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Common variation in PHACTR1 is associated with susceptibility 
to cervical artery dissection
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Abstract

Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major 

cause of ischemic stroke in young adults although relatively uncommon in the general population 

(incidence of 2.6/100,000 per year)1. Minor cervical traumas, infection, migraine and hypertension 

are putative risk factors1–3, and inverse associations with obesity and hypercholesterolemia are 

described3,4. No confirmed genetic susceptibility factors have been identified using candidate gene 

approaches5. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 

14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds 

ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69–0.82; P = 4.46 × 10−10), with confirmation 

in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10−3; 

combined P = 1.00 × 10−11). The rs9349379[G] allele was previously shown to be associated with 

lower risk of migraine and increased risk of myocardial infarction6–9. Deciphering the 

mechanisms underlying this pleiotropy might provide important information on the biological 

underpinnings of these disabling conditions.

We organized an international initiative with the aim of collecting clinical data and DNA for 

the largest possible number of CeAD cases to identify genetic susceptibility loci. We 

obtained 942 CeAD cases from the Cervical Artery Dissections and Ischemic Stroke Patients 

(CADISP) study (CADISP-1: 170 Finns and 772 non-Finnish Europeans)10. An additional 

451 CeAD cases of European origin were recruited specifically for the CADISP-genetics 

project at European and US centers (CADISP-2). These collections provided a total of 1,393 
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CeAD cases of European ancestry for the GWAS (discovery) phase. All CeAD cases were 

ascertained through departments of neurology specialized in stroke care (Supplementary 

Figs. 1–3 and Supplementary Note; ClinicalTrials.gov identifier NCT00657969)11. DNA 

from 14,416 controls was available (287 Finns and 14,129 non-Finnish Europeans). We 

obtained 659 additional CeAD cases that could not be included in the GWAS because of the 

timing of their inclusion or the availability of only limited amounts of DNA. These cases 

were used along with 2,648 controls for follow-up of a small number of GWAS results. 

Finally, to examine the disease specificity of the genetic associations, we recruited 583 

individuals with an ischemic stroke attributable to other causes (non-CeAD ischemic stroke: 

162 Finns and 421 non-Finnish Europeans) who had similar age, sex and geographical 

origin characteristics as the CeAD cases. The clinical characteristics of the research subjects 

are shown in Table 1.

DNA samples were genotyped on an Illumina Human610-Quad or Human660W-Quad 

BeadChip. We performed imputation to the non-monomorphic SNPs described in the 

HapMap 2 and 1000 Genomes Project (August 2010 release) CEU (European-ancestry) 

panels. CADISP-1 and CADISP-2 data were analyzed separately because genotyping was 

carried out on different platforms (Supplementary Table 1). Moreover, because Finnish 

participants had a distinct ancestral origin (Supplementary Fig. 4), CADISP-1 was divided 

into CADISP-1 non-Finnish and CADISP-1 Finnish studies. We performed a fixed-effects 

inverse variance–weighted meta-analysis after applying a genomic control correction to each 

of the three GWAS results (CADISP-1 non-Finnish, CADISP-1 Finnish and CADISP-2; 

Supplementary Note). The quantile-quantile plot for the CeAD GWAS is shown in 

Supplementary Figure 5. We observed no overall inflation of P values or evidence for 

significant population stratification (genomic inflation factor λ = 1.032).

A Manhattan plot of the meta-analysis association results for genotyped SNPs is shown in 

Supplementary Figure 6 (and in Supplementary Fig. 7 by substudy). The evidence of 

association with CeAD reached genome-wide significance for two SNPs at two loci. These 

were rs9349379[G] in intron 2 of PHACTR1 on chromosome 6p24.1-p23 (OR = 0.75, 95% 

CI = 0.69–0.82; P = 4.46 × 10−10) and rs11172113[C] in intron 1 of LRP1 on chromosome 

12q13.3 (OR = 0.78, 95% CI = 0.71–0.85; P = 4.22 × 10−8). Overall, we found 77 SNPs (at 

51 loci) with association P < 1 × 10−4 (Supplementary Table 2) and 6 SNPs (at 5 loci) with 

association P < 1 × 10−5 (Table 2).

We restricted further analyses to loci with association P < 1 × 10−5. Two of these SNPs 

showed nominally significant heterogeneity in effect according to dissection site (P = 6.49 × 

10−3 for rs1466535 (LRP1) and P = 0.038 for rs6820391 (LNX1)), with stronger 

associations for carotid than vertebral dissection (Table 3). None of these markers were 

associated with non-CeAD ischemic stroke (Supplementary Table 3).

We also identified two loci that were not included in the GWAS genotyping panel but 

reached genome-wide significance when imputed: rs2163474 in CCDC102B on 

chromosome 18q22.1 (OR = 1.78, 95% CI = 1.50–2.11; P = 3.86 × 10−11) and rs9915775 on 

chromosome 17q21.1 (OR = 3.39, 95% CI = 2.21–5.19; P = 1.97 × 10−8). Neither showed 

significant heterogeneity in effect by dissection site (P = 0.72 and 0.24, respectively), nor 
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were they associated with non-CeAD ischemic stroke (Supplementary Table 3). We removed 

rs9915775 from further consideration because of its low estimated minor allele frequency 

(MAF = 0.01) and relatively poor imputation quality (R2 = 0.59).

We examined 6 SNP markers at the 5 most significantly associated loci from the genotyped 

panel (P < 1 × 10−5 in the GWAS) in the 659 CeAD case and 2,648 control samples 

available for follow-up (Supplementary Table 4). In addition, we selected two SNPs from the 

imputed locus at 18q22.1 for genotyping in follow-up samples (Supplementary Table 5). We 

also genotyped two proxies for two of the most significantly associated SNPs from the 

GWAS meta-analysis (rs12215208, R2 = 0.39 with rs9349379; rs6761601, R2 = 0.67 with 

rs6741522).

First, we calculated association statistics for the follow-up samples, using a threshold of P = 

5.00 × 10−3 to assign significance (Bonferroni correction for ten SNPs; a conservative 

threshold because of the existence of positive linkage disequilibrium (LD) between some 

markers); irrespective of significance, we calculated combined association test statistics 

using meta-analysis and evaluated evidence of heterogeneity between the GWAS and follow-

up data (Table 3 and Supplementary Table 5). Second, we applied a Bayesian approach to 

evaluate the significance of the associations using Wakefield’s approximate Bayes factor 

(Online Methods)12. Asymptotic Bayes factor (ABF) and Bayesian false discovery 

probability (BFDP) values are provided in Supplementary Tables 6 and 7.

rs9349379 (in PHACTR1), which provided the strongest evidence of association in the 

GWAS data, showed significant association with CeAD in the follow-up sample using the 

Bonferroni-corrected P-value threshold described above (P = 5.00 × 10−3), and the result 

from the meta-analysis of the discovery and follow-up studies maintained the finding of 

genome-wide significance (OR = 0.77, 95% CI = 0.72–0.83; P = 1.00 × 10−11) (Fig. 1 and 

Supplementary Fig. 8). Application of the Wakefield Bayesian approach yielded an ABF of 

1.70 × 10−10. Another SNP in PHACTR1, rs12215208, selected as a proxy (P = 2.52 × 10−5 

in the GWAS), exhibited a nominally significant association in the follow-up samples (P = 

0.015), but the combined GWAS and follow-up data did not show genome-wide significant 

association (Supplementary Table 5). In contrast, we found no evidence of association in 

follow-up samples at rs11172113 in LRP1, the second genotyped marker that had genome-

wide significant association in the GWAS (Supplementary Fig. 8).

Of the other markers that we examined, one met the criteria for significance in the follow-up 

samples: rs6820391 in LNX1 on chromosome 4q12 gave P = 9.28 × 10−4 in the follow-up 

samples and reached genome-wide significance in the combined meta-analysis (OR = 1.24, 

95% CI = 1.15–1.34; P = 2.36 × 10−8) (Supplementary Fig. 8). However, as the Wakefield 

Bayesian approach yielded an ABF of 3.25 × 10−6, we consider this association to be only 

suggestive, requiring further studies for confirmation. Data for the imputed 18q22.1 locus 

provided no evidence in favor of association in the follow-up collection (P > 0.15; 

Supplementary Table 5).

In sensitivity analyses, stratifying on sex, migraine status and recent cervical trauma status 

did not modify the genetic associations with CeAD for the top loci (Supplementary Tables 
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8–10). We observed a nominally significant association of the rs9349379 (PHACTR1) risk 

allele for CeAD with a younger age of onset (Supplementary Table 11). The effect of 

rs9349379 was more marked in individuals with CeAD without ischemia, whereas the effect 

of rs6820391 (LNX1) was more marked in individuals with CeAD with ischemia, although 

the confidence intervals largely overlapped and P values were similar (Supplementary Table 

12). Secondary analyses of association performed separately for carotid and vertebral artery 

dissections did not yield any genome-wide significant association (Supplementary Table 13).

We did not find any association with CeAD for (i) SNPs reported to be associated with 

CeAD in candidate gene association studies13–15; (ii) SNPs within a 100-kb window from 

the start and end of COL3A1, the gene harboring causal mutations for vascular Ehlers-

Danlos syndrome, a rare etiology of CeAD16; and (iii) published genome-wide susceptibility 

SNPs for intracranial aneurysms17–19 and for thoracic aortic aneurysms and dissection20 

(Supplementary Tables 14–17).

Our most significant association with CeAD was for rs9349379 (PHACTR1), which has 

been associated with myocardial infarction and coronary calcifications in various ancestry 

groups6,7,21–26, with effects in the opposite direction of that in CeAD. Two other 

susceptibility loci for myocardial infarction showed significant associations with CeAD in 

our data set with effects in the opposite direction of those for CeAD (rs2023938 (HDAC9)7 

and rs9982601 (SLC5A3, MRPS6 and KCNE2)6), and one susceptibility locus for 

myocardial infarction at 9p21 was associated with CeAD with the same direction of effect 

(rs3217992 (CDKN2B-AS1)7) (Supplementary Table 18). No significant association was 

found between rs9349379 and non-CeAD ischemic stroke in our data set, although such an 

association was recently described in a larger sample for the ischemic stroke subtype 

secondary to large artery atherosclerosis (LAA-IS), where the effect was in the opposite 

direction to the one we observed for CeAD27. Another variant predisposing to LAA-IS 

(rs11984041 (HDAC9)28,29; R2 = 1 with rs2023938) also displayed an inverse association 

with CeAD (Supplementary Table 19). Opposite effects of the same genetic variant on 

different diseases have been described elsewhere30 and suggest either that the same region 

harbors different causal variants or that the same causal variant has biological effects with 

opposite implications for each disease. The vascular risk factor profile3,4, young age of 

occurrence1 and heterogeneous echostructure of carotid arteries in individuals with CeAD31 

all suggest that atherosclerosis is not a predisposing condition for CeAD, in contrast with 

aortic dissection32. With aging and arteriosclerosis, the increased synthesis and reduced 

degradation of extracellular matrix components, as well as increasing collagen and elastin 

cross-links, could be hypothesized to make the arterial walls of cervical arteries more 

resistant to tears33,34, as could arterial wall calcifications, thus rendering the artery more stiff 

and resistant to the shear forces of lateral rotation and hyperextension that contribute to 

CeAD35.

Migraine is more common in individuals with CeAD than in the community1,2, and vascular 

mechanisms are thought to have a key role in the pathophysiology of this disease36. 

Recently, rs9349379 (PHACTR1) and rs11172113 (LRP1) were identified as migraine 

susceptibility SNPs8,9,37. Moreover, one additional migraine risk variant (rs13208321 in 

FHL5)9 was associated with CeAD at P = 6.80 × 10−4. All these SNPs showed effects in the 
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same direction as those for CeAD (Supplementary Table 20). Interestingly, associations with 

these shared variants were most significant for migraine without aura9, the migraine subtype 

most commonly associated with CeAD38.

PHACTR1 is in a highly conserved genomic region, suggesting that it has a crucial 

involvement in biological processes39, but its function is poorly understood. Experimental 

studies identified a pivotal role for the PHACTR1 protein in vascular tube formation and 

actin polymerization, suggesting that it possibly has a role in angiogenic processes40,41. 

Upregulation of PHACTR1 by transforming growth factor (TGF)-β has been described in 

breast cancer cell lines42, potentially pointing to a connection with the TGF-β signaling 

pathway, which is also implicated in genetic predisposition to migraine9 and has a key role 

in Marfan and Loeys-Dietz syndromes, two inherited connective tissue disorders causing 

aortic dissection43,44. In silico functional annotation obtained from a wide array of published 

and unpublished expression quantitative trait locus (eQTL) data sets (Supplementary Table 

21) provides some support for a functional effect of CeAD-associated SNPs in the 6p24.1-

p23 locus on PHACTR1 expression in whole blood and cerebellum cells (although the SNPs 

in the databases are in relatively weak LD with rs9349379)45,46.

Although the follow-up analysis did not provide additional support for association with 

markers in LRP1, this locus remains of interest because of its association with migraine and 

abdominal aortic aneurysm, with effects in the same direction as in CeAD (Supplementary 

Table 17)47.

CeAD is relatively uncommon (~2.6/100,000 cases per year)48, and the current study is by 

far the largest genetic study of CeAD thus far (2,052 CeAD cases). Nevertheless, we might 

have lacked power to detect and replicate some associations, especially for loci showing 

heterogeneity in effect according to dissection site (Supplementary Table 22). We 

deliberately chose to focus on the discovery of genetic variants with overarching effects on 

CeAD risk, as we were underpowered to identify genetic variants underlying carotid or 

vertebral dissection exclusively. Future studies on larger samples are warranted to explore 

specific genetic susceptibility factors for carotid and vertebral artery dissections and to 

determine whether the 12q13.3 (LRP1), 4q12 (LNX1) and 18q22.1 (CCDC102B) loci are 

associated with CeAD.

In summary, we identified one previously unreported genome-wide significant risk locus for 

CeAD at PHACTR1 and additional highly suggestive loci requiring confirmation in future 

independent studies. PHACTR1 is also a major susceptibility locus for myocardial infarction 

and migraine. Understanding the mechanisms by which this locus appears to influence key 

vascular functions could have major applications for the treatment of these severe and 

disabling conditions.

URLs

CADISP, http://www.cadisp.com/; International Stroke Genetics Consortium, http://

www.strokegenetics.org/.
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METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Study population

CeAD cases—We included 942 CeAD cases in the CADISP study in 2004–2009 

(CADISP-1: 170 Finns and 772 non-Finnish Europeans)10. An additional 451 CeAD cases 

of European origin were recruited in 2008–2010, exclusively for the CADISP-genetics 

project, in some CADISP centers and additional European and US centers (CADISP-2). In 

total, 1,393 CeAD cases of European ancestry were available. All CeAD cases were 

ascertained through departments of neurology specialized in stroke care. Inclusion criteria, 

recruiting centers and participant selection are described in Supplementary Figures 1–3 and 

the Supplementary Note11.

Individuals with non-CeAD ischemic stroke—As most individuals with CeAD 

sustained a cerebral ischemia, we planned to test whether genetic variants associated with 

CeAD were specific for CeAD, possibly through a predisposing vasculopathy, and did not 

confer generalized susceptibility to cerebral ischemia in young adults that could also 

predispose to other subtypes of ischemic stroke. We recruited 583 individuals with an 

ischemic stroke attributable to other causes (non-CeAD ischemic stroke: 162 Finns and 421 

non-Finnish Europeans), frequency matched on the basis of age, sex and geographical origin 

to the CADISP-1 CeAD cases (Supplementary Fig. 3 and Supplementary Note).

Control populations—DNA for 14,416 controls was available. Most controls (n = 

14,203: 74 Finns and 14,129 non-Finnish Europeans) were selected from an anonymized 

control genotype database at the CNG (Centre National de Génotypage) to match cases for 

ancestry, on the basis of the distribution of eigenvectors (Supplementary Fig. 4 and 

Supplementary Note)50. In addition, 213 Finnish controls were recruited (Supplementary 

Note). Although controls were not screened for CeAD, given the low disease incidence in 

the community, a misclassification bias is unlikely.

Genotyping, quality control filters and imputation

DNA samples were genotyped on an Illumina Human610-Quad or Human660W-Quad 

BeadChip (Supplementary Table 1 and Supplementary Note). After quality control 

(Supplementary Note), we used 472,862 autosomal SNPs and 10,029 X-chromosomal SNPs 

for analyses. We performed genotype imputation to the non-monomorphic SNPs described 

in the HapMap 2 and 1000 Genomes Project (August 2010 release) CEU panels 

(Supplementary Note). Only SNPs with an imputation score of R2 > 0.3 and a MAF of 

>0.01 were used for analysis.

Follow-up studies

We sought to replicate our strongest association signals in an independent sample 

comprising 659 CeAD cases, mostly drawn from existing databases of ischemic stroke 
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(recruited through neurology departments specialized in stroke care according to the same 

inclusion criteria as in the discovery GWAS), and 2,648 controls, all of European ancestry 

(Supplementary Table 4). Some of these (85 CeAD cases and 998 controls) had already been 

genotyped elsewhere on a genome-wide chip (Supplementary Table 1 and Supplementary 

Note). In addition, DNA samples from 238 CeAD cases were genotyped across the genome, 

and 1,584 controls were genotyped on a custom chip including the SNPs yielding the most 

significant associations in the GWAS (Supplementary Table 1 and Supplementary Note). 

Finally, DNA samples from 391 additional CeAD cases and 162 controls, recruited in the 

same centers as other individuals included in the discovery or follow-up analyses, were 

genotyped for the top 5 genotyped loci and the top imputed locus (1–2 SNPs per locus) 

using KASPAR technology. Of these 714 follow-up CeAD cases, 55 were excluded because 

of the unavailability of information on the dissection site, leaving us with 659 CeAD cases 

for analysis. To avoid population stratification bias, the association of the top SNPs with 

CeAD was analyzed separately by inclusion region (see Supplementary Table 4 for the 

matching algorithm), and meta-analysis (fixed effects, inverse variance weighted) was 

performed on the results.

Statistics

Genome-wide association analysis comparing CeAD cases to healthy controls
—Analyses were based on an additive genetic model. We used logistic regression to estimate 

OR values with corresponding 95% CIs, adjusting for sex. The CADISP-1 and CADISP-2 

cohorts were analyzed separately because genotyping was carried out on different platforms 

(Supplementary Table 1). Moreover, because Finnish participants had a distinct ancestral 

origin relative to other populations (Supplementary Fig. 4), CADISP-1 was divided into 

CADISP-1 non-Finnish and CADISP-1 Finnish cohorts. Hence, sample sizes (CeAD-cases/

controls) were as follows: 772/8,972 for CADISP-1 non-Finnish, 170/287 for CADISP-1 

Finnish and 451/5,157 for CADISP-2. The first ten principal component scores were used as 

covariates for the CADISP-1 non-Finnish and CADISP-2 cohorts, and the first principal 

component score was used for the CADISP-1 Finnish cohort (Supplementary Note). 

Genomic control was applied to each of the three GWAS results (CADISP-1 non-Finnish, 

CADISP-1 Finnish and CADISP-2). Thereafter, a combined analysis was performed by 

inverse variance–weighted meta-analysis with a fixed-effects model (Supplementary Note). 

P < 5 × 10−8 was considered genome-wide significant.

Follow-up study—Because of the limits on DNA availability, six loci (ten SNPs) were 

chosen for follow-up genotyping in the phase 3 samples uniquely on the basis of statistical 

rankings in the GWAS meta-analysis of phase 1 and 2 samples (CADISP-1 and CADISP-2). 

We examined 6 SNP markers at the 5 most significantly associated loci from the genotyped 

panel (P < 1 × 10−5 in the GWAS) in the 659 CeAD and 2,648 control samples available for 

follow-up. In addition, two SNPs from the imputed locus on chromosome 18q22.1 were 

selected for genotyping in follow-up samples (Supplementary Table 5). We also genotyped 

two proxies for two of the most significantly associated SNPs (P < 1 × 10−5) from the 

GWAS meta-analysis (rs12215208, R2 = 0.39 with rs9349379; rs6761601, R2 = 0.67 with 

rs6741522).
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First, we calculated the association statistics for the follow-up samples, using a threshold of 

P = 5.00 × 10−3 to assign significance (with Bonferroni correction for ten SNPs, which is 

conservative because of positive LD between some markers); irrespective of significance, we 

calculated combined association test statistics using meta-analysis and evaluated evidence of 

heterogeneity between GWAS and follow-up data. Second, we applied a Bayesian approach 

to evaluate the significance of associations using Wakefield’s approximate Bayes factor12. 

ABF and BFDP values are provided in Supplementary Tables 6 and 7.

Bayesian approach—We followed the approach developed by Wakefield12 to consider 

the posterior odds on the null hypothesis (no association of a SNP with CeAD) for 

sequential studies from a Bayesian perspective. In summary, we obtained estimates of the 

log relative risk , standard error  and Wald statistic  for a SNP from the 

logistic regression model (based on an additive genetic model), which was performed as our 

primary analysis to generate frequentist P values (Table 3 and Supplementary Table 5). 

Thereafter, we calculated Wakefield’s ABF as follows:

where W is the variance on the prior for the effect size, R=W/(V1W+V2W+V1V2), V1 and 

V2 are squared standard errors, and z1 and z2 are Wald statistics, each from the discovery 

GWAS (stages 1 and 2 combined) and the follow-up study (stage 3). A smaller ABF value 

corresponds to more evidence of the alternative hypothesis, i.e., the association of a SNP 

with CeAD.

Wakefield proposed three different specifications of priors for the log relative risk. Because 

our aim in this study was to find common susceptibility variants for CeAD, we followed an 

effect-MAF independence prior as , with RRu = 1.5. RRu is an 

upper value above which we believe that relative risks will occur with low probability; q is 

the prior probability of a relative risk above RRu; Φ (.) is the distribution function of a 

standard normal random variable.

Considering PO = π0/(1− π0) to be the prior odds on the null hypothesis, where π0 is the 

prior probability of the null (Pr[H0]), the posterior probability of H0 is given by the BFDP, 

with BFDP = ABF × PO/(1 + ABF × PO).

Specificity analysis—We tested whether the SNPs yielding the most significant 

associations with CeAD were also associated with non-CeAD ischemic stroke. We ran a 

logistic regression adjusted for sex and principal components, as described above, for non-

Finnish Europeans (421 cases and 8,972 controls) and Finns (162 cases and 287 controls), 

followed by a fixed-effects inverse variance–weighted meta-analysis. Statistical significance 

was defined by false discovery rate (FDR)-corrected P < 0.05.
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Sensitivity analyses—For the most significant associations, we stratified on and tested 

for interaction with sex, and we examined whether the most significant SNPs predicted an 

earlier age of onset of CeAD. We then evaluated the stability of the associations according to 

dissection site (carotid or vertebral) and the presence of cerebral ischemia (ischemic stroke 

or transient ischemic attack). Finally, we performed analyses stratified on the presence of 

two CeAD risk factors, migraine and cervical trauma in cases; case-only association 

analyses of the top CeAD SNPs with dissection site, the presence of cerebral ischemia, 

migraine and trauma were used as surrogate tests of heterogeneity or interaction, with P < 

0.05 being considered significant51.

Candidate gene approach—We examined the associations of CeAD with published 

CeAD susceptibility SNPs and with SNPs in COL3A1, the gene harboring causal mutations 

for vascular Ehlers-Danlos syndrome, a rare etiology of CeAD16. We also tested for 

pleiotropic effects of susceptibility SNPs for intracranial aneurysms, thoracic aortic 

aneurysms and dissections, other subtypes of ischemic stroke and migraine (Supplementary 

Note). An FDR-corrected P value of <0.05 was considered to be statistically significant. We 

performed a sign test to evaluate whether associations of CeAD with alleles previously 

associated with migraine and ischemic stroke subtypes involved the same risk alleles more 

often than predicted by chance. A right-tailed P value of 0.05 was considered to be 

statistically significant.

Ethics

The study protocol was approved by local authorities in all participating centers and 

conducted according to national rules concerning ethics committee approval and informed 

consent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional association plot centered on rs9349379 (PHACTR1). Regional plot for associations 

in the region centered on rs9349379, drawn using LocusZoom software49. All SNPs, on the 

basis of 1000 Genomes Project imputed results (dots), are plotted with their GWAS meta-

analysis association P values against their genomic position. The color of the dots represents 

the LD between SNPs. The purple line represents the estimated recombination rates. Genes 

and exons are shown as dark blue arrows and vertical lines, respectively.
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