + |tl|)ν−1

)
dtl

≤ C2−jl(2−jlν + 2−jl(ν−1))

≤ C.

D2 :=

∫
2−jl≤|tl|≤1

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dtl

≤ C

∫
2−jl≤|tl|≤1

(
(2−jl + |tl|)ν + (2−jl + |tl|)ν−1

)
dtl

≤ C

∫ 2jl

1

((2−jl + 2−jls)ν + (2−jl + 2−jls)ν−1)2−jlds

≤ C2−jl(ν+1)

∫ 2jl

1

sνds+ C2−jlν

∫ 2jl

1

sν−1ds

≤ C,

as soon as ν > 0.

D3 :=

∫
|tl|≥1

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dti

≤ C

∫
|tl|≥1

(
|tl|ν−r + |tl|ν−1−r

)
dtl

≤ C,

since ν − r < −1.
When ν = 0 we still have∣∣∣∣

∫
e−itlwlηl(tl)dtl

∣∣∣∣ ≤ C|wl|−12jlν = C|wl|−1.

Indeed when ν = 0
ηl(tl) = F(ϕ)(tl),

and ∣∣∣∣iw−1
l

∫
e−itlwlη′l(tl)dtl

∣∣∣∣ =
∣∣∣∣iw−1

l

∫
e−itlwlF(ϕ)(tl)

′
dtl

∣∣∣∣
≤ |wl|−1

∫ ∣∣∣F(ϕ)(tl)
′∣∣∣ dtl

≤ C|wl|−1

∫
(1 + |t|)−rdt < C|wl|−1,

using Lemma 8 and r ≥ 2.
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Lemma 10. There exist constants R10 depending on s, m, d, ϕ, cg, Cg and R11

depending on ϕ, cg, Cg such that

σ2
j ≤ R102

Sj(2ν+1), ‖Tj‖∞ ≤ R112
Sj(ν+1).

Proof. We have

σ2
j = Var(Uj(Y1,W1))

≤ E

[
|Uj(Y1,W1)|2

]

= E

⎡
⎣
∣∣∣∣∣Y1

∑
k

(Djϕ)j,k (W1)ϕjk(x)

∣∣∣∣∣
2
⎤
⎦

= E

⎡
⎣
∣∣∣∣∣(m(X1) + ε1)

∑
k

(Djϕ)j,k (W1)ϕjk(x)

∣∣∣∣∣
2
⎤
⎦

≤ 2(‖m‖2∞ + σ2
ε)E

⎡
⎣
∣∣∣∣∣
∑
k

(Djϕ)j,k (W1)ϕjk(x)

∣∣∣∣∣
2
⎤
⎦

≤ 2(‖m‖2∞ + σ2
ε)

∫ ∣∣∣∣∣
∑
k

(Djϕ)j,k (w)ϕjk(x)

∣∣∣∣∣
2

fW (w)dw

≤ 2(‖m‖2∞ + σ2
ε)‖fX‖∞

∫
2Sj

∣∣∣∣∣
∑
k

(Djϕ) (2
jw − k)ϕjk(x)

∣∣∣∣∣
2

dw.

Now making the change of variable z = 2jw − k, we get using Lemma 7 and
Lemma 9 to bound (Djϕ)(z)

σ2
j ≤ 2(‖m‖2∞ + σ2

ε)‖fX‖∞
∫ ∣∣∣∣∣

∑
k

(Djϕ) (z)ϕjk(x)

∣∣∣∣∣
2

dz

≤ C

∫
22Sjν

d∏
i=l

1

(1 + |zl|)2

(∑
k

|ϕjk(x)|
)2

dz

≤ R102
Sj(2ν+1),

where R10 is a constant depending on s, m, d, ϕ, cg, Cg. This gives the bound
for σ2

j .
For ‖Tj‖∞, using again Lemma 7 and Lemma 9, we have

‖Tj‖∞ ≤ max
k

‖(Djϕ)j,k‖∞
∑
k

|ϕjk(x)| ≤ 2
Sj
2 ‖(Djϕ)‖∞

∑
k

|ϕjk(x)|

≤ R112
Sj(ν+1),

where R11 is a constant depending on ϕ, cg, Cg.
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