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pores of the material and thus strongly affect the cooling efficiency. The pressure drop is one [START_REF] Zhou | Thermolytic reactions of dodecane[END_REF] of the indicator to monitor the modification of the through-flow and thus of the cooling. 17 

Introduction 36

The development of hypersonic vehicles for future access to space or civil transport 37 applications leads to an important heating of the engine and air frame. At flight speeds near 38 Mach 4 and above, the air taken on board these vehicles will be too hot to cool the engines 39 and airframe. Therefore, using fuel within regenerative cooling technique may be applicable 40 [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: 308 Key Technologies for Reusable Space Systems[END_REF]. To do so, it will be necessary to study and develop adapted light weight and high-41 temperature materials whose characteristics in terms of permeability and porosity are well 42 defined. Among the materials the composite ones made of Ceramic Matrix (e.g. silicon based 43 matrix) with carbon fibers are particularly interesting. For the lowest speed regime, metallic 44 materials may also be used [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. The aero-thermal loads must be thus addressed to quantify 45 permeability/porosity fluctuations of materials as a function of operating conditions. 46

In the literature, different studies are found in relationship with this need, experimentally 47 [START_REF] Langener | Experimental investigations on transpiration 313 cooling for scramjet applications using different coolants[END_REF][START_REF] Gascoin | Comparaison of two 316 permeation test benches and two determination methods for Darcy's and Forchheimer's 317 permeabilities[END_REF][START_REF] Zhang | On Temperature 319 and Strain Rate Dependent Strain Localization Behavior in Ti-6[END_REF] or numerically [START_REF] Romagnosi | Pyrolysis 322 in Porous Media: Part 1. Numerical model and parametric study[END_REF][START_REF] Tabach | Neural-Network Metamodelling for the Prediction 325 of the Pressure Drop of a Fluid Passing Through Metallic Porous Medium[END_REF]; even mathematically [START_REF] Zhou | Theoretical Investigation on Mechanical and Thermal 328 Properties of a Promising Thermal Barrier Material: Yb 3 Al 5 O 12[END_REF]. Such studies are not only dedicated to 48 the flow description but also to the heat transfers [START_REF] Ji | Effect of Temperature on 331 Material Transfer Behavior at Different Stages of Friction Stir Welded 7075[END_REF][START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF][START_REF] Herbinet | Thermal decomposition of 337 n-dodecane: Experiments and kinetic modeling[END_REF]. The flows in porous materials are 49 widely studied under common operating conditions. 50

The problem becomes more difficult when the coolant can react with the materials or 51 within the material (local coking) [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. In case of chemical reaction, the formation of carbon 52 deposit on the surface and inside the porosities can impact the physical properties of the 53 material (lowering the permeability and the porosity) and thus the cooling efficiency. These 54 reactions can be due to the thermal fluid decomposition and to the degradation of the material 55 itself. The degree of decomposition is highly dependent on the operating conditions 56 (temperature, pressure, type of flow, nature of reactor) [START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF][START_REF] Billaud | Thermal coupling of methane in a tabular flow 340 reactor: parametric study[END_REF][START_REF] Murphy | Analysis of products of high-temperature 342 pyrolysis of various hydrocarbons[END_REF][START_REF] Liu | Supercritical thermal cracking of N-344 dodecane in presence of several initiative additives: products distribution and kinetics[END_REF][START_REF] Fau | Hydrocarbon pyrolysis with a methane focus: A review 347 on the catalytic effect and the coke production[END_REF]. Thermal cracking of 57 hydrocarbons have been widely studied in petrochemical industry [START_REF] Zhou | Thermolytic reactions of dodecane[END_REF][START_REF] Aribike | Thermal cracking of n-Butane and a light hydrocarbon 351 mixture[END_REF][START_REF] Wauters | Computer generation of a network of elementary steps for coke 353 formation during the thermal cracking of hydrocarbons[END_REF][START_REF] Chakraborty | High pressure pyrolysis of n-heptane[END_REF][START_REF] Sadrameli | Thermal/catalytic cracking of hydrocarbons for the production of 358 olefins: A state-of-the-art review 1: Thermal cracking review[END_REF] and in the context 58 of chemical vapor infiltration for the preparation of carbon/carbon composites [START_REF] Marinkovic | Carbon/carbon composites prepared by chemical vapor infiltration-15 361 years later[END_REF][START_REF] Li | Densification of unidirectional carbon-carbon 363 composites by isothermal chemical vapor infiltration[END_REF][START_REF] Wu | Kinetics of thermal gradient chemical vapor 365 infiltration of large-size carbon/carbon composites with vaporized kerosene[END_REF][START_REF] Deng | Densification behavior and 368 microstructure of carbon/carbon composites prepared by chemical vapor infiltration 369 from xylene at temperatures between 900 and 1250[END_REF][START_REF] Ren | Preparation of carbon/carbon composite by 371 pyrolysis of ethanol and methane[END_REF]. It 4/19 appears than the bigger the molecule, the higher the number of reactions which occur. 60

Considering dodecane pyrolysis, the number of reactions largely overpasses 1000 [START_REF] Herbinet | Thermal decomposition of 337 n-dodecane: Experiments and kinetic modeling[END_REF]. This 61 implies very complex phenomena (heat and mass transfers with chemistry). 62 A lot of studies, often under high pressure (up to 2MPa) are available for ambient to 63 average temperature conditions (under 800K) [START_REF] Langener | Experimental investigations on transpiration 313 cooling for scramjet applications using different coolants[END_REF] or for low pressure and high temperatures 64 [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: 308 Key Technologies for Reusable Space Systems[END_REF]. But only few are dedicated to both high temperature and high pressure conditions in case 65 of reactive fluid. Numerous equations (derived from Brinkman's equation) which relate the 66 pressure drop (ΔP=P in -P out ) through the porous material to the through-flow velocity have 67 been published [START_REF] Gascoin | Comparaison of two 316 permeation test benches and two determination methods for Darcy's and Forchheimer's 317 permeabilities[END_REF][START_REF] Romagnosi | Pyrolysis 322 in Porous Media: Part 1. Numerical model and parametric study[END_REF]. They are based on coefficients, whose physical meaning is not evident 68 [START_REF] Gascoin | Comparaison of two 316 permeation test benches and two determination methods for Darcy's and Forchheimer's 317 permeabilities[END_REF]. One of the complexities of such configuration is due to the fact that along the chemical 69 reactor (cooling channel of the hot vehicle), the fluid is supercritical [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. Multi-species flow 70 is found due to fuel degradation during which heavy compounds (coke particles) are formed 71 and produce solid particles that can block the pore within the porous medium where they are 72 flowing [START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF][START_REF] Gascoin | Charaterisation of coking activity 373 during supercritical hydrocarbon pyrolysis[END_REF]. Due to these large and open difficulties, CFD calculations may not be 73 relevant and experimental tests are costly and they cannot cover the entire range of test 74 conditions/material variety, fluid nature. 75

As a consequence in this paper, we have used an approach based on the artificial neural 76 networks (ANN) for simulating the transient changes of the pressure drop of n-dodecane 77 (reactive fluid) passing through the porous material (Stainless Steel) by taking into account 78 both high temperature and high pressure conditions. This work intends to indirectly predict 79 the chemical effect of fuel pyrolysis, of coking and of clogging on the permeation process 80 which directly controls the cooling efficiency. The description of the same numerical 81 approach applied to another set of gas mixture (inert) and flow conditions can be found in a 82 previous study [START_REF] Tabach | Neural-Network Metamodelling for the Prediction 325 of the Pressure Drop of a Fluid Passing Through Metallic Porous Medium[END_REF]. Over the last two decades, ANN have been successfully used by many 83 researchers for a wide range of engineering applications [START_REF] Tabach | Use of artificial neural network 376 simulation metamodelling to assess groundwater contamination in a road project[END_REF][START_REF] Arumugam | Ultimate 379 Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data[END_REF][START_REF] Nazari | Computer-aided Prediction of the ZrO 2 Nanoparticles Effects on 382 Tensile Strength and Percentage of Water Absorption of Concrete Specimens[END_REF]. ANN is based on the 5/19 substitution of the complex simulation model by an approximation of the input-output 85 relationship. ANN has the advantage over regression that the form of the model needs not to 86 be pre-determined [START_REF] Kleijnen | Kriging metamodeling in simulation: A review[END_REF]. In addition, ANN can theoretically approximate any function to any 87 level of accuracy, which is very interesting when the governing physical mechanisms are 88 non-linear like in high velocity fluid flow in porous materials. The database was built with 89 four input parameters (experiment time, inlet fuel mass flow rate, inlet operating pressure and 90 the uniform temperature) and with the outlet fuel pressure as the output parameter. The 91 results obtained experimentally are used to construct, to optimize and to validate the model. 92

This artificial neural network has been trained and tested on this database using the error 93 backpropagation algorithm and cross validation. The performance of the ANN model is 94 compared with a multilinear regression approximation method. 95

Material 96 2.1 Experimental permeation bench 97

The COMPARER pyrolysis test bench (Fig. [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: 308 Key Technologies for Reusable Space Systems[END_REF]) is used to pressurize and to heat the fuel 98 under flow conditions [START_REF] Gascoin | Comparaison of two 316 permeation test benches and two determination methods for Darcy's and Forchheimer's 317 permeabilities[END_REF]. Its main characteristics are the following: 99 Maximum operating conditions: 1800K, 8MPa, 0.0006 kg.s -1 for liquid fuel and 100 0.006 kg.s -1 for gas. 101 Sensors: 5 pressure transducers, 5 mass flow rates, over 10 K-type and R-type 102 thermocouples with data acquisition system (16 bits, 48 channels, 0.1 Hz). 103

A permeation test cell contains the porous sample (Fig. 1). This cell is inserted inside the 104 furnace of the COMPARER bench and it is connected to the fluid supply system and to the 105 suitable sensors. The permeable material bounds the cell in two high and low pressure 106 chambers (upstream and downstream to the porous material respectively). An inlet pipe 107 provides the fuel into the system. This cell is connected to a dynamic sampling system to get 108 6/19 hot pressurized samples at three location points in the cell. Despite its small size (external 109 diameter of 40mm), it enables measuring the temperature, pressure and mass flow rate on 110 each side of the porous sample. 111

In the present work, an isotropic stainless steel material is preferred to composite one to 112 avoid considering complex microstructure (fibres, layers). It is characterized by a porosity 113 around 30 %, a grain diameter of 14.1 μm and a pore diameter of 4.1 μm. Further geometrical 114 information can be found in Gascoin et al. [START_REF] Gascoin | Comparaison of two 316 permeation test benches and two determination methods for Darcy's and Forchheimer's 317 permeabilities[END_REF]. 115 The experimental protocol is achieved with constant mass flow rate and given 125 downstream pressure (P out ). The upstream pressure (P in ) increases due to coking and 126 clogging of the porous medium; which makes the pressure drop to increase as a 127 function of the test time. 128 Monitoring of the chemical species: transiently thanks to a FTIR spectrometer for 5 129 gaseous species (methane, ethane, ethylene, propane, propylene) and during the three 130 thermal plateaus by using a dedicated sampling system [START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF] coupled with a 131 GC/TCD/FID/MS apparatus (more than 40 species analysed). 132 7/19

Experimental results 133

We present in this section an experimental test result obtained for T=725K. As shown in 134 Fig. 2, the measured pressure drop (Measured P in -P out ) varies as a function of experimental 135 time (t) and the measured fuel mass flow rate (q in ) when the fuel (dodecane) temperature is 136 kept constant (T=725K). Other obtained experimental results [START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF] showed that the 137 temperature has a major effect on the measured pressure drop. Further details on the 138 experimental results can be found in previous work [START_REF] Fau | Fuel pyrolysis through porous 334 media: Coke formation and coupled effect on permeability[END_REF]. Globally, based on the overall 139 obtained experimental results, we can conclude that there are three parameters (t, q in and T) 140 that have a great influence on the measurements of the pressure drop. ANN models learn the relationship between the input and the output parameters as a 149 result of training with previously recorded data. The database was built using experimental 150 data which are obtained from the developed experimental bench with input parameters: test 151 time (t), operating inlet pressure (P in ), inlet fuel mass flow rate (q in ) and temperature (T) 152 varying in a range of representative values: between 0 and 858s for t; between 3.3MPa and 153 3.8MPa for P in ; between 0.000033 kg/s and 0.0001 kg/s for q in and 725K, 765K and 810K for 154 T. Totally, the database contains an appreciable size of 979 experimental test points.

8/19

The present database was subdivided in three subsets. A first subset (490 experimental 156 tests) is used to train the networks. A second one (245 experimental tests) is used to test the 157 ANN models to determine when to stop the training stage. The third subset (244 experimental 158 tests) is used to validate the performance of the selected model on unseen cases. 159

Each input or output parameter has been normalized relative to its minimum and 160 maximum values observed in the data (according to Eq. ( 1)) to make the training procedure 161 more efficient. 162

min max min norm X X X X X (1) 163
where X is an arbitrary parameter, X norm is the normalized value, and X max and X min are the 164 maximum and minimum values of X. 165

Architecture and learning process of ANN models 166

An artificial neural network model is composed of interconnected group of artificial 167 neurons or nodes. The most frequently utilized network is the multilayer backpropagation 168 neural network (BPNN) which is used in the present study. The BPNN structure consists of 169 three layers, an input layer which receive data; an output layer which sends computed 170 information; and one or more hidden layers to link input and output layer. All the neurons 171 (nodes) in a layer are connected with all the neurons of the previous and the next layer. In 172 general, the number of the nodes in the input and output layer are determined by the nature of 173 the problem. The architecture of a typical 3-layer backpropagation neural network is shown 174 in Fig. 3. 175 Mathematically, a 3-layer BPNN with n, m, and p the number of input, hidden and output 178 neurons respectively, can be formulated as in the following: 179

1 1 m j jk n i i ij j k k W X W b f b f O (2) 180
where X i the input values of the network and O k are the output values; b j , the hidden unit 181 biases; b k , output nodes biases; W ij , the connection weights between the input layer and the 182 hidden layer; W jk , the connection weights between the hidden layer and the output layer; f is a 183 transfer function. The sigmoid transfer function (Eq. ( 3)) was used in the present study. 184 This process (forward-backward) is repeated until predicted outputs and target answers 193 coincide within a given tolerance [START_REF] Duda | Pattern Classification[END_REF]. 194

The commonest convergence criterion is the average squared error (ASE) defined as: 195 The determination of the ANN architecture constitutes one of the major tasks in the use of 209 the ANN. The overall performance of an ANN is dependent on the numbers of hidden layers 210 and hidden nodes. In the usual case of a 3-layer BPNN, the optimum number of hidden nodes 211 can be determined by cross-validation in the same way as the optimum number of training 212 cycles (Fig. 4). 213

In the present article, a neural network relating inputs {X 1 , X 2 , …, X n } to outputs {O 1 , O 2 , 214 …, O p } and containing one hidden layer with m hidden nodes will be noted: 215

{O 1 , O 2 , …, O p } = ANN n n m p {X 1 , X 2 , …, X n } ( 5 

) 216

In our case, the outlet operating pressure (P out ) is sought as a function of t, P in , q in and T. So, 217 it is possible to compute P out by using a BPNN model with one node in the output layer (Eq.

11 /19 In this present study, the choice of the outlet pressure is preferred to limit the impact of 221 experimental uncertainties due to the two pressure transducers (which are generally 222 multiplied if compared to a single transducer). In addition, since the upstream pressure is an 223 inlet parameter, looking at the pressure drop or at the pressure outlet is equivalent when 224 focusing on the behaviour of the ANN model. As can be observed in Fig. 5, the optimal value 225 of ASE was calculated while using 9 nodes in the hidden layer for our model. 226

{P out } = ANN 4-9-1 {t, P in , q in , T} (6) 227 
The ASE values for the training, testing and validation phases for the optimal artificial 228 neural network model (ANN 4-9-1 ) are respectively 0.000114, 0.000101 and 0.000132. 229 through the origin is also plotted and the coefficient of determination R 2 for this line is 237 computed according to Eq. ( 7): 238 system should be designed to furnish this increasing need for upstream pressure if outlet 290 pressure should remain constant. 291

N i i i N i i i Y Y N Y Y N R 1 2 1 2 2

Conclusion 292

In this article, an artificial neural networks tool has been used to simulate the transient 293 pressure drop of n-dodecane under pyrolysis conditions and crossing a metallic porous 294 material (Stainless steel). Based on experimental data, the optimum architecture of artificial 295 neural network was trained and validated, in order to generalise the prediction of the pressure 296 drop under clogging configurations not included in the database for difficult access reasons. 297

The validation showed excellent performance of this ANN model for the prediction of 298 dodecane transfer in the porous material (R²>0.983). An example of application was 299 presented to detect the temperature at which chemistry starts to strongly impact the fluid flow 300 within the porous medium. It was found that a turning point around 760 K-770K has to be 301 expected in terms of clogging when using n-dodecane at 3.6 MPa in stainless steel medium. 302

This study is a contribution to the growing evidence of the benefits of ANN models in 303 Aeronautical engineering. This important result may be applied to automate pressure drop 304 estimations, which are used in space flight applications, without prior knowledge of material 305 parameters and particularly for materials with transient changing properties. 306 19/19 

Highlights :

We modeled the transient pressure drop of n-dodecane under pyrolysis conditions.

We found a good agreement between the numerical results and the experimental data.

We found that the developed model is able to reproduce physical variations.

The model has been applied successfully on a series of examples.

*Highlights (for review)

  Having a tool to predict these variations is of practical and theoretical interest for a better 18 management of the complex chemical and physical phenomena. This paper presents a model 19 based on artificial neural networks (ANN) for estimating the transient changes of the pressure 20 drop of a reactive fluid (n-dodecane) under pyrolysis conditions passing through porous 21 *Manuscript Click here to view linked References 2/19 metal material. The ANN is developed using experimental data obtained from an 22 experimental bench, which assures the monitoring of fluid mass flow rate, pressure and 23 temperature in stationary and transient conditions. For each case, the fluid pressure which 24 crosses the metallic porous material is measured as a function of test time, inlet operating 25 pressure, temperature and fuel mass flow rate. The optimal ANN architecture with error 26 backpropagation (BPNN) was determined by the cross validation method. The ANN 27 architecture having 9 hidden neurons gives the best choice. Comparing the simulated values 28 by ANN with the experimental data indicates that the ANN model give correct results. The 29 performance of the ANN model is compared with the multiple linear regression model. This 30 work is expected to be used for later prediction of pressure drop under a wide range of 31 clogging conditions. 32 KEYWORDS: Pyrolysis; Artificial neural networks; Modelling; Permeation; Coke;
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  x is the excitation. 186 The learning process of BPNN is based on a series of connection weight adjustments in 187 order to minimize the gap (global error) between the outputs of the BPNN and the target 188 values [31]. Initially, all biases and connection weights are initialized to random values in the 189 range of [-1, +1]. Inputs are first propagated forward through each layer of the ANN. Errors 190 between outputs and target values are then propagated backwards and the connection weights 191 are modified according to a specific learning algorithm (delta rule) to reduce the overall error. 192
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  is the mean of the N target values. R 2 coefficients close to unity indicate a high degree 241 12/19 of linearity between predicted and target values. Associated with a best fit line slope close to 242 unity, it indicates a high model prediction accuracy. 243 A basis of comparison for BPNN performance is usually sought in multiple linear 244 regression [33], a more ubiquitous prediction tool in fluid flow through porous material 245 research. Least square parameter fitting for a linear model expressing P out as a function of t, 246 P in , q in , and T (model 2) is performed on the same training database subset as for BPNN 247 model. This model is tested to predict the never-seen data from the BPNN validation database 248 subset. The lowest R 2 value is obtained for multiple linear regression model. It is also noted 249 that the trend line deviates somewhat from the 1:1 line in the case of model 2. The 250 coefficients of determination (R 2 ) for model 1 and model 2 are given in Table 1. The model 2 251seems to be less efficient than model 1 for predicting the variations of P out . This result is 252 expected: the physical phenomena captured in the database are complex and non-linear. In 253 ANN non-linearity is accounted for by the use of transfer functions (Eq. (3)), while 254 complexity can be controlled by varying the number of hidden nodes. In the present case, the 255 artificial neural networks provide good and realistic predictions. It should be noticed that fixing arbitrarily the inlet pressure imposes the 264 outlet pressure to decrease, which simulate the pressure drop increase. The evolution of the 265 predicted outlet pressure (P out ) using BPNN as a function of time and temperature inside the

	1 where N is the number of data, Y i is the target value, i 1 1 1 Y is the value predicted by the model (7) and i An application of ANN is now proposed in the following part. Considering a constant inlet pressure at 3.6 MPa, it is now possible to investigate the chemical effect within the Y 261 239 240 262 263 range of 725K-810K. 14/19
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	R 2	Neural network (model 1)	Multiple linear regression (model 2)
	Training phase	0.986	0.897
	Testing phase	0.986	0.878
	Validation phase	0.983	0.891
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[START_REF] Romagnosi | Pyrolysis 322 in Porous Media: Part 1. Numerical model and parametric study[END_REF]). It could be noticed that usually the pressure drop through the porous medium is

investigated as a function of the through-flow rate.

Multiphas. Flow, 2011, 37,24-35.