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Take-home message

Imputation: should take into account the final analysis purpose

Clustering: no imputation is needed in the model-based context

Mixture models: flexible enough for accurate multiple imputation

MixtComp software

Clustering/imputation for mixed data
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Today’s data (1/2)

Today, it is easy to collect many features, so it favors

data variety and/or mixed

data missing

data uncertainty (or interval data)

Mixed, missing, uncertain

Observed individuals xO ∈ X
? 0.5 ? 5
0.3 0.1 green 3
0.3 0.6 {red,green} 3
0.9 [0.25 0.45] red ?
↓ ↓ ↓ ↓

continuous continuous categorical integer
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Today’s data (2/2)

And also

Ranking data

Directional data

Ordinal data

Functional data

Graphical data

. . .
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Supervised classification (1/3)

Data: learning dataset D = (xO , z)

n individuals: x = (x1, . . . , xn) = (xO , xM ) belonging to a space X

Observed individuals xO

Missing individuals xM

Partition in K groups G1, . . . ,GK : z = (z1, . . . , zn), zi = (zi1, . . . , ziK )
′

xi ∈ Gk ⇔ zih = I{h=k}

Aim: estimation of an allocation rule r from D

r : X −→ {1, . . . ,K}
xOn+1 7−→ r(xOn+1).

6/58



Classifications(s): overview Mixture model solution Estimation Clustering with MixtComp Imputation with MixtComp Conclusion

Supervised classification (2/3)

Mixed, missing, uncertain

Individuals xO Partition z ⇔ Group
? 0.5 red 5 0 1 0 ⇔ G2

0.3 0.1 green 3 1 0 0 ⇔ G1

0.3 0.6 {red,green} 3 1 0 0 ⇔ G1

0.9 [0.25 0.45] red ? 0 0 1 ⇔ G3

↓ ↓ ↓ ↓
continuous continuous categorical integer
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Supervised classification (3/3)
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Semi-supervised classification (1/3)

Data: learning dataset D = (xO , zO)

n individuals: x = (x1, . . . , xn) = (xO , xM ) belonging to a space X

Observed individuals xO

Missing individuals xM

Partition: z = (z1, . . . , zn) = (zO , zM )

Observed partition z

O

Missing partition z

M

Aim: estimation of an allocation rule r from D

r : X −→ {1, . . . ,K}
xOn+1 7−→ r(xOn+1).

Idea: x is cheaper than z so #zM ≫ #zO
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Semi-supervised classification (2/3)

Mixed, missing, uncertain

Individuals xO Partition zO ⇔ Group
? 0.5 red 5 0 ? ? ⇔ G2 or G3

0.3 0.1 green 3 1 0 0 ⇔ G1

0.3 0.6 {red,green} 3 ? ? ? ⇔ ???
0.9 [0.25 0.45] red ? 0 0 1 ⇔ G3

↓ ↓ ↓ ↓
continuous continuous categorical integer
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Semi-supervised classification (3/3)
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Unsupervised classification (1/3)

Data: learning dataset D = xO , so zO = ∅

Aim: estimation of the partition z and the number of groups K

Also known as: clustering
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Unsupervised classification (2/3)

Mixed, missing, uncertain

Individuals xO Partition zO ⇔ Group
? 0.5 red 5 ? ? ? ⇔ ???
0.3 0.1 green 3 ? ? ? ⇔ ???
0.3 0.6 {red,green} 3 ? ? ? ⇔ ???
0.9 [0.25 0.45] red ? ? ? ? ⇔ ???
↓ ↓ ↓ ↓

continuous continuous categorical integer
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Unsupervised classification (3/3)
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Traditional solutions (1/3)

Two main frameworks

Generative models
Model p(x, z)
Thus direct model for p(x) =

∑
z

p(x, z)
Easy to take into account some missing z and x

Predictive models
Model p(z|x) or sometimes 1{p(z|x)>1/2} or also ranking on p(z|x)
Avoid asumptions on p(x), thus avoids associated error model
difficult to take into account some missing z and x
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Traditional solutions (2/3)

No mixed, missing or uncertain data:

Supervised classification1

Generative models: linear/quadratic discriminant analysis
Predictive models: logistic regression, support vector machines (SVM), k nearest
neighbourhood, classification trees. . .

Semi-supervised classification2

Generative models: mixture models
Predictive models: low density separation (transductive SVM), graph-based methods. . .

Unsupervised classification3

Generative models: k-means like criteria, hierarchical clustering, mixture models
Predictive models: -

1Govaert et al., Data Analysis, Chap.6, 2009
2Chapelle et al., Semi-supervised learning, 2006
3Govaert et al., Data Analysis, Chap.7-9, 2009
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Traditional solutions (3/3)

But more complex with mixed, missing or uncertain data. . .

Missing/uncertain data: multiple imputation is possible but it should ideally take
into account the classification purpose at hand

Mixed data: some heuristic methods with recoding

How to marry the classification aim with mixed, missing or uncertain data?
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Density estimation (1/2)

Data: learning dataset D = xO , so z

O = ∅

Aim: estimation of the distribution p(x)

Extension easy to: D = (xO , zO) with z

O 6= ∅

Useful for: data imputation and multi-purpose classification!
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Density estimation (2/2)
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The mixture model answer in {∅,semi,un} classification

Rigorous definition of a group:

x1 ∈ Gk ⇔ x1 is a realization of X1 ∼ pk(x1)

Mixture formulation:

X1|Z1k=1 ∼ pk(x1)

Z1 ∼ MultK (1, π1, . . . , πK
︸ ︷︷ ︸

π

)

Joint and marginal (or mixture) distributions:

(X1,Z1) ∼
K∏

k=1

[πkpk(x1)]
z1k

X1 ∼ p(x1) =
K∑

k=1

πkpk(x1)

Maximum a posteriori (MAP): with tk (x
O
1 ) = p(Z1k = 1|xO1 ) =

πkpk (x
O
1 )

p(xO1 )

r(xO1 ) = arg max
k={1,...,K}

tk (x
O
1 )
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The mixture model answer for imputation

Straightforward also, for instance by the mode

x̂

M = argmax
x

M
p(xM |xO)

Other possibilities, depending on the data type: mean, etc.

Distribution p(xM |xO)

It allows also to perform a specific multiple imputation!
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The mixture model answer in density estimation

Mixture models: extremely flexible family of distributions
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Parametric mixture model

Parametric assumption:
pk(x1) = p(x1;αk)

thus

p(x1) = p(x1;θ) =
K∑

k=1

πkp(x1;αk)

Mixture parameter:

θ = (π,α) with α = (α1, . . . ,αK )

Model: it includes both the family p(·;αk) and the number of groups K

m = {p(x1;θ) : θ ∈ Θ}

The number of free continuous parameters is given by

ν = dim(Θ)
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Mixed data: conditional independence everywhere

The aim is to combine continuous, categorical and integer data

x1 = (xcont
1 , xcat

1 , x int
1 )

The proposed solution is to mixed all types by inter conditional independence

p(x1;αk) = p(xcont1 ;αcont
k )× p(xcat1 ;αcat

k )× p(xint1 ;αint
k )

In addition, for symmetry between types, intra conditional independence for each type

25/58



Classifications(s): overview Mixture model solution Estimation Clustering with MixtComp Imputation with MixtComp Conclusion

Continuous: Gaussian mixture model

p(·;αcont
k ) = Nd (µk , Σk

︸︷︷︸
diagonal

)
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Categorical: latent class model

categorical variables: d variables with mj modalities each, xj
i
∈ {0, 1}mj and

x
jh
i
= 1 ⇔ variable j of xi takes modality h

Intra conditional independence:

p(xcati ;αcat
k ) =

d∏

j=1

mj∏

h=1

(αjh
k
)x

jh
i

and
α
jh
k
= p(X jh

i
= 1|Zik = 1)

with αk = (αjh
k
; j = 1, . . . , d; h = 1, . . . ,mj )
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Integer: Poisson mixture model

integer variables: d variables x
j
i
∈ N

Intra conditional independence:

p(xinti ;αint
k ) =

d∏

j=1

(αj
k
)x

j
i

α
j
k
!

e−α
j
k
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Sampling assumptions

True distribution:
D ∼ p(D)

Model distribution:

(xi , zi )
i.i.d.
∼ p(x1, z1;θ)

Gap between both, but flexibiliy:

θ∗ = arg min
θ∈Θ

KL(p, pθ)

where
KL(p, pθ) = ED′ [ln p(D′)− ln p(D′;θ)]
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Observed-data log-likelihood estimation of θ

Principle: MLE
θ̂ = arg max

θ∈Θ
ℓ(θ;D)

with observed log-likelihood

ℓ(θ;D) = ln p(D;θ) = ln

∫

x

M

∑

z

M

p(x , z;θ)dxM

Consistency: we have

θ̂
a.s.
−→ θ∗

Algorithm: SEM
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SEM algorithm

Initialisation: θ(0)

Iteration nb q:

E-step: compute conditional probabilities p(xM
, z

M |D;θ(q))

S-step: draw (xM(q)
, z

M(q)) from p(xM
, z

M |D;θ(q))

M-step: maximize θ
(q+1) = arg maxθ ln p(xO , zO

, x

M(q)
, z

M(q);θ)

Stopping rule: iteration number

Properties

simplicity because of conditional independence

classical M steps

avoids local maxima

the mean of the sequence (θ(q)) approximates θ̂

the variance of the sequence (θ(q)) gives confidence intervals
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SE algorithm

A SE algorithm estimates then (xM , zM)

Iteration nb q:

E-step: compute conditional probabilities p(xM
, z

M |D; θ̂)

S-step: draw (xM(q)
, z

M(q)) from p(xM
, z

M |D; θ̂)

Stopping rule: iteration number

Properties

simplicity because of conditional independence

the mean/mode of the sequence (xM(q), zM(q)) estimates (xM , zM)

confidence intervals are also derived
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Estimating K

Density estimation purpose:

BIC = ln p(xO , zO ; θ̂)−
nb param.

2
ln(n)

Clustering purpose:

ICL = ln p(xO , zO , ẑM ; θ̂)−
nb param.

2
ln(n)
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What about the process that causes missing data?
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Prostate cancer data4 (1/2)

Individuals: 506 patients with prostatic cancer grouped on clinical criteria into
two Stages 3 and 4 of the disease

Variables: d = 12 pre-trial variates were measured on each patient, composed by
eight continuous variables (age, weight, systolic blood pressure, diastolic blood
pressure, serum haemoglobin, size of primary tumour, index of tumour stage and
histolic grade, serum prostatic acid phosphatase) and four categorical variables
with various numbers of levels (performance rating, cardiovascular disease history,
electrocardiogram code, bone metastases)

Some missing data: 62 missing values (≈ 1%)

4Byar DP, Green SB (1980): Bulletin Cancer, Paris 67:477-488
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Prostate cancer data (2/2)
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Aim

We forget the classes (Stages of the desease) for performing clustering

Questions

How many clusters?

Which partition?

Visually not so easy. . .
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Create an account in MixtComp

https://modal-research.lille.inria.fr/BigStat/

See documentation at https://modal.lille.inria.fr/wikimodal/doku.php?id=mixtcomp
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Variable descriptor file: descriptor.csv
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Syntax/allowed missing data
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Data file: data.csv
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Number of clusters file: param.ini
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Input file: *.zip

descriptor.csv
+

data.csv
+

param.ini
=

NameYouWant.zip
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Learn!
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Output zip file
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Output R format
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Two strategies in competition

Strategy “mice5 + MixtComp”: MixtComp on the dataset completed by mice

> data.imp=mice(data)

> data.comp.mice=complete(data.imp)

Strategy “full MixtComp”: MixtComp on the observed (no completed) dataset

5http://cran.r-project.org/web/packages/mice/mice.pdf
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Choosing K with the ICL criterion
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Partition quality with K = 2

Strategy mice + MixtComp full MixtComp
% misclassified 12.8 8.1

To be compared also to missing data removal:

475 patients with non-missing data

MixtComp for clustering

possibility to consider continuous, categorical or mixed data

Strategy continuous only categorical only mixed cont/cat
% misclassified 9.46 47.16 8.63

risk of information lost when removing missing data lines/columns

avoid to complete missing data (imputation depends on the purpose)
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And for supervised classification?

Use now the predict functionality of MixtComp

descriptor.csv
+

data.csv
+

output.RData
(from previous learn. . . )

=
NameYouWant.zip

Then same output format as the learn functionality of MixtComp
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Cancer dataset with more missing data

Add artificially ≈ 30% missing data with a MCAR design
Then compare two strategies of imputation:

Strategy “mice”: dataset completed by mice

> data.imp=mice(data)

> data.comp.mice=complete(data.imp)

Strategy “full MixtComp”: MixtComp on the observed (no completed) dataset
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Output multiple imputation by MixtComp

cont. cat.
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Imputation accuracy

Continuous variables: mean of absolute difference between x and x̂

var. mice MixtComp (K = 2) MixtComp (K = 4)
Age 8.907143 5.546571 5.526861
Wt 13.51656 9.779485 9.731182
SBP 2.103226 1.788152 1.795820
DBP 1.317568 1.165201 1.169672
HG 21.67568 14.83514 14.51291
SZ 1.714899 1.160546 1.158105
SG 1.979866 1.386841 1.416053
AP 1.359299 1.027513 1.009126
Global mean 6.5718 4.5862 4.5400

Categorical variable: mean of the proportion of difference between x and x̂

var. mice MixtComp (K = 2) MixtComp (K = 4)
PF 0.1904762 0.0952381 0.0952381
HX 0.4121622 0.4391892 0.4121622
EKG 0.7564103 0.6858974 0.7179487
BM 0.1081081 0.1486486 0.1216216
Global mean 0.3668 0.3422 0.3367
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Conclusion

Clustering: work directly on observed (not imputed) data

Imputation: possible since flexibility of mixture models for density estimation

MixtComp: clustering and/or imputation for mixed data
Now: continuous, categorical, integer
Next: ordinal, ranks, functional, directional
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