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Abstract

A linear hyperbolic system of two conservation laws with two time scales is
considered in this paper. The fast time scale is modeled by a small perturba-
tion parameter. By formally setting the perturbation parameter to zero, the
full system is decomposed into two subsystems, the reduced subsystem (rep-
resenting the slow dynamics) and the boundary-layer subsystem (standing
for the fast dynamics). The solution of the full system can be approximated
by the solution of the reduced subsystem. This result is obtained by us-
ing a H2 Lyapunov function. The estimate of the errors is the order of the
perturbation parameter for all initial conditions belonging to H2 and satis-
fying suitable compatibility conditions. Moreover, for a particular subset of
initial conditions, more precise estimates are obtained. The main result is
illustrated by means of numerical simulations.

Keywords: distributed parameter systems, singular perturbation, Lyapunov
methods

1. Introduction

Singular perturbations were introduced in control engineering in the late
1960s and have become a tool for analysis and design of control systems [9],
[12], [13], [11]. Singularly perturbed systems often occur naturally due to
the presence of small parasitic parameters, for example, inductance in DC
motors model, high gain amplifier in voltage regulators [10]. The singular
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perturbation method is a way of neglecting the fast transitions and consid-
ering them in a separate fast time scale. The significant advantage of this
technique is to reduce the system order. Singularly perturbed partial dif-
ferential equations have been considered in research works from late 1980s.
Such systems are interesting since they describe many phenomena in various
fields in physics and engineering, see [7] as a survey.

Tikhonov theorem is a fundamental tool for the analysis of singularly
perturbed systems. It describes the limiting behaviour of solutions of the
perturbed system. Tikhonov theorem has been studied for finite dimensional
systems modeled by ODEs in many research works [17], [8]. The approxi-
mation of the full system by the reduced subsystem on a finite time interval
requires only the exponential stability of the boundary-layer subsystem. Fur-
thermore, the approximation on an infinite time interval is achieved based
on the exponential stability of both subsystems.

In the previous work [16] it has been considered a Tikhonov theorem for
linear singularly perturbed hyperbolic systems. The approximation has been
achieved by using a L2 Lyapunov function. Different from the previous work,
we consider a H2 Lyapunov function for a more sophisticated system which
consists of the error between the slow dynamics of the full system and the
reduced subsystem, the fast dynamics of the full system and the dynamics
of the reduced subsystem in this work. The contribution of the present
work is a more precise approximation result obtained by Lyapunov methods.
More specifically, two cases are considered. In the first case, for any initial
conditions belonging to H2 satisfying suitable compatibility conditions, the
difference between the slow dynamics of the full system and the reduced
subsystem in L2-norm is estimated of the order of the small perturbation
parameter ε. Furthermore, the estimate of the fast dynamics in H2-norm
is also of the order of ε. In the second case, where the equilibrium point is
chosen as the initial condition of the fast dynamics, the two estimates are
obtained of the order of ε2.

The paper is organized as follows. In Section 2, the singularly perturbed
linear hyperbolic system under consideration is introduced, and the reduced
subsystem is computed. Section 3 contains the main result on singular per-
turbation approximation of solutions for the full system by that for the sub-
system. A numerical simulation is provided in Section 4 to illustrate the
main result. Finally, concluding remarks end the paper.

Notation. For a partitioned symmetric matrix M in Rn×n, the symbol ∗
stands for symmetric block. M > 0, M < 0 mean that M is positive definite
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and negative definite respectively. M−1 and M> represent the inverse and the
transpose matrix of M . | | denotes the usual Euclidean norm and ‖ ‖ is the
associated matrix norm. ‖ ‖L2 denotes the associated norm in L2(0, 1) space,

defined by ‖f‖L2 =
(∫ 1

0
|f |2dx

) 1
2

for all functions f ∈ L2(0, 1). Similarly,

the associated norm in H2(0, 1) space is denoted by ‖ ‖H2 , defined for all

functions f ∈ H2(0, 1), by ‖f‖H2 =
(∫ 1

0
|f |2 + |fx|2 + |fxx|2dx

) 1
2
. Following

[4], we introduce the notation, ρ1(M) = inf{‖∆M∆−1‖,∆ ∈ Dn,+}, where
Dn,+ denotes the set of diagonal positive matrices in Rn×n.

2. Linear singularly perturbed hyperbolic system of two conserva-
tion laws

Let us consider a 2× 2 linear singularly perturbed hyperbolic system as
follows

yt(x, t) + yx(x, t) = 0,
εzt(x, t) + zx(x, t) = 0,

(1)

where x ∈ [0, 1], t ∈ [0,+∞), y : [0, 1]×[0,+∞)→ R, z : [0, 1]×[0,+∞)→ R
and 0 < ε < 1 is a small perturbation parameter.
We consider the following boundary conditions for system (1)(

y(0, t)
z(0, t)

)
= G

(
y(1, t)
z(1, t)

)
, t ∈ [0,+∞), (2)

where G =
(
G11 G12
G21 G22

)
is a 2× 2 constant matrix.

Given two functions y0 : [0, 1]→ R and z0 : [0, 1]→ R, the initial conditions
are (

y(x, 0)
z(x, 0)

)
=

(
y0(x)
z0(x)

)
, x ∈ [0, 1]. (3)

Remark 1. According to Proposition 2.1 in [4], for every (y0 z0)> ∈ H2(0, 1)
satisfying the following compatibility conditions(

y0(0)
z0(0)

)
= G

(
y0(1)
z0(1)

)
, (4)(

y0
x(0)

1
ε
z0
x(0)

)
= G

(
y0
x(1)

1
ε
z0
x(1)

)
, (5)
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the system (1) and (2) has a unique maximal classical solution (y z)> ∈
C0([0,+∞), H2(0, 1)).
Due to Section 2.1 in [3], for all (y0 z0)> ∈ L2(0, 1), there exists a unique
maximal weak solution (y z)> ∈ C0([0,+∞), L2(0, 1)) to (1) and (2). ◦

The exponential stability of the linear system (1)-(2) in L2-norm and H2-
norm is defined as follows

Definition 1. The linear system (1)-(2) is exponentially stable to the origin
in L2-norm if there exist γ1 > 0 and C1 > 0, such that for every (y0 z0)> ∈
L2(0, 1), the solution to the system (1)-(2) satisfies∥∥∥∥(y(., t)

z(., t)

)∥∥∥∥
L2

6 C1e
−γ1t

∥∥∥∥(y0

z0

)∥∥∥∥
L2

, t ∈ [0,+∞).

The linear system (1)-(2) is exponentially stable to the origin in H2-norm
if there exist γ2 > 0 and C2 > 0, such that for every (y0 z0)> ∈ H2(0, 1)
satisfying the compatibility conditions (4)-(5), the solution to the system (1)-
(2) satisfies ∥∥∥∥(y(., t)

z(., t)

)∥∥∥∥
H2

6 C2e
−γ2t

∥∥∥∥(y0

z0

)∥∥∥∥
H2

, t ∈ [0,+∞).

Generalizing the approach in [10] to infinite dimensional systems, let us com-
pute the reduced subsystem of the infinite dimensional systems. By setting
ε = 0 in system (1), we get

yt(x, t) + yx(x, t) = 0, (6a)

zx(x, t) = 0. (6b)

Substituting (6b) into the boundary conditions (2) and assuming G22 6= 1
yields

y(0, t) =
(
G11 + G12G21

1−G22

)
y(1, t),

z(., t) = G21

1−G22
y(1, t).

(7)

The reduced subsystem is then calculated as

ȳt(x, t) + ȳx(x, t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (8)

with the boundary condition

ȳ(0, t) = Grȳ(1, t), t ∈ [0,+∞), (9)
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where Gr = G11 + G12G21

1−G22
. The bar is used to indicate that the variable

belongs to the system with ε = 0.
The initial condition of the reduced subsystem (8)-(9) is chosen as the same
as for the full system (1)-(2), i.e.

ȳ0(x) = y0(x), (10)

and the compatibility conditions for existence of H2 solutions are given by

ȳ0(0) = Grȳ
0(1),

ȳ0
x(0) = Grȳ

0
x(1).

(11)

Let us recall the stability result for linear hyperbolic system (1)-(2) given in
[4] and [5]

Theorem 1 ([4, 5]). If ρ1(G) < 1 (resp. ρ1(Gr) < 1), the linear system
(1)-(2) (resp. the reduced subsystem (8)-(9)) is exponentially stable to the
origin in L2-norm and H2-norm.

3. Tikhonov approach for linear singularly perturbed hyperbolic
systems

This section presents an approximation theorem for system (1)-(2). More
precisely, the difference of the solution between the full system (1)-(2) and
the reduced subsystem (8)-(9) is firstly estimated of the order of ε. Then
for particular initial conditions, it is estimated of the order of ε2. Therefore,
the solution of the full system can be approximated by the solution of the
reduced subsystem. A H2 Lyapunov function is used to prove this result.
Let us first perform a change of variable

η = y − ȳ,

where y is the solution of the full system and ȳ is the solution of the reduced
subsystem.
By considering the fast dynamics z in (1)-(2) and the dynamics ȳ in (8)-(9),
let us study the following system

ηt + ηx = 0,
εzt + zx = 0,
ȳt + ȳx = 0,

(12)
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with the following boundary conditions, for all t > 0,

η(0, t) = G11η(1, t) +G12z(1, t)− G12G21

1−G22

ȳ(1, t), (13a)

z(0, t) = G21η(1, t) +G22z(1, t) +G21ȳ(1, t), (13b)

ȳ(0, t) = Grȳ(1, t). (13c)

The compatibility conditions (4), (5) and (11) are rewritten as follows

η0(0) = G11η
0(1) +G12z

0(1)− G12G21

1−G22
ȳ0(1),

z0(0) = G21η
0(1) +G22z

0(1) +G21ȳ
0(1),

ȳ0(0) = Grȳ
0(1).

(14)

η0
x(0) = G11η

0
x(1) + G12

ε
z0
x(1)− G12G21

1−G22
ȳ0
x(1),

z0
x(0) = εG21η

0
x(1) +G22z

0
x(1) + εG21ȳ

0
x(1),

ȳ0
x(0) = Grȳ

0
x(1).

(15)

Let us introduce a candidate Lyapunov function for system (12)-(13)

V (η, z, ȳ) = a

∫ 1

0

e−µx
(
η2

ε
+ εη2

x + ε3η2
xx

)
dx

+b

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx

+εc

∫ 1

0

e−µx
(
ȳ2 + ȳ2

x + ȳ2
xx

)
dx, (16)

where a, b, c and µ are positive values. If initial conditions satisfy the
compatibility conditions (14) and (15), then V (η, z, ȳ) is well defined along
the solutions of (12) and (13).
To simplify the analysis of time derivative of V (η, z, ȳ), we rewrite it in the
following way

V (η, z, ȳ) = V0(η, z, ȳ) + V1(η, z, ȳ) + V2(η, z, ȳ), (17)
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with V0(η, z, ȳ), V1(η, z, ȳ) and V2(η, z, ȳ) defined respectively by the 0th, 1st

and 2nd space derivative of the solutions, that are

V0(η, z, ȳ) =
a

ε

∫ 1

0

e−µxη2dx+ b

∫ 1

0

e−µx
(
z − G21

1−G22

ȳ(1)

)2

dx

+εc

∫ 1

0

e−µxȳ2dx, (18)

V1(η, z, ȳ) = εa

∫ 1

0

e−µxη2
xdx+ b

∫ 1

0

e−µxz2
xdx+ εc

∫ 1

0

e−µxȳ2
xdx, (19)

V2(η, z, ȳ) = ε3a

∫ 1

0

e−µxη2
xxdx+ b

∫ 1

0

e−µxz2
xxdx+ εc

∫ 1

0

e−µxȳ2
xxdx.

(20)

First, we estimate the time derivative of V0(η, z, ȳ) along the classical C1-
solution of system (12) with the boundary condition (13). Lemma 1 gives an
estimate of V̇0(η, z, ȳ).

Lemma 1. If the boundary conditions matrix satisfies ρ1(G) < 1, then there
exist positive real values a, b and µ such that for all positive c and ε, along
the solutions to (12)-(13), it holds,

V̇0(η, z, ȳ) 6 −aµ
ε

∫ 1

0

e−µxη2dx− bµ

ε

∫ 1

0

e−µx
(
z − G21

1−G22

ȳ(1)

)2

dx

−εcµ
∫ 1

0

e−µxȳ2dx+
2bG21

1−G22

∫ 1

0

e−µx
(
z − G21

1−G22

ȳ(1)

)
ȳx(1)dx.

(21)

In order to handle the term ȳx(1) in (21), let us consider the following esti-
mate

|ȳx(1)| =

∣∣∣∣∫ 1

0

(
xȳxx + ȳx

)
dx

∣∣∣∣ 6
∫ 1

0

(
|ȳ|+ |ȳx|+ |ȳxx|

)
dx

6
√

3

(∫ 1

0

(
ȳ2 + ȳ2

x + ȳ2
xx

)
dx

) 1
2

. (22)

It appears clearly from (22) that it is necessary to check the dynamics of
ȳx and ȳxx. This is the reason why we consider a H2 Lyapunov function.
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Differentiating system (12) with respect to x yields

ηxt + ηxx = 0,
εzxt + zxx = 0,
ȳxt + ȳxx = 0.

(23)

Differentiating (13) with respect to t and using (12), we obtain the following
boundary conditions, for all t > 0,

ηx(0, t) = G11ηx(1, t) + G12

ε
zx(1, t)− G12G21

1−G22
ȳx(1, t),

zx(0, t) = εG21ηx(1, t) +G22zx(1, t) + εG21ȳx(1, t),
ȳx(0, t) = Grȳx(1, t).

(24)

Next, we compute the time derivative of V1(η, z, ȳ) along the classical C1-
solution of system (23) with the boundary condition (24). The estimate on
V̇1(η, z, ȳ) is given in Lemma 2.

Lemma 2. Assume ρ1(G) < 1 and let a, b and µ as in Lemma 1. Then
there exists a positive real value c′ such that for all c > c′ and ε > 0, along
the solutions to (12)-(13), it holds,

V̇1(η, z, ȳ) 6 −εaµ
∫ 1

0

e−µxη2
xdx−

bµ

ε

∫ 1

0

e−µxz2
xdx− εcµ

∫ 1

0

e−µxȳ2
xdx.

(25)

To consider the dynamics of ȳxx, let us differentiate system (23) with respect
to x. It follows

ηxxt + ηxxx = 0,
εzxxt + zxxx = 0,
ȳxxt + ȳxxx = 0.

(26)

Moreover, differentiating (24) with respect to t and using (23), the boundary
conditions are given as follows, for all t > 0,

ηxx(0, t) = G11ηxx(1, t) + G12

ε2
zxx(1, t)− G12G21

1−G22
ȳxx(1, t),

zxx(0, t) = ε2G21ηxx(1, t) +G22zxx(1, t) + ε2G21ȳxx(1, t),
ȳxx(0, t) = Grȳxx(1, t).

(27)

Lastly, we compute the time derivative of V2(η, z, ȳ) along the C1-solution of
system (26) with the boundary condition (27). The estimate on V̇2(η, z, ȳ) is
given in Lemma 3.
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Lemma 3. Assume ρ1(G) < 1 and let a, b, c′ and µ as in Lemmas 1 and
2. Then there exists a positive real value ε∗, such that for all 0 < ε < ε∗ and
c > c′, along the solutions to (12)-(13), it holds

V̇2(η, z, ȳ) 6 −ε3aµ
∫ 1

0

e−µxη2
xxdx−

bµ

ε

∫ 1

0

e−µxz2
xxdx− εcµ

∫ 1

0

e−µxȳ2
xxdx.

(28)

Remark 2. Due to [5], it may be deduced that for every (η0
xx, ȳ

0
xx, z

0
xx)
> ∈

L2(0, 1), the Cauchy problem (26)-(27) has a weak L2-solution issuing from
(η0
xx, ȳ

0
xx, z

0
xx)
>. Similarly, the time derivative of V2 has to be understood in

a weak sense (see i.e. [1, Chapter 4]). ◦

The proofs of Lemmas 1, 2 and 3 are given in the appendix. We are now
ready to state and prove our main result.

Theorem 2. Consider the linear singularly perturbed hyperbolic system of
two conservation laws (1)-(2). If the condition ρ1(G) < 1 is satisfied, there
exist positive values ε∗, a, b, c, θ and µ such that for all 0 < ε < ε∗, for all
(y0 z0)T ∈ H2(0, 1) satisfying the compatibility conditions (4), (5) and (11)
with ȳ0 = y0 and for all t > 0, the following holds

‖y(., t)− ȳ(., t)‖2
L2 6 ε

beµ

a
e−εθt

∥∥∥∥z0 − G21

1−G22

ȳ0(1)

∥∥∥∥2

H2

+ ε2
ceµ

a
e−εθt‖ȳ0‖2

H2 ,

(29)

∫ +∞

0

∥∥∥∥z(., t)− G21

1−G22

ȳ(1, t)

∥∥∥∥2

H2

dt 6 ε
2eµ

µ

∥∥∥∥z0 − G21

1−G22

ȳ0(1)

∥∥∥∥2

H2

+ε2
2ceµ

bµ
‖ȳ0‖2

H2 . (30)

Proof. Let us compute the time derivative of V (η, z, ȳ), V̇ (η, z, ȳ) = V̇0(η, z, ȳ)+
V̇1(η, z, ȳ) + V̇2(η, z, ȳ). By Lemmas 1-3, there exist positive constants a, b, µ
given by Lemma 1, c′ given by Lemma 2 and ε∗ given by Lemma 3 such that
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the following holds for c > c′, and for 0 < ε < ε∗

V̇ (η, z, ȳ) 6 −aµ
∫ 1

0

e−µx
(
η2

ε
+ εη2

x + ε3η2
xx

)
dx

−bµ
ε

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx

−εcµ
∫ 1

0

e−µx(ȳ2 + ȳ2
x + ȳ2

xx)dx+
2bG21

1−G22

∫ 1

0

e−µx
(
z − G21

1−G22

ȳ(1)

)
ȳx(1)dx.

Applying Young’s inequality, for all positive values κ1, it follows

V̇ (η, z, ȳ) 6 −aµ
∫ 1

0

e−µx
(
η2

ε
+ εη2

x + ε3η2
xx

)
dx

−bµ
ε

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx− εcµ

∫ 1

0

e−µx(ȳ2 + ȳ2
x + ȳ2

xx)dx

+κ1b

∣∣∣∣ G21

1−G22

∣∣∣∣ |ȳx(1)|2 +
b
∣∣∣ G21

1−G22

∣∣∣
κ1

∫ 1

0

e−µx
(
z − G21

1−G22

ȳ(1)

)2

dx.

Using the estimate of |ȳx(1)| in (22), it follows

V̇ (η, z, ȳ) 6 −aµ
∫ 1

0

e−µx
(
η2

ε
+ εη2

x + ε3η2
xx

)
dx

−

bµ
ε
−
b
∣∣∣ G21

1−G22

∣∣∣
κ1

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx

−
(
εcµ− 3eµκ1b

∣∣∣∣ G21

1−G22

∣∣∣∣) ∫ 1

0

e−µx(ȳ2 + ȳ2
x + ȳ2

xx)dx.

Moreover, choosing κ1 = 2ε
∣∣∣ G21

1−G22

∣∣∣ /µ, it yields

V̇ (η, z, ȳ) 6 −aµ
∫ 1

0

e−µx
(
η2

ε
+ εη2

x + ε3η2
xx

)
dx

−bµ
2ε

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx

−εc

µ− 6eµb
∣∣∣ G21

1−G22

∣∣∣2
cµ

∫ 1

0

e−µx(ȳ2 + ȳ2
x + ȳ2

xx)dx. (31)
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Let c∗ = max

(
c′, 6eµb

∣∣∣ G21

1−G22

∣∣∣2 /µ2

)
such that for all c > c∗, we may define

θ = µ−
6eµb

∣∣∣ G21
1−G22

∣∣∣2
2c∗µ

, it is deduced from (31)

V̇ (η, z, ȳ) 6 −εθV (η, z, ȳ).

We get the following inequality for all t > 0.

V (η, z, ȳ) 6 e−εθtV (η0, z0, ȳ0). (32)

Using the fact that

ae−µ

ε
‖η‖2

L2 + be−µ
∥∥∥∥z − G21

1−G22

ȳ(1)

∥∥∥∥2

H2

+ εce−µ‖ȳ‖2
H2

6 V (η, z, ȳ) 6
a

ε
‖η‖2

H2 + b

∥∥∥∥z − G21

1−G22

ȳ(1)

∥∥∥∥2

H2

+ εc‖ȳ‖2
H2 , (33)

it follows

‖η‖2
L2 6

εeµ

a
V (η, z, ȳ) 6

εeµ

a
e−εθtV (η0, z0, ȳ0)

6
εeµ

a
e−εθt

(
a

ε
‖η0‖2

H2 + b

∥∥∥∥z0 − G21

1−G22

ȳ0(1)

∥∥∥∥2

H2

+ εc‖ȳ0‖2
H2

)
.

Since the initial condition y0 = ȳ0 i.e. η0 = 0, therefore (29) holds.
Noting that, for all c > c∗, the third term in the right hand part of (31) is
always negative, as well as the first term, we can rewrite (31) as follows

V̇ (η, z, ȳ) 6 −bµ
2ε

∫ 1

0

e−µx

((
z − G21

1−G22

ȳ(1)

)2

+ z2
x + z2

xx

)
dx. (34)

Performing the time integration of both sides from 0 to +∞ yields

bµe−µ

2ε

∫ +∞

0

∥∥∥∥z − G21

1−G22

ȳ(1)

∥∥∥∥2

H2

dt 6 V (η0, z0, ȳ0)− lim
t→+∞

V (η, z, ȳ),

and since lim
t→+∞

V (η, z, ȳ) = 0, it follows

∫ +∞

0

∥∥∥∥z − G21

1−G22

ȳ(1)

∥∥∥∥2

H2

dt 6 ε
2eµ

bµ
V (η0, z0, ȳ0). (35)

11



Due to (33) and η0 = 0, the inequality (30) holds. This concludes the proof
of Theorem 2. 2

Selecting particular initial conditions, we can establish more precise esti-
mates.

Corollary 1. If ρ1(G) < 1, there exist positive values ε∗, a, b, c, θ and µ,
such that for all ε ∈ (0, ε∗) and for all y0 ∈ H2(0, 1) satisfying the compati-
bility conditions (4), (5) and (11) with ȳ0 = y0, z0 = G21

1−G22
y0(1), it holds for

all t > 0,

‖y(., t)− ȳ(., t)‖2
L2 6 ε2

ceµ

a
e−εθt‖ȳ0‖2

H2 , (36)

∫ +∞

0

∥∥∥∥z(., t)− G21

1−G22

ȳ(1, t)

∥∥∥∥2

H2

dt 6 ε2
2ceµ

bµ
‖ȳ0‖2

H2 , (37)

∥∥∥∥z(., t)− G21

1−G22

ȳ(1, t)

∥∥∥∥2

H2

6 ε
ceµ

b
e−εθt‖ȳ0‖2

H2 . (38)

Proof. The proof of this corollary is based on Theorem 2. We get that
(36) and (37) hold by considering the initial condition z0 = G21

1−G22
y0(1) in

(29) and (30). It is deduced from (32) and (33) that, for all t > 0,∥∥∥∥z(., t)− G21

1−G22

ȳ(1, t)

∥∥∥∥2

H2

6
eµe−εθt

b

(
a

ε
‖η0‖2

H2 + b

∥∥∥∥z0 − G21

1−G22

ȳ0(1)

∥∥∥∥2

H2

+εc‖ȳ0‖2
H2

)
. (39)

With the initial conditions η0 = 0 and z0 = G21

1−G22
y0(1), we get that (38)

holds. This concludes the proof of Corollary 1. 2

Remark 3. For the simplicity, we consider a 2 × 2 system throughout the
whole paper. However, the main result in this paper can be extended, in
a straightforward way, to systems of (n + m) equations with ε > 0, where
y ∈ Rn and z ∈ Rm. ◦

12



4. Numerical example

In this section, we give a numerical example to illustrate the main result.
Let us consider the boundary conditions matrix G =

(
0.6 1.5
0.2 −0.5

)
for system

(1)-(2). With ∆ = diag(
√

0.1, 1), it holds ‖∆G∆−1‖ < 1. Thus ρ1(G) < 1
and Theorem 2 applies.
Let us check the numerical solutions. We use a two-step variant of the Lax-
Wendroff method, which is presented in [15] and [14], to discretize the equa-
tion. More precisely, we divide the space domain [0, 1] into 100 intervals of
identical length, and 50 as final time. We choose a time-step dt = 0.9εdx that
satisfies the CFL condition, λdt/dx < 1 where λ is the maximum value of the
transport velocities (in the present work λ = 1/ε), for the stability. Let us se-
lect the following initial conditions y(x, 0) = ȳ(x, 0) = 1−cos(4πx), z(x, 0) =
cos(6πx)− 1,for all x ∈ [0, 1].

Remark 4. The singular perturbation approximation decreases the simula-
tion cost. Precisely, instead of simulating the full system by using a small
time-step which depends on ε and satisfies the CFL condition dt < εdx, we
simulate the reduced system where a longer time-step can be chosen satisfy-
ing the CFL condition dt < dx. ◦

The values of perturbation parameter are chosen as ε = {10−3, 10−2, 10−1}.
Table 1 shows the evolution of ‖y−ȳ(., t = 15)‖2

L2 and
∫ 50

0

∥∥∥z(., t)− G21

1−G22
ȳ(1, t)

∥∥∥2

H2
dt

ε 10−3 10−2 10−1

‖y − ȳ(., t = 15)‖2
L2 1.8× 10−6 9.9× 10−5 3.5× 10−3∫ 50

0

∥∥∥z(., t)− G21

1−G22
ȳ(1, t)

∥∥∥2

H2
dt 1.7× 10−6 1.3× 10−4 2.3× 10−2

Table 1: Estimates of the errors with the initial conditions (y0 z0)> ∈ H2

with different values of ε, for the initial conditions (y0 z0)> ∈ H2 satisfying
the compatibility conditions. It indicates that the two estimates are small
and decrease as ε decreases, as expected from Theorem 2. However, in this
simulation it is seen that the decay coefficient of the two estimates is roughly
ε2, it is different from the result in Theorem 2 which is ε. Figure 1 shows the
time evolutions of log ‖y(., t) − ȳ(., t)‖2

L2 for different ε. It is observed that
‖y(., t)− ȳ(., t)‖2

L2 decreases as time increases.
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Figure 1: Time evolutions of log ‖y(., t) − ȳ(., t)‖2L2 for different values of ε with initial
conditions belonging to H2.

Let us examine Corollary 1 by choosing the particular initial condition z0,
which is given as y(x, 0) = ȳ(x, 0) = 1− cos(4πx), z(., 0) = G21

1−G22
y(1, 0).

Table 2 gives the estimates of ‖y−ȳ(., t = 15)‖2
L2 and

∫ 50

0

∥∥∥z(., t)− G21

1−G22
ȳ(1, t)

∥∥∥2

H2
dt

with different ε. When ε decreases, both estimates tend to zero. Moreover,
the decay coefficient is ε2, as estimated in Corollary 1.
The time evolutions of log ‖y(., t)− ȳ(., t)‖2

L2 for different ε with initial con-
dition z0 = G21

1−G22
y0(1) is given in Figure 2. After t = 5, ‖y(., t) − ȳ(., t)‖2

L2

decreases as time increases.

ε 10−3 10−2 10−1

‖y − ȳ(., t = 15)‖2
L2 9.2× 10−7 8.4× 10−5 2.9× 10−3∫ 50

0

∥∥∥z(., t)− G21

1−G22
ȳ(1, t)

∥∥∥2

H2
dt 2.0× 10−7 3.2× 10−5 1.6× 10−2

Table 2: Estimates of the errors with the particular initial condition z0 = G21

1−G22
y0(1)

5. Conclusion

This paper is concerned with a linear singularly perturbed hyperbolic
system of two conservation laws. By setting the perturbation parameter ε to

14
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Figure 2: Time evolutions of log ‖y(., t) − ȳ(., t)‖2L2 for different values of ε with the

particular initial condition z0 = G21

1−G22
y0(1).

zero, the reduced subsystem is computed. The Tikhonov approximation for
such infinite dimensional systems is achieved by a H2 Lyapunov function. In
Theorem 2, for all initial conditions belonging to H2 satisfying the suitable
compatibility conditions, the solution of the full system can be approximated
by that of the reduced subsystem. Moreover, the error is estimated as the
order of ε. Furthermore, by choosing the particular initial condition z0, the
estimate of the error between the full system and the reduced subsystem is
the order of ε2 as stated in Corollary 1. Applying this main result to some
physical applications, like open channels as considered in [5] and gas flow
through pipelines in [6] or [2], is a topic of future work.
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Appendix

Proof of Lemma 1.
Let us consider V0(η, z, ȳ) defined in (18) and differentiate it with respect to
t along the solutions to (12), it follows

V̇0(η, z, ȳ) =
a

ε

∫ 1

0

e−µx(−2ηηx) dx+ εc

∫ 1

0

e−µx(−2ȳȳx) dx

+
b

ε

∫ 1

0

e−µx
(
−2

(
z − G21

1−G22

ȳ(1)

)
zx

)
dx

+b

∫ 1

0

e−µx
2G21

1−G22

(
z − G21

1−G22

ȳ(1)

)
ȳx(1) dx.

Performing an integration by parts yields V̇0(η, z, ȳ) = V01 + V02, where

V01 = −a
ε
[e−µxη2]10 − b

ε

[
e−µx

(
z − G21

1−G22
ȳ(1)

)2
]1

0

− εc[e−µxȳ2]10,

V02 = −aµ
ε

∫ 1

0
e−µxη2dx− bµ

ε

∫ 1

0
e−µx

(
z − G21

1−G22
ȳ(1)

)2

dx

− εcµ
∫ 1

0
e−µxȳ2dx+ 2bG21

1−G22

∫ 1

0
e−µx

(
z − G21

1−G22
ȳ(1)

)
ȳx(1)dx.

To simplify the computation, let us rewrite (13b) as follows

z(0, t)− G21

1−G22

ȳ(1, t) = G21η(1, t) +G22

(
z(1, t)− G21

1−G22

ȳ(1, t)

)
. (40)

Using (13a), (13c) and (40), V01 is rewritten as

V01 = −a
ε

[
e−µη2(1)−

(
G11η(1) +G12

(
z(1)− G21

1−G22
ȳ(1)

))2
]

− b
ε

[
e−µ

(
z(1)− G21

1−G22
ȳ(1)

)2

−
(
G21η(1) +G22

(
z(1)− G21

1−G22
ȳ(1)

))2
]

17



−εc[e−µȳ2(1)−G2
r ȳ

2(1)].
Developing the above terms and reorganizing them, we get

V01 = −

(
η(1)(

z(1)− G21
1−G22

ȳ(1)
)

ȳ(1)

)>  M01 0
0

0 0 M02

 (
η(1)(

z(1)− G21
1−G22

ȳ(1)
)

ȳ(1),

)
,

with M01 =

(
ae−µ−(aG2

11+bG
2
21)

ε
−aG11G12+bG21G22

ε

∗ be−µ−(bG2
22+aG

2
12)

ε

)
, M02 = εc(e−µ −G2

r).

To prove V01 is negative, let us check

 M01 0
0

0 0 M02

 > 0. Let us con-

sider the matrix M̂ = e−µ ( a 0
0 b ) −

(
G11 G12
G21 G22

)>
( a 0

0 b )
(
G11 G12
G21 G22

)
. The straight-

forward calculations prove that (see e.g. [4, Section 4])

Claim 1. If ρ1(G) < 1, then for a suitable choice of positive values a, b and

µ, it holds M̂ > 0.

By using Claim 1, it holds M01 = ε−1M̂ > 0. Due to Proposition 1 in
[16], ρ1(Gr) < 1 implies e−µ − G2

r > 0. Then, it holds M02 > 0. Since M01 0
0

0 0 M02

 > 0, V01 is negative. We get that (21) holds. This con-

cludes the proof of Lemma 1. ◦

Proof of Lemma 2.
Let us consider V1(η, z, ȳ) defined in (19) and differentiate it with respect to
t along the solutions to (23), it follows

V̇1(η, z, ȳ) = εa

∫ 1

0

e−µx(−2ηxηxx) dx+ εc

∫ 1

0

e−µx(−2ȳxȳxx) dx

+
b

ε

∫ 1

0

e−µx(−2zxzxx) dx. (41)

Performing an integration by parts, we obtain V̇1(η, z, ȳ) = V11 + V12, where

V11 = −εa[e−µxη2
x]

1
0 − b

ε
[e−µxz2

x]
1
0 − εc[e−µxȳ2

x]
1
0,

V12 = −εaµ
∫ 1

0
e−µxη2

xdx−
bµ
ε

∫ 1

0
e−µxz2

xdx− εcµ
∫ 1

0
e−µxȳ2

xdx.
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Using the boundary conditions (24), V11 is rewritten as

V11 = −εa
[
e−µη2

x(1)−
(
G11ηx(1) + G12

ε
zx(1)− G12G21

1−G22
ȳx(1)

)2
]

− b
ε

[
e−µz2

x(1)−
(
εG21ηx(1)+G22zx(1)+εG21ȳx(1)

)2]
−εc(e−µȳ2

x(1)−G2
r ȳ

2
x(1)).

Developing the above terms and reorganizing yield

V11 = −
(
ηx(1)
zx(1)
ȳx(1)

)>  M11 M13

∗ M12

 (
ηx(1)
zx(1)
ȳx(1)

)
,

withM11 =
(√

ε 0

0 1√
ε

)>
M̂
(√

ε 0

0 1√
ε

)
, M12 = ε

(
c(e−µ−G2

r)−bG2
21−a

(
G12G21

1−G22

)2 )
,

M13 =

(
ε
(
aG11G12G21

1−G22
−bG2

21

)
aG2

12G21
1−G22

−bG21G22

)
, where M̂ is defined in the proof of Lemma 1.

To prove V11 is negative, let us check

 M11 M13

∗ M12

 > 0. Due to Claim

1, we prove that M11 > 0. Let us compute the inverse of M11,

M−1
11 = 1

β

(
be−µ−(bG2

22+aG
2
12)

ε
aG11G12+bG21G22

∗ ε

(
ae−µ−(aG2

11+bG2
21)

)), where

β = [ae−µ − (aG2
11 + bG2

21)][be−µ − (bG2
22 + aG2

12)] − [aG11G12 + bG21G22]2.
Computing M>

13M
−1
11 M13 yields

M>
13M

−1
11 M13 = ε

β

{[
aG11G12G21

1−G22
− bG2

21

]2 [
be−µ − (bG2

22 + aG2
12)
]

+2
[
aG11G12G21

1−G22
− bG2

21

] [
aG2

12G21

1−G22
− bG21G22

] [
aG11G12 + bG21G22

]
+
[
aG2

12G21

1−G22
− bG21G22

]2 [
ae−µ − (aG2

11 + bG2
21)
]}

= εL.

Let c′ be given as follows c′ =
bG2

21+a
(
G12G21
1−G22

)2
+L

e−µ−G2
r

. Then, for all c > c′, it

holds M12 −M>
13M

−1
11 M13 > 0. Since M11 > 0 and M12 −M>

13M
−1
11 M13 > 0,

according to the Schur complement, it holds

 M11 M13

∗ M12

 > 0. Thus

(25) holds. This concludes the proof of Lemma 2. ◦
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Proof of Lemma 3.
Let us consider V2(η, z, ȳ) defined in (20) and differentiate it with respect to
t along the solutions to (26), it follows

V̇2(η, z, ȳ) = ε3a

∫ 1

0

e−µx(−2ηxxηxxx) dx+ εc

∫ 1

0

e−µx(−2ȳxxȳxxx) dx

+
b

ε

∫ 1

0

e−µx(−2zxxzxxx) dx. (42)

Performing an integration by parts, we obtain V̇2(η, z, ȳ) = V21 + V22, where

V21 = −ε3a[e−µxη2
xx]

1
0 − b

ε
[e−µxz2

xx]
1
0 − εc[e−µxȳ2

xx]
1
0,

V22 = −ε3aµ
∫ 1

0
e−µxη2

xxdx−
bµ
ε

∫ 1

0
e−µxz2

xxdx− εcµ
∫ 1

0
e−µxȳ2

xxdx.

Using the boundary conditions (27), V21 is rewritten as

V21 = −ε3a
[
e−µη2

xx(1)−
(
G11ηxx(1) + G12

ε2
zx(1)−

(
G12G21

1−G22

)
ȳxx(1)

)2
]

− b
ε

[
e−µz2

xx(1)−
(
ε2G21ηxx(1) +G22zxx(1) + ε2G21ȳxx(1)

)2]
−εc(e−µȳ2

xx −G2
r ȳ

2
xx(1)).

Developing the above terms and reorganizing, we obtain

V21 = −
(
ηxx(1)
zxx(1)
ȳxx(1)

)>  M21 M23

∗ M22

 (
ηxx(1)
zxx(1)
ȳxx(1)

)
,

with

M21 =

(
ε 0
0 1

)>
M11

(
ε 0
0 1

)
=
(√

ε3 0
0 1√

ε

)>
M̂
(√

ε3 0
0 1√

ε

)
,

M22 = ε

(
c(e−µ −G2

r)− ε2bG2
21 − aε2

(
G12G21

1−G22

)2
)

,

M23 =

(
ε3
(
aG11G12G21

1−G22
−bG2

21

)
ε

(
aG2

12G21
1−G22

−bG21G22

)
)

=

(
ε2 0
0 ε

)
M13.

where M̂ is defined in the proof of Lemma 1 and M11, M13 are defined in the

proof of Lemma 2. To prove V21 is negative, let us check

 M21 M23

∗ M22

 > 0.

Due to Claim 1, M21 > 0. Computing the inverse of M21 yields

M−1
21 =

(
ε 0
0 1

)−1

M−1
11

(
ε 0
0 1

)−1

= 1
ε2

(
1 0
0 ε

)
M−1

11

(
1 0
0 ε

)
,
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and M>
23M

−1
21 M23 is computed as follows

M>
23M

−1
21 M23 = 1

ε2
M>

13

(
ε2 0
0 ε

)T (
1 0
0 ε

)
M−1

11

(
1 0
0 ε

)(
ε2 0
0 ε

)
M13 = ε3L,

where L is given in the proof of Lemma 2.
Let ε∗ be given as follows

ε∗ =
√

c′(e−µ−G2
r)

bG2
21+a

(
G12G21
1−G22

)2
+L
, if bG2

21 + a
(
G12G21

1−G22

)2

+ L > 0,

and

ε∗ = +∞, if bG2
21 + a

(
G12G21

1−G22

)2

+ L 6 0.

Then, for all 0 < ε < ε∗, it holds M22 −M>
23M

−1
21 M23 > 0. Since M21 > 0

and M22 −M>
23M

−1
21 M23 > 0, according to the Schur complement, it holds M21 M23

∗ M22

 > 0. Therefore, we prove that (28) holds. This concludes

the proof of Lemma 3. ◦
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