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Abstract 11 

Hydrocarbon fuels appear as good candidates for cooling purpose within aerospace 12 

applications. Fuel flows through permeable structures. Thus, internal convection cooling is 13 

reinforced by chemical kinetics (endothermic effect of fuel pyrolysis). Perfectly tuned 14 

conditions may thus rapidly change due to unexpected coke formation that will clogged the 15 

pores of the material and thus strongly affect the cooling efficiency. The pressure drop is one 16 

of the indicator to monitor the modification of the through-flow and thus of the cooling. 17 

Having a tool to predict these variations is of practical and theoretical interest for a better 18 

management of the complex chemical and physical phenomena. This paper presents a model 19 

based on artificial neural networks (ANN) for estimating the transient changes of the pressure 20 

drop of a reactive fluid (n-dodecane) under pyrolysis conditions passing through porous 21 

*Manuscript
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metal material. The ANN is developed using experimental data obtained from an 22 

experimental bench, which assures the monitoring of fluid mass flow rate, pressure and 23 

temperature in stationary and transient conditions. For each case, the fluid pressure which 24 

crosses the metallic porous material is measured as a function of test time, inlet operating 25 

pressure, temperature and fuel mass flow rate. The optimal ANN architecture with error 26 

backpropagation (BPNN) was determined by the cross validation method. The ANN 27 

architecture having 9 hidden neurons gives the best choice. Comparing the simulated values 28 

by ANN with the experimental data indicates that the ANN model give correct results. The 29 

performance of the ANN model is compared with the multiple linear regression model. This 30 

work is expected to be used for later prediction of pressure drop under a wide range of 31 

clogging conditions. 32 

KEYWORDS: Pyrolysis; Artificial neural networks; Modelling; Permeation; Coke; Porous 33 

medium.  34 

35 
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1. Introduction 36 

The development of hypersonic vehicles for future access to space or civil transport 37 

applications leads to an important heating of the engine and air frame. At flight speeds near 38 

Mach 4 and above, the air taken on board these vehicles will be too hot to cool the engines 39 

and airframe. Therefore, using fuel within regenerative cooling technique may be applicable 40 

[1]. To do so, it will be necessary to study and develop adapted light weight and high-41 

temperature materials whose characteristics in terms of permeability and porosity are well 42 

defined. Among the materials the composite ones made of Ceramic Matrix (e.g. silicon based 43 

matrix) with carbon fibers are particularly interesting. For the lowest speed regime, metallic 44 

materials may also be used [2]. The aero-thermal loads must be thus addressed to quantify 45 

permeability/porosity fluctuations of materials as a function of operating conditions.  46 

In the literature, different studies are found in relationship with this need, experimentally 47 

[3-5] or numerically [6,7]; even mathematically [8]. Such studies are not only dedicated to 48 

the flow description but also to the heat transfers [9-11]. The flows in porous materials are 49 

widely studied under common operating conditions. 50 

The problem becomes more difficult when the coolant can react with the materials or 51 

within the material (local coking) [2]. In case of chemical reaction, the formation of carbon 52 

deposit on the surface and inside the porosities can impact the physical properties of the 53 

material (lowering the permeability and the porosity) and thus the cooling efficiency. These 54 

reactions can be due to the thermal fluid decomposition and to the degradation of the material 55 

itself. The degree of decomposition is highly dependent on the operating conditions 56 

(temperature, pressure, type of flow, nature of reactor) [10,12-15]. Thermal cracking of 57 

hydrocarbons have been widely studied in petrochemical industry [16-20] and in the context 58 

of chemical vapor infiltration for the preparation of carbon/carbon composites [21-25]. It 59 
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appears than the bigger the molecule, the higher the number of reactions which occur. 60 

Considering dodecane pyrolysis, the number of reactions largely overpasses 1000 [11]. This 61 

implies very complex phenomena (heat and mass transfers with chemistry). 62 

A lot of studies, often under high pressure (up to 2MPa) are available for ambient to 63 

average temperature conditions (under 800K) [3] or for low pressure and high temperatures 64 

[1]. But only few are dedicated to both high temperature and high pressure conditions in case 65 

of reactive fluid. Numerous equations (derived from Brinkman’s equation) which relate the 66 

pressure drop (ΔP=Pin-Pout) through the porous material to the through-flow velocity have 67 

been published [4,6]. They are based on coefficients, whose physical meaning is not evident 68 

[4]. One of the complexities of such configuration is due to the fact that along the chemical 69 

reactor (cooling channel of the hot vehicle), the fluid is supercritical [2]. Multi-species flow 70 

is found due to fuel degradation during which heavy compounds (coke particles) are formed 71 

and produce solid particles that can block the pore within the porous medium where they are 72 

flowing [10,26]. Due to these large and open difficulties, CFD calculations may not be 73 

relevant and experimental tests are costly and they cannot cover the entire range of test 74 

conditions/material variety, fluid nature.  75 

As a consequence in this paper, we have used an approach based on the artificial neural 76 

networks (ANN) for simulating the transient changes of the pressure drop of n-dodecane 77 

(reactive fluid) passing through the porous material (Stainless Steel) by taking into account 78 

both high temperature and high pressure conditions. This work intends to indirectly predict 79 

the chemical effect of fuel pyrolysis, of coking and of clogging on the permeation process 80 

which directly controls the cooling efficiency. The description of the same numerical 81 

approach applied to another set of gas mixture (inert) and flow conditions can be found in a 82 

previous study [7]. Over the last two decades, ANN have been successfully used by many 83 

researchers for a wide range of engineering applications [27-29]. ANN is based on the 84 
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substitution of the complex simulation model by an approximation of the input-output 85 

relationship. ANN has the advantage over regression that the form of the model needs not to 86 

be pre-determined [30]. In addition, ANN can theoretically approximate any function to any 87 

level of accuracy, which is very interesting when the governing physical mechanisms are 88 

non-linear like in high velocity fluid flow in porous materials. The database was built with 89 

four input parameters (experiment time, inlet fuel mass flow rate, inlet operating pressure and 90 

the uniform temperature) and with the outlet fuel pressure as the output parameter. The 91 

results obtained experimentally are used to construct, to optimize and to validate the model. 92 

This artificial neural network has been trained and tested on this database using the error 93 

backpropagation algorithm and cross validation. The performance of the ANN model is 94 

compared with a multilinear regression approximation method.  95 

2. Material 96 

2.1 Experimental permeation bench 97 

The COMPARER pyrolysis test bench (Fig. (1)) is used to pressurize and to heat the fuel 98 

under flow conditions [4]. Its main characteristics are the following: 99 

 Maximum operating conditions: 1800K, 8MPa, 0.0006 kg.s-1 for liquid fuel and 100 

0.006 kg.s-1 for gas. 101 

 Sensors: 5 pressure transducers, 5 mass flow rates, over 10 K-type and R-type 102 

thermocouples with data acquisition system (16 bits, 48 channels, 0.1 Hz).  103 

A permeation test cell contains the porous sample (Fig. 1). This cell is inserted inside the 104 

furnace of the COMPARER bench and it is connected to the fluid supply system and to the 105 

suitable sensors. The permeable material bounds the cell in two high and low pressure 106 

chambers (upstream and downstream to the porous material respectively). An inlet pipe 107 

provides the fuel into the system. This cell is connected to a dynamic sampling system to get 108 
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hot pressurized samples at three location points in the cell. Despite its small size (external 109 

diameter of 40mm), it enables measuring the temperature, pressure and mass flow rate on 110 

each side of the porous sample.  111 

In the present work, an isotropic stainless steel material is preferred to composite one to 112 

avoid considering complex microstructure (fibres, layers). It is characterized by a porosity 113 

around 30 %, a grain diameter of 14.1 μm and a pore diameter of 4.1 μm. Further geometrical 114 

information can be found in Gascoin et al. [4]. 115 

Figure 1 should be placed here 116 

2.2 Experimental test condition 117 

The different test conditions which were considered for the present work are the 118 

following: 119 

 Temperature set-up: 3 different experimental test have been done for thermal plateau 120 

at T=725K, 765K and 810K. Each plateau last for about 30 min to one hour 121 

depending on the time requested by the system to reach steady-state conditions. 122 

Monitoring the entire test length enables getting transient evolution of all parameters. 123 

 Absolute inlet pressure: in the range of [3.4 MPa ; 3.8 MPa]. 124 

 The experimental protocol is achieved with constant mass flow rate and given 125 

downstream pressure (Pout). The upstream pressure (Pin) increases due to coking and 126 

clogging of the porous medium; which makes the pressure drop to increase as a 127 

function of the test time. 128 

 Monitoring of the chemical species: transiently thanks to a FTIR spectrometer for 5 129 

gaseous species (methane, ethane, ethylene, propane, propylene) and during the three 130 

thermal plateaus by using a dedicated sampling system [10] coupled with a 131 

GC/TCD/FID/MS apparatus (more than 40 species analysed). 132 
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3. Experimental results 133 

We present in this section an experimental test result obtained for T=725K. As shown in 134 

Fig. 2, the measured pressure drop (Measured Pin – Pout) varies as a function of experimental 135 

time (t) and the measured fuel mass flow rate (qin) when the fuel (dodecane) temperature is 136 

kept constant (T=725K). Other obtained experimental results [10] showed that the 137 

temperature has a major effect on the measured pressure drop. Further details on the 138 

experimental results can be found in previous work [10]. Globally, based on the overall 139 

obtained experimental results, we can conclude that there are three parameters (t, qin and T) 140 

that have a great influence on the measurements of the pressure drop. These experimental 141 

results are necessary to construct, to optimize and to validate a model based on ANN for 142 

predicting the transient changes of the pressure drop of a reactive fluid (n-dodecane) passing 143 

through porous metal material (stainless steel). The construction of the developed ANN 144 

model is discussed in the following section. 145 

Figure 2 should be placed here 146 

4. Construction of ANN models 147 

4.1 Construction of the database 148 

ANN models learn the relationship between the input and the output parameters as a 149 

result of training with previously recorded data. The database was built using experimental 150 

data which are obtained from the developed experimental bench with input parameters: test 151 

time (t), operating inlet pressure (Pin), inlet fuel mass flow rate (qin) and temperature (T) 152 

varying in a range of representative values: between 0 and 858s for t; between 3.3MPa and 153 

3.8MPa for Pin; between 0.000033 kg/s and 0.0001 kg/s for qin and 725K, 765K and 810K for 154 

T. Totally, the database contains an appreciable size of 979 experimental test points.  155 
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The present database was subdivided in three subsets. A first subset (490 experimental 156 

tests) is used to train the networks. A second one (245 experimental tests) is used to test the 157 

ANN models to determine when to stop the training stage. The third subset (244 experimental 158 

tests) is used to validate the performance of the selected model on unseen cases.  159 

Each input or output parameter has been normalized relative to its minimum and 160 

maximum values observed in the data (according to Eq. (1)) to make the training procedure 161 

more efficient. 162 

minmax

min
norm XX

XXX  (1) 163 

where X is an arbitrary parameter, Xnorm is the normalized value, and Xmax and Xmin are the 164 

maximum and minimum values of X.  165 

4.2 Architecture and learning process of ANN models 166 

An artificial neural network model is composed of interconnected group of artificial 167 

neurons or nodes. The most frequently utilized network is the multilayer backpropagation 168 

neural network (BPNN) which is used in the present study. The BPNN structure consists of 169 

three layers, an input layer which receive data; an output layer which sends computed 170 

information; and one or more hidden layers to link input and output layer. All the neurons 171 

(nodes) in a layer are connected with all the neurons of the previous and the next layer. In 172 

general, the number of the nodes in the input and output layer are determined by the nature of 173 

the problem. The architecture of a typical 3-layer backpropagation neural network is shown 174 

in Fig. 3.  175 

Figure 3 should be placed here 176 

 177 
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Mathematically, a 3-layer BPNN with n, m, and p the number of input, hidden and output 178 

neurons respectively, can be formulated as in the following: 179 

1 1

m

j
jk

n

i
iijjkk WXWbfbfO  (2) 180 

where Xi the input values of the network and Ok are the output values; bj, the hidden unit 181 

biases; bk, output nodes biases; Wij, the connection weights between the input layer and the 182 

hidden layer; Wjk, the connection weights between the hidden layer and the output layer; f is a 183 

transfer function. The sigmoid transfer function (Eq. (3)) was used in the present study.  184 

xe
xf

1
1)(      (3) 185 

Where x is the excitation.  186 

The learning process of BPNN is based on a series of connection weight adjustments in 187 

order to minimize the gap (global error) between the outputs of the BPNN and the target 188 

values [31]. Initially, all biases and connection weights are initialized to random values in the 189 

range of [-1, +1]. Inputs are first propagated forward through each layer of the ANN. Errors 190 

between outputs and target values are then propagated backwards and the connection weights 191 

are modified according to a specific learning algorithm (delta rule) to reduce the overall error. 192 

This process (forward-backward) is repeated until predicted outputs and target answers 193 

coincide within a given tolerance [32]. 194 

The commonest convergence criterion is the average squared error (ASE) defined as: 195 

2s

1q

p

1k
qkqk Ot

s
1

p
1ASE    (4) 196 
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where tqk and Oqk are respectively the target and predicted value of the output node k for the 197 

pattern q, p is the number of output nodes, and s is the number of patterns. It should be noted 198 

that any level of agreement between predicted and target vectors can be achieved by 199 

providing a sufficient number of training cycles to be carried out. Such an overtraining is 200 

however detrimental to the capacity of the network to generalize from unseen data (a network 201 

that can accurately predict the output of the testing patterns is said to have generalized). It is 202 

thus preferable to calculate the ASE both on training and testing patterns during training 203 

cycles for optimum convergence: this process is called cross-validation (Fig. 4). 204 

 205 

Figure 4 should be placed here 206 

5. Results and Discussion 207 

5.1 Optimum artificial neural network architecture 208 

The determination of the ANN architecture constitutes one of the major tasks in the use of 209 

the ANN. The overall performance of an ANN is dependent on the numbers of hidden layers 210 

and hidden nodes. In the usual case of a 3-layer BPNN, the optimum number of hidden nodes 211 

can be determined by cross-validation in the same way as the optimum number of training 212 

cycles (Fig. 4).  213 

In the present article, a neural network relating inputs {X1, X2, …, Xn} to outputs {O1, O2, 214 

…, Op} and containing one hidden layer with m hidden nodes will be noted: 215 

{O1, O2, …, Op} = ANNnn m p {X1, X2, …, Xn}   (5) 216 

In our case, the outlet operating pressure (Pout) is sought as a function of t, Pin, qin and T. So, 217 

it is possible to compute Pout by using a BPNN model with one node in the output layer (Eq. 218 

(6)). It could be noticed that usually the pressure drop through the porous medium is 219 

investigated as a function of the through-flow rate. 220 
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In this present study, the choice of the outlet pressure is preferred to limit the impact of 221 

experimental uncertainties due to the two pressure transducers (which are generally 222 

multiplied if compared to a single transducer). In addition, since the upstream pressure is an 223 

inlet parameter, looking at the pressure drop or at the pressure outlet is equivalent when 224 

focusing on the behaviour of the ANN model. As can be observed in Fig. 5, the optimal value 225 

of ASE was calculated while using 9 nodes in the hidden layer for our model. 226 

{Pout} = ANN4-9-1 {t, Pin, qin, T}     (6) 227 

The ASE values for the training, testing and validation phases for the optimal artificial 228 

neural network model (ANN4-9-1) are respectively 0.000114, 0.000101 and 0.000132.  229 

Figure 5 should be placed here 230 

5.2 Discussion of the performance of the models 231 

The performance of the ANN model is evaluated by comparing target (Yi) and predicted 232 

( iY ) values. Fig. 6 shows the comparison between the BPNN predicted values and the target 233 

values for Pout on training, testing and validation data. Despite the pressure drop is the 234 

parameter of interest for engineering application, the present model focuses on the outlet 235 

pressure to clearly estimate the validity of the model. On the same graphs the best fit line 236 

through the origin is also plotted and the coefficient of determination R2 for this line is 237 

computed according to Eq. (7): 238 

N

i
ii

N

i
ii

YY
N

YY
NR

1

2

1

2

2

1
1

1

1     (7) 239 

where N is the number of data, Yi is the target value, iY  is the value predicted by the model 240 

and iY  is the mean of the N target values. R2 coefficients close to unity indicate a high degree 241 
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of linearity between predicted and target values. Associated with a best fit line slope close to 242 

unity, it indicates a high model prediction accuracy.  243 

A basis of comparison for BPNN performance is usually sought in multiple linear 244 

regression [33], a more ubiquitous prediction tool in fluid flow through porous material 245 

research. Least square parameter fitting for a linear model expressing Pout as a function of t, 246 

Pin, qin, and T (model 2) is performed on the same training database subset as for BPNN 247 

model. This model is tested to predict the never-seen data from the BPNN validation database 248 

subset. The lowest R2 value is obtained for multiple linear regression model. It is also noted 249 

that the trend line deviates somewhat from the 1:1 line in the case of model 2. The 250 

coefficients of determination (R2) for model 1 and model 2 are given in Table 1. The model 2 251 

seems to be less efficient than model 1 for predicting the variations of Pout. This result is 252 

expected: the physical phenomena captured in the database are complex and non-linear. In 253 

ANN non-linearity is accounted for by the use of transfer functions (Eq. (3)), while 254 

complexity can be controlled by varying the number of hidden nodes. In the present case, the 255 

artificial neural networks provide good and realistic predictions. 256 

 257 

Figure 6 should be placed here  258 

 259 

Table 1 should be placed here  260 

 261 
An application of ANN is now proposed in the following part. Considering a constant 262 

inlet pressure at 3.6 MPa, it is now possible to investigate the chemical effect within the 263 

range of 725K-810K. It should be noticed that fixing arbitrarily the inlet pressure imposes the 264 

outlet pressure to decrease, which simulate the pressure drop increase. The evolution of the 265 

predicted outlet pressure (Pout) using BPNN as a function of time and temperature inside the 266 
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porous medium is given in Fig. 7. It is found with model 1 that the predicted outlet pressure 267 

decreases as a function of time. This expected result is due to the formation of carbon deposit 268 

(coke) on the surface and inside the porosities of the studied material. We can observe also 269 

that the model 1 predicted outlet pressure decreases when the temperature inside the porous 270 

medium increases. The density decreases due to the thermal rise and since the mass flow rate 271 

inside the medium is kept constant, the mean reactive fluid velocity increases. Thus, the 272 

outlet pressure decreases; which means that the pressure drop increases. This is clearly 273 

understandable when paying attention to the Brinkman equation. It is thus very important to 274 

note that the BPNN approach is able to reproduce physical variations. In particular, it is clear 275 

that the chemical effect strongly increases at 760 K and is clear at 770K. 276 

Figure 7 should be placed here 277 

The result of Fig. 7 can be not only related to thermal effect on density and velocity but 278 

also to the chemical effect. Indeed, the reactive fluid outlet pressure decreases as a function 279 

of time due to the formation of the coke on the surface and inside the studied material. The 280 

thermal effect may increase the fluid velocity within the porous material by enhancing coke 281 

formation and pore clogging (the lower the cross-section area, the higher the fluid velocity 282 

and the higher the pressure in case of constant mass flowrate configuration). 283 

Measuring the pressure drop through porous material could be a way to get information 284 

of phenomena within the porous material where no direct microscopic measure seems to be 285 

possible for the fluid properties. In addition, these results should drive the engineering study 286 

of material cooling because ensuring constant cooling efficiency, thus constant fluid flow 287 

through the porous medium, clearly requires compensating higher pressure drop depending 288 

on the temperature seen by the solid materials. As a consequence, performance of pumping 289 
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system should be designed to furnish this increasing need for upstream pressure if outlet 290 

pressure should remain constant. 291 

6. Conclusion 292 

In this article, an artificial neural networks tool has been used to simulate the transient 293 

pressure drop of n-dodecane under pyrolysis conditions and crossing a metallic porous 294 

material (Stainless steel). Based on experimental data, the optimum architecture of artificial 295 

neural network was trained and validated, in order to generalise the prediction of the pressure 296 

drop under clogging configurations not included in the database for difficult access reasons. 297 

The validation showed excellent performance of this ANN model for the prediction of 298 

dodecane transfer in the porous material (R²>0.983). An example of application was 299 

presented to detect the temperature at which chemistry starts to strongly impact the fluid flow 300 

within the porous medium. It was found that a turning point around 760 K-770K has to be 301 

expected in terms of clogging when using n-dodecane at 3.6 MPa in stainless steel medium. 302 

This study is a contribution to the growing evidence of the benefits of ANN models in 303 

Aeronautical engineering. This important result may be applied to automate pressure drop 304 

estimations, which are used in space flight applications, without prior knowledge of material 305 

parameters and particularly for materials with transient changing properties. 306 
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Table 1 R2 values between target and predicted outputs for all models. 394 

 395 

Fig. 1 Schematic of the permeation test cell with porous material and associated measures. 396 

Fig. 2 Measured pressure drop variations with the measured fuel mass flow rate and 397 

experiment time for T=725K. 398 

Fig. 3 Architecture of a typical multilayer BPNN. 399 

Fig. 4 Convergence criterion and optimum network architecture. 400 

Fig. 5 Average squared error (ASE) variations with the number of hidden nodes for the 401 

testing data subset. 402 

Fig. 6 Comparison between target and predicted values for Pout using BPNN (model 1) and 403 

multi-linear regression (model 2) for all data subset. 404 

Fig. 7 Model 1 predicted transient Pout variations with the temperature for qin = 0.04g/s and 405 

Pin = 3.6MPa. 406 

 407 



 
 
 
 

Table 1 R2 values between target and predicted outputs for all models. 
 

R2 Neural network (model 1) Multiple linear regression (model 2) 

Training phase 0.986 0.897 

Testing phase 0.986 0.878 

Validation phase 0.983 0.891 
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Figure 3
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Figure 6
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Highlights : 
 
 

 We modeled the transient pressure drop of n-dodecane under pyrolysis conditions. 

 We found a good agreement between the numerical results and the experimental data. 

 We found that the developed model is able to reproduce physical variations. 

 The model has been applied successfully on a series of examples. 

 

*Highlights (for review)


