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Abstract 

Within the framework of fuel cells, porous materials are used for filtration purpose. 
Determining physical properties like porosity and permeability are of utmost importance to 
predict and to manage filtration efficiency of the materials. The permeability of materials is 
often determined experimentally in laboratory with disc samples (outlet of the flow is 
achieved through the porous material) that are not exactly similar to the tubes which are used 
in realistic operating conditions (a main flow is found additionally to the one through the 
material). Thus, the effect of a second outlet on the Darcian’s permeability characterization 
bench should be studied. In the present paper, we present a new test bench to determine 
experimentally the Darcy’s and Forchheimer’s permeabilities for a porous media by taking 
into account two outlets. Operating parameters (temperature, pressure and mass flow rate) are 
measured for three different configurations: i) secondary outlet (S.O) is 0% open, ii) S.O is 
50% open and iii) S.O is 100% open. Then Darcy’s and Forchheimer’s permeability for all 
these three cases are compared and discussed in details. It has been found that the secondary 
outlet opening does not affect the Darcian’s permeability but have substantial influence on the 
Forchheimer’s one through the modifications of the range of study (lower mass flow rate 
penetrates the porous medium). 
 
Keywords: Filtration; Darcy’s and Forchheimer’s permeabilities; Porous stainless steel; 
Fuel cell application. 

1. Introduction 

There are three main technologies for hydrogen separation which include: i) pressure 
swing adsorption (PSA), ii) cryogenic distillation and iii) selective permeation through a 
membrane. For fuel cell applications, H2 separation by selective permeation through 
membrane has several advantages compared to the first two methods. Indeed, several 
literature works mention that this filtration technique is a simple operation which is 
characterised by a low cost and a less energy consumption as well as a high purity of 
hydrogen (Spillman et al. 1989, Lu et al. 2004, Phair et al. 2006, Chen et al. 2009 and Chi et 
al. 2010). This filtration process related to fuel cell can be found in other fields of application 
such as geology (Luquot et al. 2009, Abdulgader et al 2013), petrochemical (Tanaka et al. 
2005, Shamsabadi et al. 2013), combustion (Franz et al. 2013, Burrerio et al. 2014) or 
aeronautics. For example, there have been large numbers of literature regarding transpiration 
cooling in aeronautics (Gascoin 2011, Wang et al 2011, Zhao et al. 2014). Performance 
criteria required for the membrane are high flux rate, stability at variable temperature, 
pressure and high selectivity even in the presence of other gases and contaminants (e.g. CO, 
CO2, CH4, H2O and H2S etc.). Temperature and pressure are the external parameters which 
can be controlled outside the porous media (i.e. membrane). But the selectivity depends upon 
the permeability of the material or of the porous medium (Thomasa et al. 2009 Baker et al. 
2010). 
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It has been recognized in the past decade that the separation factor for gas pairs varies 
inversely with the permeability of the more permeable gas of the specific pair. Indeed, an 
analysis of the literature data for binary gas mixtures from the list of He, H2, O2, N2, CH4, and 
CO2 reveals the above relationship for these mixtures (Robeson 1990, Chenar et al. 2006). 
Hence the determination of the permeability and studying the factor affecting it is of prime 
importance. 

 
In previous works, a high pressure test bench with one inlet and one outlet configuration 

has been developed (Gascoin 2011, Fau et al. 2012). It has been tested on different type of 
metal and composite samples to determine the Darcian’s and Forchheimer’s permeabilities for 
inert and reactive fluids at high temperature and pressure. Similar experimental setup has been 
used by several authors to determine the permeability of disk and bar type specimens (Ilias et 
al. 1997, Gao et al. 2005, Papaioannou et al. 2015). Ilias et al. (1997) studied the permeability 
and selectivity of hydrogen through a palladium membrane at high temperature and low 
pressure. Gao et al. (2005) investigated the hydrogen permeability on porous stainless steel 
(PSS) disks coated with a mesoporous palladium impregnated zirconia intermediate layer. 
Papaioannou et al. (2015) evaluated carbon dioxide permeability for sintered supports with 
molten carbonate dual-phase membranes and its performances were found to be stable for 
more than 200 h of operation. 
 

Despite of so many studies on the porous media, still we face a lack in evaluating the 
correct flow through porous media. Permeability of the material is mostly determined through 
experiments using disc sample in laboratory. The outflow through the porous media is 
measured to determine the permeability of the material. But it is not exactly similar to a 
realistic condition when fluid flows through a tube. In such case, a perpendicular flow to the 
main one occurs through the porous medium (cf. Figure 1). Thus, it makes necessary to study 
the effect of second outlet on the determination of Darcian’s and Forchheimer’s 
permeabilities (despite the fact that permeability is often considered as a characteristic of the 
material itself Allaby et al 1999). 
 

 

Figure 1: Overview of realistic flows within channel surrounded by porous medium. 

The aim of this paper is to improve previously used experimental setup in order to 
determine accurate Darcian’s and Forchheimer’s flow behaviour inside a porous media in a 
realistic configuration. The effect of a second outlet on the Darcian’s and Forchheimer’s 
permeabilities is investigated. The next section is devoted to the description of the adapted 
test bench where different opening of second outlet is studied. The Darcian’s and 
Forchheimer’s permeabilities of porous stainless steel materials of class 3 (SS3) and class 20 



(SS20) are measured and the obtained results are presented and discussed in the third section 
of this paper. 

 
 

 
2. Materials & Methods  

2.1. Permeation experimental and test methodology 

The bench used here is composed of a cylindrical permeation cell connected to gas 
injection system (cf Figure 2). Porous material samples are placed in this permeation cell 
which is composed of two main parts (High Pressure Chamber: HPC for the inlet and Low 
Pressure Chamber: LPC for the outlet) in order to maintain the porous media in the fluid flow 
and to avoid leakage. Despite its small size (external diameter of 40 mm), one inlet and two 
outlet (outlet-1 and outlet-2) enable to measure the pressure and mass flow rate on each side 
of the porous sample. The outlet-2 is considered as a Primary Outlet (P.O) whereas the outlet-
1 is considered as secondary outlet (S.O). The injection system is capable of handling liquid 
as well as gaseous fuels with a high pressure pump (80 bars, 0.5 g.s-1). Nitrogen gas is used as 
fluid. Four sensors to monitor transient variations of mass flow rate, pressure and temperature 
are connected to a data acquisition system (about 1 Hz, 16 bits, 48 channels). The mass 
flowmeter with a range of 0 to 3 g/s is placed at outlet-2 in order to measure mass flow rate of 
fluid through porous media. Pressures are measured at inlet and outlet-2 to get the pressure in 
HP chamber (Pinlet) and pressure difference across the sample. Pressure range of a sensor at 
inlet side is 0 to 60 bar whereas ∆P can measured in a range of 0 to 635 mbar. Flow from the 
secondary outlet is controlled by manually operated valve where the three opening percentage 
values (0%, 50% and 100%) are selected. Figures 2 and 3 illustrate respectively a photograph 
and a schematic overview of the developed permeation experimental setup. 
 

 

Figure 2: Photograph of the permeation test bench. 

Permeability measurements are performed on two different classes of stainless steel that is 
SS3 and SS20 (cf. Figure 4). Specifications of both porous materials used are given in Table 1 
(Gascoin 2011). Except one consideration that the outlet of permeation cell should be at 
atmospheric pressure during the experiments, the norm ISO 4022 for the determination of 



fluid permeability is followed. Indeed, due to the effect of secondary outlet it makes necessary 
to place the mass flowmeter at primary outlet (result in back pressure) so that the flow 
through porous media can be accurately measured and permeabilities of the porous media can 
be determined. All tests are performed at room temperature and repeated at least three times. 

 

 

Figure 3: Schematic overview of the permeation experimental setup. 

 

 

Figure 4: Stainless steel porous medium: Fe (62 wt.%), Cr (18 wt.%), Ni (11 wt.%) C (7 
wt.%), O (1 wt.%) and Si (1 wt.%). 

 

Type SS3 SS20 

Diameter 30mm 30mm 

Filtration Diameter 16mm 16mm 

Thickness 3mm 3mm 



Overall Porosity 30% 36% 

Composition 
Fe (62 wt.%), Cr (18 wt.%), Ni (11 wt.%) C (7 wt.%), O (1 wt.%) 

and Si (1 wt.%) 

Table 1. Specifications of the two porous stainless steel materials.  

 

2.2. Determination procedure of Darcian’s and Forchheimer’s permeabilities 

Accurate description of fluid flow behavior in the porous media is essential and is 
described in several ways in various literature studies. Usually, Darcy’s law depicts fluid flow 
behavior in porous media. According to Darcy’s law, the pressure gradient is linearly 
proportional to the fluid velocity in the porous material. This linear relationship is valid only 
for very small flow velocities or low pressure gradients. As the Reynolds number (Re) 
approaches to a critical value (i.e. turbulent regime), the relationship becomes nonlinear. The 
one-dimensional Darcy equation can be written as: 

dP V

dx K


                 (1) 

where P is the pressure, x is the direction of fluid flow, µ is the fluid viscosity, V is the 
superficial velocity, and K is the permeability. The transient behavior in porous media is 
described by Navier–Stokes equations whereas Brinkman’s equation below is used to describe 
the macroscopic fluid flow in large range flow regimes: 
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where inlet outletP P P     is the pressure drop through the porous medium, L is the external 

mean sample thickness, ρ is the inlet density (with respect to inlet pressure), KD and KF are the 
Darcy’s and Forchheimer's terms. The right term of Eq. (2) is composed of two parts, one 
related to the Darcy’s law for low velocity regime filtration (Darcian flows) and the quadratic 
one is related to the Stokes’s law (non-Darcian flows) which takes into account the inertial 
effects related with flow resistance. The Stokes equation is also called as Forchheimer’s 
equation (Tully et al., 2005 and Murthy and Singh, 2000). Numerous other formulations of 
the Brinkman’s equation can be found (Kim and Park, 1999, Choi et al., 1998, Martin and 
Boyd, 2008 and Valdes-Parada et al., 2007). Large range of flow regimes through porous 
media can also be described by using power laws (Rathish and Shalini, 2003) and cubic laws 
(Aulisa et al., 2009, Nguyen et al., 2007 and Pazos et al., 2009). 
 

In order to compute Darcian’s and Forchheimer’s permeabilities from the measured 
parameters on the experimental bench, a modified form of the above equation is derived: 
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Thus, the left term 
p

L V


 is plotted as a function of 
V


. The origin of the plot is linked to the 

Darcian’s term while the angle of climb or slope of the plot is related to the Forchheimer’s 
term. Due to the implication of density and dynamic viscosity in the pressure drop formula of 
Eq. (3), their estimation is of great importance. The density is computed on the basis of 
measured pressure and temperature thanks to the modified perfect gases law with the 
compressibility factor Z which depends notably on the critical coordinates and on the Pitzer 
acentric factor (Gascoin 2011). The dynamic viscosity is computed by the method proposed 
by Chung (Poling et al. 2001). 
3. Results and discussion 

As mentioned in previous sections, the Darcian’s and Forchheimer’s permeabilities of two 
kind of stainless steel porous materials are determined and the influence of different openings 
of secondary outlet is investigated. Before proceeding, some preliminary experiments are 
performed on SS3 in order to verify that the placement of mass flowmeter at primary outlet 
instead of inlet, as per ISO 4022 norm, does not affect the permeabilities estimation. Results 
of Darcian’s permeability in the two cases (i.e. mass flowmeter at primary outlet and mass 
flowmeter at inlet) show clearly that the relative gap do not exceed 8% whereas those of 
Forchheimer’s permeability is inferior to 13% (these values are in the range of previously 
estimated accuracy, Gascoin 2011). These relative gap values confirm that the placement of 
mass flowmeter at primary outlet do not affect the determination of permeabilities. When 
Brinkman’s equation is considered (turbulent flow), the Darcy’s term for carbon cooled 
porous structure is found to range from 1310  to 12 210 m  and the Forchheimer’s coefficient 

ranges from 810  to 710 m  (Langener et al. 2008). 

The Darcian’s and Forchheimer’s permeabilities are determined with the plots of the term 
p

L V


a function of 
V


 for the both studied stainless steel porous media which are illustrated 

in Figure 5 for different opening of secondary outlet (0%, 50% and 100%). 

 

Figure 5. Determination of Darcian’s and Forchheimer’s permeabilities for different opening 
of secondary outlet. Left: SS3 and Right: SS20. 



 
Using the results plotted in above Figure 5, the intercept of the different lines on Y axis will 
give the KD coefficients and their slopes lead to KF coefficients. The obtained values of 
Darcian’s and Forchheimer’s permeabilities are given in Table 2 for different openings of 
secondary outlet. It can be clearly seen from this Table that in case of both the porous 
materials (SS3 and SS20) the determination of KD is not affected by the opening of the 
secondary outlet. For SS3 porous material, a discrepancies of 1.21% and 0.1% are 
respectively found for 50% and 100% open cases. Similarly in case of SS20 porous media, 
relative gaps of 5.4% and 10.8% are respectively obtained for 50% and 100% opening of 
secondary outlet. But when it comes to determination of KF, the opening of secondary outlet 
seems to have an effect. Indeed, relative changes of 11% and 71% are found in case of SS3 
whereas values of 34% and 237% are obtained for SS20 for 50% and 100% open cases 
respectively. KF is varying a lot for the 100% cases, it is because of the fact that the flow 
through the porous media is very low that results in decrease of pressure drop which is 
linearly proportional to square of velocity at higher flow rates (Non Darcian Flow). Since KF 
coefficient is associated to the turbulent flow inside the porous media (Firoozabadi et al. 
1979, Phair et al 2006, Lemos 2012), hence the velocity of fluid in the material is too low and 
the flow is not or less turbulent and it makes its determination less accurate. That’s is why the 
value for the KF is quite far from the “real” one. 
 

Type of 
material 

Permeability 
Term 

Secondary outlet opening percentage 

0% Open 50% Open 100% Open 

SS3 
KD (m

2) 7.38×10-13 7.29×10-13 7.37×10-13 

KF (m) 3.08×10-06 3.43×10-06 5.28×10-06 

SS20 
KD (m

2) 1.11×10-10 1.05×10-10 1.23×10-10 

KF (m) 3.79×10-05 5.11×10-05 1.28×10-04 

Table 2. Darcian’s and Forchheimer’s permeability values at three different secondary outlet 
openings for SS3 and SS20. 

In order to give a deeper explanation to the above statement and study the influence of 
Darcian’s and Forchheimer’s contribution on pressure losses, Figure 6 presents the evolutions 
of these contribution as well as their ratio as functions of pore Reynolds number. The pore 
Reynolds number has been computed for metallic samples by using the relation  

/e pR Vd   where   4 / 1p gd a    is the pore diameter,   is the porosity of material, 

6 /g ga d  is the grain area and gd is grain diameter. Let us notice that the grain diameter of 

the SS3 sample is measured in a previous work (Gascoin 2011) 14.1μmgd   whereas the one 

of the SS20 porous media 55.2 μmgd   is computed from a correlation between class and 

grain diameter deduced from the literature data. It is observed from the set of plotted data that 
in case of SS3 porous media Darcian’s term is always higher than the Forchheimer’s term for 
all the three different opening of secondary outlet (0%, 50% and 100%) showing that the flow 
is always in a laminar regime. There is no influence of secondary outlet opening on Darcian’s 
term and its contribution remains constant for all the three cases but Forchheimer’s 
contribution decreases as the secondary outlet opening increases. The similar trend is 



observed in case of SSS20 except that in case of 0% and 50% opening of secondary outlet 
where the Forchheimer’s contribution overcomes the Darcian’s contribution as the pore 
Reynolds number exceeds a critical value of 

c
6eR  . It is also observed that the decrease in 

Forchheimer’s term for SS3 porous material is less evident compare to the Forchheimer’s 
decrease in case of SS20. 

 

 



 

 
Figure 6. Permeation contributions plotted as a function of the estimated pore Reynolds 

number for class 3 and class 20 for different openings of secondary outlet. 

4. Conclusion 

In fuel cell applications, porous materials is used for the filtration need. Determining 
physical properties like porosity and permeability are of utmost importance to predict and 
manage filtration efficiency of the materials. An experimental test bench was design to 
determine both Darcian’s and Forchheimer’s permeabilities. Nevertheless, it was found later 
that using the experimental values of these permeabilities on complete integrated fuel 
reforming systems led to discrepancies of several orders of magnitude. One of the hypothesis 
that was pose is that the geometrical configuration may impact the results. In other words, 
having one flow inlet and one flow outlet or one inlet and two outlets (as it was discussed in 
this paper) may lead to different apparent permeabilities. Effect of secondary outlet on 
permeability determination has thus been investigated. It was found that there is no much 
change is observed in K

D 
value when the mass flowmeter is placed at outlet-2 instead of the 

inlet. When Darcian’s permeability is determined for SS3 and SS20 with different openings 
for secondary outlet, negligible changes are observed, hence they show that this term is not 
affected by change in flow configuration in case of stainless steel material. But secondary 
outlet opening have significant effect on the determination of KF value for both kinds of 
porous material. Indeed, its criterion of determination is highly governed by turbulent flow 
regime. This flow regime is found in just two cases out of six cases and that is only when the 
pore Reynolds number exceed its critical value. 

 
In future works, Darcian’s and Forchheimer’s permeabilities will be studied in a tube 

configuration using different composites. Mathematical background will be developed in 
order to correlate these permeabilities to the selectivity of the porous materials. After that 
selectivity of several binary mixtures will be investigated on different porous media using an 
adapted experimental setup. 
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