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Introduction

Singular perturbations were introduced in control engineering in the late 1960s and have become a tool for analysis and design of control systems [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF], [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF], [START_REF] Kokotović | Singular perturbation of linear regulators: basic theorems[END_REF], [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF]. Singularly perturbed systems often occur naturally due to the presence of small parasitic parameters, for example, inductance in DC motors model, high gain amplifier in voltage regulators [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]. The singular perturbation method is a way of neglecting the fast transitions and considering them in a separate fast time scale. The significant advantage of this technique is to reduce the system order. Singularly perturbed partial differential equations have been considered in research works from late 1980s. Such systems are interesting since they describe many phenomena in various fields in physics and engineering, see [START_REF] Kadalbajoo | Singularly perturbed problems in partial differential equations: a survey[END_REF] as a survey.

Tikhonov theorem is a fundamental tool for the analysis of singularly perturbed systems. It describes the limiting behaviour of solutions of the perturbed system. Tikhonov theorem has been studied for finite dimensional systems modeled by ODEs in many research works [START_REF] Verhulst | Singular perturbation methods for slow-fast dynamics[END_REF], [START_REF] Khalil | Nonlinear systems[END_REF]. The approximation of the full system by the reduced subsystem on a finite time interval requires only the exponential stability of the boundary-layer subsystem. Furthermore, the approximation on an infinite time interval is achieved based on the exponential stability of both subsystems.

In the previous work [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF] it has been considered a Tikhonov theorem for linear singularly perturbed hyperbolic systems. The approximation has been achieved by using a L 2 Lyapunov function. Different from the previous work, we consider a H 2 Lyapunov function for a more sophisticated system which consists of the error between the slow dynamics of the full system and the reduced subsystem, the fast dynamics of the full system and the dynamics of the reduced subsystem in this work. The contribution of the present work is a more precise approximation result obtained by Lyapunov methods. More specifically, two cases are considered. In the first case, for any initial conditions belonging to H 2 satisfying suitable compatibility conditions, the difference between the slow dynamics of the full system and the reduced subsystem in L 2 -norm is estimated of the order of the small perturbation parameter . Furthermore, the estimate of the fast dynamics in H 2 -norm is also of the order of . In the second case, where the equilibrium point is chosen as the initial condition of the fast dynamics, the two estimates are obtained of the order of 2 .

The paper is organized as follows. In Section 2, the singularly perturbed linear hyperbolic system under consideration is introduced, and the reduced subsystem is computed. Section 3 contains the main result on singular perturbation approximation of solutions for the full system by that for the subsystem. A numerical simulation is provided in Section 4 to illustrate the main result. Finally, concluding remarks end the paper.

Notation. For a partitioned symmetric matrix M in R n×n , the symbol * stands for symmetric block. M > 0, M < 0 mean that M is positive definite and negative definite respectively. M -1 and M represent the inverse and the transpose matrix of M . | | denotes the usual Euclidean norm and is the associated matrix norm.

L 2 denotes the associated norm in L 2 (0, 1) space, defined by

f L 2 = 1 0 |f | 2 dx 1 2
for all functions f ∈ L 2 (0, 1). Similarly, the associated norm in H 2 (0, 1) space is denoted by

H 2 , defined for all functions f ∈ H 2 (0, 1), by f H 2 = 1 0 |f | 2 + |f x | 2 + |f xx | 2 dx 1 2
. Following [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], we introduce the notation, ρ 1 (M ) = inf{ ∆M ∆ -1 , ∆ ∈ D n,+ }, where D n,+ denotes the set of diagonal positive matrices in R n×n .

Linear singularly perturbed hyperbolic system of two conservation laws

Let us consider a 2 × 2 linear singularly perturbed hyperbolic system as follows

y t (x, t) + y x (x, t) = 0, z t (x, t) + z x (x, t) = 0, (1) 
where

x ∈ [0, 1], t ∈ [0, +∞), y : [0, 1]×[0, +∞) → R, z : [0, 1]×[0, +∞) → R and 0 < < 1 is a small perturbation parameter.
We consider the following boundary conditions for system (1)

y(0, t) z(0, t) = G y(1, t) z(1, t) , t ∈ [0, +∞), (2) 
where

G = G 11 G 12 G 21 G 22 is a 2 × 2 constant matrix. Given two functions y 0 : [0, 1] → R and z 0 : [0, 1] → R, the initial conditions are y(x, 0) z(x, 0) = y 0 (x) z 0 (x) , x ∈ [0, 1]. ( 3 
)
Remark 1. According to Proposition 2.1 in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], for every (y 0 z 0 ) ∈ H 2 (0, 1) satisfying the following compatibility conditions

y 0 (0) z 0 (0) = G y 0 (1) z 0 (1) , (4) 
y 0 x (0) 1 z 0 x (0) = G y 0 x (1) 1 z 0 x (1) , (5) 
the system (1) and (2) has a unique maximal classical solution (y z) ∈ C 0 ([0, +∞), H 2 (0, 1)). Due to Section 2.1 in [START_REF] Coron | Control and nonlinearity[END_REF], for all (y 0 z 0 ) ∈ L 2 (0, 1), there exists a unique maximal weak solution (y z) ∈ C 0 ([0, +∞), L 2 (0, 1)) to ( 1) and [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF].

•

The exponential stability of the linear system (1)-( 2) in L 2 -norm and H 2norm is defined as follows Definition 1. The linear system (1)-( 2) is exponentially stable to the origin in L 2 -norm if there exist γ 1 > 0 and C 1 > 0, such that for every (y 0 z 0 ) ∈ L 2 (0, 1), the solution to the system (1)-(2) satisfies

y(., t) z(., t) L 2 C 1 e -γ 1 t y 0 z 0 L 2
, t ∈ [0, +∞).

The linear system (1)-( 2) is exponentially stable to the origin in H 2 -norm if there exist γ 2 > 0 and C 2 > 0, such that for every (y 0 z 0 ) ∈ H 2 (0, 1) satisfying the compatibility conditions (4)-( 5), the solution to the system (1)-

(., t) z(., t) H 2 C 2 e -γ 2 t y 0 z 0 H 2 , t ∈ [0, +∞). (2) satisfies y 
Generalizing the approach in [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF] to infinite dimensional systems, let us compute the reduced subsystem of the infinite dimensional systems. By setting = 0 in system (1), we get

y t (x, t) + y x (x, t) = 0, (6a) z x (x, t) = 0. (6b) 
Substituting (6b) into the boundary conditions (2) and assuming

G 22 = 1 yields y(0, t) = G 11 + G 12 G 21 1-G 22 y(1, t), z(., t) = G 21 1-G 22 y(1, t). (7) 
The reduced subsystem is then calculated as ȳt (x, t)

+ ȳx (x, t) = 0, x ∈ [0, 1], t ∈ [0, +∞), (8) 
with the boundary condition

ȳ(0, t) = G r ȳ(1, t), t ∈ [0, +∞), (9) 
where

G r = G 11 + G 12 G 21 1-G 22 .
The bar is used to indicate that the variable belongs to the system with = 0. The initial condition of the reduced subsystem (8)-( 9) is chosen as the same as for the full system (1)-(2), i.e. ȳ0 (x) = y 0 (x), [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF] and the compatibility conditions for existence of H 2 solutions are given by ȳ0 (0) = G r ȳ0 (1), ȳ0

x (0) = G r ȳ0

x (1).

(
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Let us recall the stability result for linear hyperbolic system (1)- [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF] given in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] and [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF] Theorem 1 ( [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF][START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF]). If ρ 1 (G) < 1 (resp. ρ 1 (G r ) < 1), the linear system (1)-(2) (resp. the reduced subsystem ( 8)-( 9)) is exponentially stable to the origin in L 2 -norm and H 2 -norm.

Tikhonov approach for linear singularly perturbed hyperbolic systems

This section presents an approximation theorem for system (1)-( 2). More precisely, the difference of the solution between the full system (1)-( 2) and the reduced subsystem ( 8)-( 9) is firstly estimated of the order of . Then for particular initial conditions, it is estimated of the order of 2 . Therefore, the solution of the full system can be approximated by the solution of the reduced subsystem. A H 2 Lyapunov function is used to prove this result. Let us first perform a change of variable

η = y -ȳ,
where y is the solution of the full system and ȳ is the solution of the reduced subsystem. By considering the fast dynamics z in (1)-( 2) and the dynamics ȳ in ( 8)-( 9), let us study the following system

η t + η x = 0, z t + z x = 0, ȳt + ȳx = 0, (12) 
with the following boundary conditions, for all t 0,

η(0, t) = G 11 η(1, t) + G 12 z(1, t) - G 12 G 21 1 -G 22 ȳ(1, t), (13a) 
z(0, t) = G 21 η(1, t) + G 22 z(1, t) + G 21 ȳ(1, t), (13b) ȳ(0, t) = G r ȳ(1, t). ( 13c 
)
The compatibility conditions ( 4), ( 5) and ( 11) are rewritten as follows

η 0 (0) = G 11 η 0 (1) + G 12 z 0 (1) -G 12 G 21 1-G 22 ȳ0 (1), z 0 (0) = G 21 η 0 (1) + G 22 z 0 (1) + G 21 ȳ0 (1), ȳ0 (0) = G r ȳ0 (1). 
( 14)

η 0 x (0) = G 11 η 0 x (1) + G 12 z 0 x (1) -G 12 G 21 1-G 22 ȳ0 x (1), z 0 x (0) = G 21 η 0 x (1) + G 22 z 0 x (1) + G 21 ȳ0 x (1), ȳ0 x (0) = G r ȳ0 x (1). 
(
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Let us introduce a candidate Lyapunov function for system ( 12)-( 13)

V (η, z, ȳ) = a 1 0 e -µx η 2 + η 2 x + 3 η 2 xx dx +b 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx + c 1 0 e -µx ȳ2 + ȳ2 x + ȳ2 xx dx, (16) 
where a, b, c and µ are positive values. If initial conditions satisfy the compatibility conditions ( 14) and ( 15), then V (η, z, ȳ) is well defined along the solutions of ( 12) and ( 13).

To simplify the analysis of time derivative of V (η, z, ȳ), we rewrite it in the following way

V (η, z, ȳ) = V 0 (η, z, ȳ) + V 1 (η, z, ȳ) + V 2 (η, z, ȳ), (17) 
with V 0 (η, z, ȳ), V 1 (η, z, ȳ) and V 2 (η, z, ȳ) defined respectively by the 0 th , 1 st and 2 nd space derivative of the solutions, that are

V 0 (η, z, ȳ) = a 1 0 e -µx η 2 dx + b 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 dx + c 1 0 e -µx ȳ2 dx, ( 18 
) V 1 (η, z, ȳ) = a 1 0 e -µx η 2 x dx + b 1 0 e -µx z 2 x dx + c 1 0 e -µx ȳ2 x dx, (19) V 2 (η, z, ȳ) = 3 a 1 0 e -µx η 2 xx dx + b 1 0 e -µx z 2 xx dx + c 1 0 e -µx ȳ2 xx dx. (20) 
First, we estimate the time derivative of V 0 (η, z, ȳ) along the classical C 1solution of system [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF] with the boundary condition [START_REF] Kokotović | Singular perturbation of linear regulators: basic theorems[END_REF]. Lemma 1 gives an estimate of V0 (η, z, ȳ). Lemma 1. If the boundary conditions matrix satisfies ρ 1 (G) < 1, then there exist positive real values a, b and µ such that for all positive c and , along the solutions to ( 12)-( 13), it holds,

V0 (η, z, ȳ) - aµ 1 0 e -µx η 2 dx - bµ 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 dx -cµ 1 0 e -µx ȳ2 dx + 2bG 21 1 -G 22 1 0 e -µx z - G 21 1 -G 22 ȳ(1) ȳx (1)dx. (21) 
In order to handle the term ȳx (1) in ( 21), let us consider the following estimate

|ȳ x (1)| = 1 0 xȳ xx + ȳx dx 1 0 |ȳ| + |ȳ x | + |ȳ xx | dx √ 3 1 0 ȳ2 + ȳ2 x + ȳ2 xx dx 1 2 . ( 22 
)
It appears clearly from (22) that it is necessary to check the dynamics of ȳx and ȳxx . This is the reason why we consider a H 2 Lyapunov function.

Differentiating system [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF] with respect to x yields

η xt + η xx = 0, z xt + z xx = 0, ȳxt + ȳxx = 0. ( 23 
)
Differentiating ( 13) with respect to t and using [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF], we obtain the following boundary conditions, for all t 0,

η x (0, t) = G 11 η x (1, t) + G 12 z x (1, t) -G 12 G 21 1-G 22 ȳx (1, t), z x (0, t) = G 21 η x (1, t) + G 22 z x (1, t) + G 21 ȳx (1, t), ȳx (0, t) = G r ȳx (1, t).
(24) Next, we compute the time derivative of V 1 (η, z, ȳ) along the classical C 1solution of system (23) with the boundary condition (24). The estimate on V1 (η, z, ȳ) is given in Lemma 2.

Lemma 2. Assume ρ 1 (G) < 1 and let a, b and µ as in Lemma 1. Then there exists a positive real value c such that for all c > c and > 0, along the solutions to ( 12)-( 13), it holds,

V1 (η, z, ȳ) -aµ 1 0 e -µx η 2 x dx - bµ 1 0 e -µx z 2 x dx -cµ 1 0 e -µx ȳ2 x dx. (25) 
To consider the dynamics of ȳxx , let us differentiate system (23) with respect to x. It follows

η xxt + η xxx = 0, z xxt + z xxx = 0, ȳxxt + ȳxxx = 0. (26) 
Moreover, differentiating (24) with respect to t and using (23), the boundary conditions are given as follows, for all t 0,

η xx (0, t) = G 11 η xx (1, t) + G 12 2 z xx (1, t) -G 12 G 21 1-G 22 ȳxx (1, t), z xx (0, t) = 2 G 21 η xx (1, t) + G 22 z xx (1, t) + 2 G 21 ȳxx (1, t), ȳxx (0, t) = G r ȳxx (1, t).
(27) Lastly, we compute the time derivative of V 2 (η, z, ȳ) along the C 1 -solution of system (26) with the boundary condition (27). The estimate on V2 (η, z, ȳ) is given in Lemma 3. Lemma 3. Assume ρ 1 (G) < 1 and let a, b, c and µ as in Lemmas 1 and 2. Then there exists a positive real value * , such that for all 0 < < * and c > c , along the solutions to ( 12)-( 13), it holds

V2 (η, z, ȳ) -3 aµ 1 0 e -µx η 2 xx dx - bµ 1 0 e -µx z 2 xx dx -cµ 1 0 e -µx ȳ2 xx dx. ( 28 
)
Remark 2. Due to [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF], it may be deduced that for every (η 0 xx , ȳ0 xx , z 0 xx ) ∈ L 2 (0, 1), the Cauchy problem ( 26)-( 27) has a weak L 2 -solution issuing from (η 0 xx , ȳ0 xx , z 0 xx ) . Similarly, the time derivative of V 2 has to be understood in a weak sense (see i.e. [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF]Chapter 4]).

•

The proofs of Lemmas 1, 2 and 3 are given in the appendix. We are now ready to state and prove our main result.

Theorem 2. Consider the linear singularly perturbed hyperbolic system of two conservation laws (1)-( 2). If the condition ρ 1 (G) < 1 is satisfied, there exist positive values * , a, b, c, θ and µ such that for all 0 < < * , for all (y 0 z 0 ) T ∈ H 2 (0, 1) satisfying the compatibility conditions (4), ( 5) and [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF] with ȳ0 = y 0 and for all t 0, the following holds y(., t) -ȳ(., t) 2

L 2 be µ a e -θt z 0 - G 21 1 -G 22 ȳ0 (1) 
2

H 2 + 2 ce µ a e -θt ȳ0 2 H 2 , ( 29 
) +∞ 0 z(., t) - G 21 1 -G 22 ȳ(1, t) 2 H 2 dt 2e µ µ z 0 - G 21 1 -G 22 ȳ0 (1) 
2

H 2 + 2 2ce µ bµ ȳ0 2 H 2 . ( 30 
)
Proof. Let us compute the time derivative of V (η, z, ȳ), V (η, z, ȳ) = V0 (η, z, ȳ)+ V1 (η, z, ȳ) + V2 (η, z, ȳ). By Lemmas 1-3, there exist positive constants a, b, µ given by Lemma 1, c given by Lemma 2 and * given by Lemma 3 such that the following holds for c > c , and for 0 < < * V (η, z, ȳ) -aµ

1 0 e -µx η 2 + η 2 x + 3 η 2 xx dx - bµ 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx -cµ 1 0 e -µx (ȳ 2 + ȳ2 x + ȳ2 xx )dx + 2bG 21 1 -G 22 1 0 e -µx z - G 21 1 -G 22 ȳ(1) ȳx (1)dx.
Applying Young's inequality, for all positive values κ 1 , it follows

V (η, z, ȳ) -aµ 1 0 e -µx η 2 + η 2 x + 3 η 2 xx dx - bµ 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx -cµ 1 0 e -µx (ȳ 2 + ȳ2 x + ȳ2 xx )dx +κ 1 b G 21 1 -G 22 |ȳ x (1)| 2 + b G 21 1-G 22 κ 1 1 0 e -µx z - G 21 1 -G 22 ȳ (1) 2 dx. 
Using the estimate of |ȳ x (1)| in ( 22), it follows V (η, z, ȳ) -aµ

1 0 e -µx η 2 + η 2 x + 3 η 2 xx dx -   bµ - b G 21 1-G 22 κ 1   1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx -cµ -3e µ κ 1 b G 21 1 -G 22 1 0 e -µx (ȳ 2 + ȳ2 x + ȳ2 xx )dx. Moreover, choosing κ 1 = 2 G 21 1-G 22 /µ, it yields V (η, z, ȳ) -aµ 1 0 e -µx η 2 + η 2 x + 3 η 2 xx dx - bµ 2 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx -c    µ - 6e µ b G 21 1-G 22 2 cµ    1 0 e -µx (ȳ 2 + ȳ2 x + ȳ2 xx )dx. (31) Let c * = max c , 6e µ b G 21 1-G 22 2
/µ 2 such that for all c > c * , we may define

θ = µ - 6e µ b G 21 1-G 22 2 2c * µ
, it is deduced from (31)

V (η, z, ȳ) -θV (η, z, ȳ).

We get the following inequality for all t 0.

V (η, z, ȳ) e -θt V (η 0 , z 0 , ȳ0 ). ( 32 
)
Using the fact that

ae -µ η 2 L 2 + be -µ z - G 21 1 -G 22 ȳ(1) 2 H 2 + ce -µ ȳ 2 H 2 V (η, z, ȳ) a η 2 H 2 + b z - G 21 1 -G 22 ȳ(1) 2 H 2 + c ȳ 2 H 2 , (33) 
it follows

η 2 L 2 e µ a V (η, z, ȳ) e µ a e -θt V (η 0 , z 0 , ȳ0 ) e µ a e -θt a η 0 2 H 2 + b z 0 - G 21 1 -G 22 ȳ0 (1) 2 H 2 + c ȳ0 2 H 2 .
Since the initial condition y 0 = ȳ0 i.e. η 0 = 0, therefore (29) holds.

Noting that, for all c > c * , the third term in the right hand part of (31) is always negative, as well as the first term, we can rewrite (31) as follows

V (η, z, ȳ) - bµ 2 1 0 e -µx z - G 21 1 -G 22 ȳ(1) 2 + z 2 x + z 2 xx dx. (34)
Performing the time integration of both sides from 0 to +∞ yields

bµe -µ 2 +∞ 0 z - G 21 1 -G 22 ȳ(1) 2 
H 2 dt V (η 0 , z 0 , ȳ0 ) -lim t→+∞ V (η, z, ȳ),
and since lim t→+∞

V (η, z, ȳ) = 0, it follows +∞ 0 z - G 21 1 -G 22 ȳ(1) 2 
H 2 dt 2e µ bµ V (η 0 , z 0 , ȳ0 ). ( 35 
)
Due to (33) and η 0 = 0, the inequality (30) holds. This concludes the proof of Theorem 2. 2 Selecting particular initial conditions, we can establish more precise estimates.

Corollary 1. If ρ 1 (G) < 1, there exist positive values * , a, b, c, θ and µ, such that for all ∈ (0, * ) and for all y 0 ∈ H 2 (0, 1) satisfying the compatibility conditions (4), ( 5) and ( 11) with ȳ0 = y 0 , z 0 = G 21 1-G 22 y 0 (1), it holds for all t 0, y(., t) -ȳ(., t) 2

L 2 2 ce µ a e -θt ȳ0 2 H 2 , ( 36 
) +∞ 0 z(., t) - G 21 1 -G 22 ȳ(1, t) 2 H 2 dt 2 2ce µ bµ ȳ0 2 H 2 , ( 37 
) z(., t) - G 21 1 -G 22 ȳ(1, t) 2 H 2 ce µ b e -θt ȳ0 2 H 2 . ( 38 
)
Proof. The proof of this corollary is based on Theorem 2. We get that (36) and (37) hold by considering the initial condition z 0 = G 21 1-G 22 y 0 (1) in ( 29) and (30). It is deduced from (32) and (33) that, for all t 0, z(., t) -

G 21 1 -G 22 ȳ(1, t) 2 H 2 e µ e -θt b a η 0 2 H 2 + b z 0 - G 21 1 -G 22 ȳ0 (1) 2 H 2 + c ȳ0 2 H 2 . ( 39 
)
With the initial conditions η 0 = 0 and z 0 = G 21 1-G 22 y 0 (1), we get that (38) holds. This concludes the proof of Corollary 1.
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Remark 3. For the simplicity, we consider a 2 × 2 system throughout the whole paper. However, the main result in this paper can be extended, in a straightforward way, to systems of (n + m) equations with > 0, where y ∈ R n and z ∈ R m . •

Numerical example

In this section, we give a numerical example to illustrate the main result. Let us consider the boundary conditions matrix G = 0.6 1.5 0.2 -0. 5for system (1)- [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF]. With ∆ = diag( √ 0.1, 1), it holds ∆G∆ -1 < 1. Thus ρ 1 (G) < 1 and Theorem 2 applies. Let us check the numerical solutions. We use a two-step variant of the Lax-Wendroff method, which is presented in [START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF] and [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF], to discretize the equation. More precisely, we divide the space domain [0, 1] into 100 intervals of identical length, and 50 as final time. We choose a time-step dt = 0.9 dx that satisfies the CFL condition, λdt/dx < 1 where λ is the maximum value of the transport velocities (in the present work λ = 1/ ), for the stability. Let us select the following initial conditions y(x,

0) = ȳ(x, 0) = 1 -cos(4πx), z(x, 0) = cos(6πx) -1,for all x ∈ [0, 1].
Remark 4. The singular perturbation approximation decreases the simulation cost. Precisely, instead of simulating the full system by using a small time-step which depends on and satisfies the CFL condition dt < dx, we simulate the reduced system where a longer time-step can be chosen satisfying the CFL condition dt < dx.

•

The values of perturbation parameter are chosen as = {10 -3 , 10 -2 , 10 -1 }.

Table 1 shows the evolution of y-ȳ(., t = 15) 2 L 2 and

50 0 z(., t) -G 21 1-G 22 ȳ(1, t) 2 H 2 dt 10 -3 10 -2 10 -1 y -ȳ(., t = 15) 2 L 2
1.8 × 10 -6 9.9 × 10 -5 3.5 × 10 -3

50 0 z(., t) -G 21 1-G 22 ȳ(1, t) 2 H 2 dt 1.7 × 10 -6 1.3 × 10 -4 2.3 × 10 -2
Table 1: Estimates of the errors with the initial conditions (y

0 z 0 ) ∈ H 2
with different values of , for the initial conditions (y 0 z 0 ) ∈ H 2 satisfying the compatibility conditions. It indicates that the two estimates are small and decrease as decreases, as expected from Theorem 2. However, in this simulation it is seen that the decay coefficient of the two estimates is roughly 2 , it is different from the result in Theorem 2 which is . Figure 1 shows the time evolutions of log y(., t) -ȳ(., t) 2 L 2 for different . It is observed that y(., t) -ȳ(., t) 2 L 2 decreases as time increases. 

t log y -ȳ L 2 ε=10 -3 ε=10 -2 ε=10 -1 11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 
Figure 1: Time evolutions of log y(., t) -ȳ(., t) 2 L 2 for different values of with initial conditions belonging to H 2 .

Let us examine Corollary 1 by choosing the particular initial condition z 0 , which is given as y(x, 0) = ȳ(x, 0) = 1 -cos(4πx), z(., 0) = G 21 1-G 22 y(1, 0). Table 2 gives the estimates of y-ȳ(., t = 15) 2 L 2 and

50 0 z(., t) -G 21 1-G 22 ȳ( 1, t) 2 H 2 
dt with different . When decreases, both estimates tend to zero. Moreover, the decay coefficient is 2 , as estimated in Corollary 1. The time evolutions of log y(., t) -ȳ(., t) 2 L 2 for different with initial condition z 0 = G 21 1-G 22 y 0 (1) is given in Figure 2. After t = 5, y(., t) -ȳ(., t) 2

L 2
decreases as time increases.

10 -3 10 -2 10 -1 y -ȳ(., t = 15) 2 L 2 9.2 × 10 -7 8.4 × 10 -5 2.9 × 10 -3

50 0 z(., t) -G 21 1-G 22 ȳ(1, t) 2 H 2 dt 2.0 × 10 -7 3.2 × 10 -5 1.6 × 10 -2
Table 2: Estimates of the errors with the particular initial condition z 0 = G21 1-G22 y 0 (1)

Conclusion

This paper is concerned with a linear singularly perturbed hyperbolic system of two conservation laws. By setting the perturbation parameter to zero, the reduced subsystem is computed. The Tikhonov approximation for such infinite dimensional systems is achieved by a H 2 Lyapunov function. In Theorem 2, for all initial conditions belonging to H 2 satisfying the suitable compatibility conditions, the solution of the full system can be approximated by that of the reduced subsystem. Moreover, the error is estimated as the order of . Furthermore, by choosing the particular initial condition z 0 , the estimate of the error between the full system and the reduced subsystem is the order of 2 as stated in Corollary 1. Applying this main result to some physical applications, like open channels as considered in [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF] and gas flow through pipelines in [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF] or [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF], is a topic of future work.

dx

-cµ

1 0 e -µx ȳ2 dx + 2bG 21 1-G 22 1 0 e -µx z -G 21 1-G 22 ȳ(1) ȳx (1)dx.
To simplify the computation, let us rewrite (13b) as follows

z(0, t) - G 21 1 -G 22 ȳ(1, t) = G 21 η(1, t) + G 22 z(1, t) - G 21 1 -G 22 ȳ(1, t) . ( 40 
)
Using (13a), (13c) and (40), V 01 is rewritten as , M 02 = c(e -µ -G 2 r ).

V 01 = -a e -µ η 2 (1) -G 11 η(1) + G 12 z(1) -G 21 1-G 22 ȳ(1) 2 -b e -µ z(1) -G 21 1-G 22 ȳ(1) 2 -G 21 η(1) + G 22 z(1) -G 21 1-G 22 ȳ(1)
To prove V 01 is negative, let us check

  M 01 0 0 0 0 M 02   > 0. Let us con- sider the matrix M = e -µ ( a 0 0 b ) -G 11 G 12 G 21 G 22 ( a 0 0 b ) G 11 G 12 G 21 G 22 .
The straightforward calculations prove that (see e. Let us consider V 1 (η, z, ȳ) defined in (19) and differentiate it with respect to t along the solutions to (23), it follows

V1 (η, z, ȳ) = a 1 0 e -µx (-2η x η xx ) dx + c 1 0 e -µx (-2ȳ x ȳxx ) dx + b 1 0 e -µx (-2z x z xx ) dx. (41) 
Performing an integration by parts, we obtain V1 (η, z, ȳ) = V 11 + V 12 , where

V 11 = -a[e -µx η 2 x ] 1 0 -b [e -µx z 2 x ] 1 0 -c[e -µx ȳ2 x ] 1 0 , V 12 = -aµ 1 0 e -µx η 2 x dx -bµ 1 0 e -µx z 2 x dx -cµ 1 0 e -µx ȳ2 x dx.
Using the boundary conditions (24), V 11 is rewritten as

V 11 = -a e -µ η 2 x (1) -G 11 η x (1) + G 12 z x (1) -G 12 G 21 1-G 22 ȳx (1) 2 -b e -µ z 2 x (1)-G 21 η x (1)+G 22 z x (1)+ G 21 ȳx (1) 2 -c(e -µ ȳ2 x (1)-G 2 r ȳ2
x (1)). Developing the above terms and reorganizing yield

V 11 = - ηx(1) zx(1) ȳx(1)   M 11 M 13 * M 12   ηx(1) zx(1) ȳx (1) 
,

with M 11 = √ 0 0 1 √ M √ 0 0 1 √ , M 12 = c(e -µ -G 2 r )-bG 2 21 -a G 12 G 21 1-G 22 2 , M 13 = aG 11 G 12 G 21 1-G 22 -bG 2 21 aG 2 12 G 21 1-G 22 -bG 21 G 22
, where M is defined in the proof of Lemma 1. Let c be given as follows c = 

1 Figure 2 :

 12 Figure 2: Time evolutions of log y(., t) -ȳ(., t) 2L 2 for different values of with the particular initial condition z 0 = G21 1-G22 y 0 (1).

2 -

 2 c[e -µ ȳ2 (1) -G 2 r ȳ2 (1)].Developing the above terms and reorganizing them, we getV 01 = -

Claim 1 .

 1 g. [4, Section 4]) If ρ 1 (G) < 1, then for a suitable choice of positive values a, b and µ, it holds M > 0.By using Claim 1, it holds M 01 = -1 M > 0. Due to Proposition 1 in[START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF], ρ 1 (G r ) < 1 implies e -µ -G 2 r > 0. Then, it holds M 02 > 0> 0, V 01 is negative. We get that (21) holds. This concludes the proof of Lemma 1. • Proof of Lemma 2.

2 r. 1 0e 1 0e 1 0e 2 -b e -µ z 2 xx ( 1 ) - 2 G 2 -1-G 22 2 , 1 ,

 21112212221 Then, for all c > c , it holds M 12 -M 13 M -1 11 M 13 > 0. Since M 11 > 0 and M 12 -M 13 M -1 11 M 13 > 0, according to the Schur complement, it holds holds. This concludes the proof of Lemma 2. • Proof of Lemma 3. Let us consider V 2 (η, z, ȳ) defined in (20) and differentiate it with respect to t along the solutions to (26), it followsV2 (η, z, ȳ) = 3 a -µx (-2η xx η xxx ) dx + c -µx (-2ȳ xx ȳxxx ) dx + b -µx (-2z xx z xxx ) dx. (42)Performing an integration by parts, we obtain V2 (η, z, ȳ) = V 21 + V 22 , whereV 21 = -3 a[e -µx η 2 xx ] 1 0 -b [e -µx z 2 xx ] 1 0 -c[e -µx ȳ2 xx ] 1 0 , V 22 = -3 aµ 1 0 e -µx η 2 xx dx -bµ 1 0 e -µx z 2 xx dx -cµ 1 0 e -µx ȳ2 xx dx.Using the boundary conditions (27), V 21 is rewritten asV 21 = -3 a e -µ η 2 xx (1) -G 11 η xx (1) + G 12 2 z x (1) -G 12 G 21 21 η xx (1) + G 22 z xx (1) + 2 G 21 ȳxx (1) c(e -µ ȳ2 xx -G 2 r ȳ2xx (1)). Developing the above terms and reorganizing, we obtainV 21 =c(e -µ -G 2 r ) -2 bG 2 21 -a 2 G 12 G 21 isdefined in the proof of Lemma 1 and M 11 , M 13 are defined in the proof of Lemma 2. To prove V 21 is negative, let us check M 21 > 0. Computing the inverse of M 21 yields

  To prove V 11 is negative, let us check -[aG 11 G 12 + bG 21 G 22 ] 2 . Computing M 13 M -1 11 M 13 yields M 13 M -1 11 M 13 = β aG 11 G 12 G 21 1-G 22 22 -bG 21 G 22 aG 11 G 12 + bG 21 G 22

				M 11	M 13
				
				*	M 12
	M -1 11 = 1 β	be -µ -(bG 2 22 +aG 2 12 ) *	aG 11 G 12 +bG 21 G 22 ae -µ -(aG 2 21 ) 11 +bG 2	, where
	β = [ae -µ -(aG 2 11 + bG 2 21 )][be -µ -(bG 2 22 + aG 2 12 )] -bG 2 21 2 be -µ -(bG 2 22 + aG 2 12 )
	+2 aG 11 G 12 G 21 1-G 22 1-G + aG 2 12 G 21 -bG 2 21 aG 2 12 G 21 1-G 22 -bG 21 G 22 2 ae -µ -(aG 2 11 + bG 2 21 ) = L.

  > 0. Due to Claim 1, we prove that M 11 > 0. Let us compute the inverse of M 11 ,

Appendix

Proof of Lemma 1. Let us consider V 0 (η, z, ȳ) defined in (18) and differentiate it with respect to t along the solutions to [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF], it follows

Performing an integration by parts yields V0 (η, z, ȳ) = V 01 + V 02 , where

V 02 = -aµ 1 0 e -µx η 2 dx -bµ 1 0 e -µx z -G 21 1-G 22 ȳ(1)