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DIFFUSIVE PROPAGATION OF ENERGY IN A
NON-ACOUSTIC CHAIN

TOMASZ KOMOROWSKI AND STEFANO OLLA

ABSTRACT. We consider a non acoustic chain of harmonic oscil-
lators with the dynamics perturbed by a random local exchange of
momentum, such that energy and momentum are conserved. The
macroscopic limits of the energy density, momentum and the cur-
vature (or bending) of the chain satisfy a system of evolution equa-
tions. We prove that, in a diffusive space-time scaling, the cur-
vature and momentum evolve following a linear system that corre-
sponds to a damped FEuler-Bernoulli beam equation. The macro-
scopic energy density evolves following a non linear diffusive equa-
tion. In particular the energy transfer is diffusive in this dynamics.
This provides a first rigorous example of a normal diffusion of en-
ergy in a one dimensional dynamics that conserves the momentum.

1. INTRODUCTION

Macroscopic transport in a low dimensional system, in particular
the energy transport, has attracted attention in both the physics and
mathematical physics literature in the latest decades. Anomalous en-
ergy transport has been observed numerically in Fermi-Pasta-Ulam
(FPU) chains, with the diverging thermal conductivity [8]. Generically
this anomalous superdiffusive behavior is attributed to the momentum
conservation properties of the dynamics [7]. Actually one dimensional
FPU-type chains have potential energy depending on the interparticle
distances (i.e. the gradients of the particles displacements), and have
three main locally conserved quantities: volume stretch, momentum
and energy. These conserved (or balanced) quantities have different
macroscopic space-time scalings, corresponding to different type of ini-
tial non-equilibrium behaviour. A mechanical non-equilibrium initial
profile due to the gradients of the tension induces a macroscopic bal-
listic evolution, at the hyperbolic space—time scale, governed by the
Euler equations (cf. [3]). When the system approaches to, or is al-
ready at a mechanical equilibrium, the temperature profile will evolve
at a superdiffusive time scale.

Recent heuristic calculations based on fluctuating hydrodynamics
theory [9], connect the macroscopic space-time scale of the superdif-
fusion of the thermal (energy) mode to the diffusive or superdiffusive
fluctuations of the other conserved quantities. It turns out that this
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2 TOMASZ KOMOROWSKI AND STEFANO OLLA

superdiffusive behavior of the energy is governed by a fractional lapla-
cian heat equation. This picture can be mathematically rigorously
proven in the case of a harmonic chain perturbed by a local random
exchange of momentum, see [0 5]. In particular, it has been shown
in [6], that in the models driven by the tension, there is a separation
of the time evolution scales between the long modes (that evolve on
a hyperbolic time scale) and the thermal short modes that evolve in
a longer superdiffusive scale. In addition, from the explicit form of
the macroscopic evolution appearing in these models, it is clear that
this behavior is strongly dependent on a non-vanishing speed of sound.
More specifically, when the speed of sound is null, there is no macro-
scopic evolution either at the hyperbolic or superdiffusive time scales.
This suggests that the macroscopic evolution of the system should hap-
pen at a yet longer, possibly diffusive, time scale for all modes.

In the present article we investigate the harmonic chain model with
the random exchange of momenta. The interaction potential depends
only on the squares of the curvature (or bending) of the chain

¢, = _Aq;p = qu —Oz—1 — Ga+1, T E Z? (11)

where q, are the positions of the particles. This means that its hamil-
tonian is formally given by

H(Ep) =D ealt,p), (1.2)

xT

where the energy of the oscillator x is defined

k2
5

2
(e p) = 2+ (13)

Here « is a positive parameter that indicates the strength of the springs.
This corresponds to a special choice of attractive nearest neighbor
springs and repulsive next nearest neighbor springs. It turns out that
the respective speed of sound is null, even though the momentum is
conserved by the dynamics. As the energy depends on the curvature
and not on the volume, this system is tensionless, and the correspond-
ing relevant conserved quantity, besides the energy and momentum, is
the curvature and not the volume stretch.

Our first result, see Theorem BTl below. asserts that these three con-
served quantities (curvature, momentum and energy) evolve together
in the diffusive time scale. Curvature and momentum are governed
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macroscopically by the damped Euler-Bernoulli beam equations:
atk(ta y) = _Ayp(t> y)>

owp(t,y) = ad, {k(t’ y) + 3vp(t, y)] ’ (1.4)

where v > 0 is the intensity of the random exchange of momentum.
Defining the mechanical macroscopic energy as

1
emech(tv y) = 5 (pz(tv y) + akz(tu y)) (15)
and its thermal counterpart (or temperature profile) as
eth(ta y) = €(t, y) - emoch(tu y) (16)

the evolution of the latter is given by

(V3 - 1a
2v/3y

see Theorem B2l In particular, the thermal conductivity is finite and
we have a normal diffusion in this system. Notice also that because
of the viscosity term, a gradient of the macroscopic velocity profile
induces a local increase of the temperature.

This result puts in evidence two main differences between the present
and the FPU-type models:

(7) the thermal conductivity is finite, even though the system is
one dimensional and dynamics conserves the momentum. This
suggests that the non-vanishing speed of sound is a necessary
condition for the superdiffusion of the thermal energy,

(71) there is no separation of the time scales between low (mechan-
ical) and high (thermal) energy modes: all the frequencies
evolve macroscopically in the diffusive time scale. Further-
more there is a continuous transfer of energy from low modes
to high modes, resulting in the rise of the temperature, due to
the gradients of the momentum profile.

dem(t,y) = ( + 37) Ayem(t,y) + 37 (O,p(t,y))*, (1.7)

These rigorous results on the harmonic non-acoustic chain lead us
to conjecture that a similar behavior is expected for the deterministic
non-linear hamiltonian dynamics corresponding to an interaction of the
type V(£,), i.e. the energy is a non linear function of the curvature of
the chain.

About our proof of the hydrodynamic limit: this is a non-gradient
dynamics (microscopic energy currents are not of the form of discrete
space gradients of some functions). Therefore, we cannot use known
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techniques for such type of limits based on relative entropy methods
(cf. e.g. [10], [I1]) for two reasons:

(1) lack of control of higher moments of the currents in terms of
the relative entropy,

(77) degeneracy of the noise in the dynamics, as it acts only on the
velocities.

Instead, we develop a method already used in [5], based on Wigner
distributions for the energy of the acoustic chain. Thanks to the en-
ergy conservation property of the dynamics we can easily conclude,
see Section [5.4] that the Wigner distributions form a compact family
of elements in a weak topology of an appropriate Banach space. Our
main result concerning the identification of its limit is contained in
Theorem [5.1] below. The spatial energy density is a marginal of the
Wigner function. We would like to highlight the fact, that in addition
to proving the hydrodynamic limit of the energy functional, we are
also able to identify the distribution of the macroscopic energy in the
frequency mode domain, see formula (5.30). In particular the thermal
energy is uniformly distributed on all modes (which is a form of local
equilibrium), while the macroscopic mechanical energy is concentrated
on the macroscopic low modes, see ([530).

To show Theorem [5.1] we investigate the limit of the Laplace trans-
forms of the Wigner distributions introduced in Section [ The main
results, dealing with the asymptotics of the Laplace-Wigner distribu-
tions, are formulated in Theorems[[.I]-[7.3] Having these results we are
able to finish the identification of the limit of the Wigner distributions,
thus ending the proof of Theorem [E.Il The proofs of the aforemen-
tioned Theorems [Z.I] - [7.3] which are rather technical, are presented in
Sections [§ - [I0, respectively.

2. THE DYNAMICS

2.1. Non acoustic chain of harmonic oscillators. Since in the non-
acoustic chain the potential energy depends only on the bendings, see
(L), in order to describe the configuration of the infinite chain we only
need to specify (£,).cz, and the configurations of our dynamics will be
denoted by ((ps,€:)),cr € (R x R)Z.

In case when no noise is present the dynamics of the chain of oscil-
lators can be written formally as a Hamiltonian system of differential
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equations

e(t) = —A0,, H(p(t), ¥(2)) (2.1)

Pa(t) = A0y, H(p(t) (1), =€
where Af(z) = f(x+1)+ f(z — 1) —2f(z). Let also Vg, := gz41 — a
and V*g, '= go—1 — Ga.

2.1.1. Continuous time noise. We add to the right hand side of (2.1)) a
local stochastic term that conserves both p2_;+p2+p2_; and p,_1+p,+
p.+1. The respective stochastic differential equations can be written as

de,(t) = —Ap,(t) dt, (2.2)

dpa(t) = [adt. () = 265 pu(t)] dt

2N Ve (Ddw,sa(t), €,

2=—1,0,1
with the parameter v > 0 that indicates the strength of the noise in
the system, and (Y,) are vector fields given by

Yo i= (P = Par1)Op, s + (Past = Po1)Fp, + (P21 = P2)0p,r - (2.3)

Here (w,(t))i>0, © € Z are i.i.d. one dimensional, real valued, standard
Brownian motions, over a probability space (€2, F,P). Furthermore,

By = Aﬁg(go), where

—4, =0,
BO = ¢ —1, =41,
0, if otherwise.

As a result we obtain

6, =0,
-2, r==+l1,
P = -1, =42,

0, if otherwise.
We can rewrite the system (2.2))
de,(t) = —Ap,(t) dt, (2.4)

dp.(t) = [aAem(tH%A(ﬁ(%p(t))m dt

+”Yl/2 Z (}/T’E—l-zpm(t))dwm_l_z(t), T € Z

2=—1,0,1
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Remark. The particular choice of the random exchange in the above
dynamics is not important. The result can be extended to any other
random mechanism of moment exchange, as long as total energy and
momentum are conserved. Most simple dynamics would be given by ex-
change of momentum between nearest neighbor atoms at independent
exponential times.

2.2. Stationary Gibbs distributions. Let A = (3, p, 7), with ! >
0. The product measures

dpx == [ [ exp{~8 (ex — ppa — 78) — G(N)} dt, dp,,

2 2
G(N) = %log <27;5) L ;m )

(2.5)

are stationary for the dynamics defined by (Z4]). In this context 7 is
called the load of the chain, while as usual 57! is the temperature and
p is the average momentum.

Notice that, when 7 # 0, the above distribution is spatially transla-
tion invariant, only for the (€., p,) coordinates, but is is not translation
invariant with respect to the position ¢, or the stretch v, = q, — q._1
coordinates.

2.3. Initial data. Concerning the initial data we assume that, given
e > 0, it is distributed according to a probability measure p. on the
configuration of ((£;,9,)),c, and satisfies

sup eZ(eﬁM < 400. (2.6)

e€(0,1]

Here (-),. denotes the average with respect to p.. We denote also by
E. the expectation with respect to the product measure P, = . @ P.

The existence and uniqueness of a solution to (Z2) in /5, with the
aforementioned initial condition can be easily concluded from the stan-
dard Hilbert space theory of stochastic differential equations, see e.g.
Chapter 6 of [2].

We assume furthermore that the mean of the initial configuration
varies on the macroscopic spatial scale:

(€)pe = Klex),  (pa)u. = plex), v el (2.7)

for some functions x,p € C{°(R). Their Fourier transforms & and p
belong to the Schwartz class S(R). As for the fluctuations around the
mean we assume that their energy spectrum is uniformly L™ integrable



NON-ACOUSTIC CHAIN 7

with respect to € > 0 for some r > 1. We have denoted by

f(k:) = Z feexp{—2mikz}, keT. (2.8)

the Fourier trasform of a given sequence f,, v € Z. Here T is the
unit torus, understood as the interval [—1/2,1/2] with the identified
endpoints. Let

e, = E:1c - <Em>uea and ﬁx =P — <pm>,uev r € 2L (29)

The energy spectrum is defined as:
R AT-YENT IANE
e [(BWP) +a(fwP) | ker )

where ]3(/{;) and JE(/f) are the Fourier transforms of (p,) and (£,), respec-
tively. Assumption (2.6]) implies in particular that

Ky = sup e/&(k:)dk < +o0. (2.11)
ec(0,1] Jr

The announced property of the L" integrability of the energy spectrum

means that there exists r > 1 such that:

K, := sup erfgg(k)dk < +00. (2.12)
ec(0,]] Jr
Thanks to the hypothesis ([2.7) we conclude that for any G € C§°(R)
we have

e—0+

i €30 Glen)pal = [ Glpl)ds, (213)

lim €37 Glen) (e, = | Gl

The quantities p(-), () are called the macroscopic velocity and curva-
ture profiles. We assume furthermore that the following limits exist

i €30 Glen)bd) = [ Gmldr, (219

e—0+

lim €37 Glen)(€),. = [ Gl

e—0+

lim ¢ mmmmmzéemmM%

for any G € C°(R). Here j(-), pa(+), k2(+) are some functions belonging
to C3°(R).
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As a consequence, we conclude that the limit
El_lglJreZ G(ex)(es), / Gy (2.15)

also exists for any G € C{°(R). Here e(y) — the macroscopic energy
profile — is given by
1
() = () + amalv)) (210

Remark. An important example of initial distributions that satisfy
the above conditions is provided by local Gibbs measures, i.e. inhomo-
geneous product probability measures of the type

HeXp {_ﬁx (e:c PPz — Tz x) - g()‘x)} dgl‘ dpl" (2.17)

TEZ

Here the vector A, = (B4, pa, 72) is given by A, := A(ex), where A(z) :=
(B(z),p(z), 7(x)) and the functions B71(-), p(-), 7(+) belong to C5°(R).
The deterministic field G(A;), © € Z, called the Gibbs potential is
given by an analogue of the second equality of (2.5]).

In this case j(y) = p(y)7(y), p2(y) = p(y) + B7'(y), and ra(y) =
k(y) + B~ (y). For a proof of this fact see [6].

3. FORMULATION OF THE MAIN RESULTS

Suppose that p(t,y), x(t,y) satisfy the following Cauchy problem

Ot y) = —Ayp(t,y), (3.1)
Ohp(t,y) = alyk(t,y) + 37Ayp(t, ),
p(0,y) =p(y), ~(0,y) =~k(y),
with p(-), k(+) given by (2I3]).
Our first result concerns the evolution of the macroscopic profiles of
the velocity and curvature.

Theorem 3.1. Under the assumptions spelled about in the foregoing
for any G € Cg°(R) and t > 0 we have

tip Y e, (5) = [comena  62)

61_1)1&62(?6:61@%( ) /G k(t,y)dy,

where p(t,y) and k(t,y) is the solution of (B.)).
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The proof of this result is fairly standard and we show it in Section
Il Define the macroscopic profile of the mechanical energy of the chain
by

emech (£, Y) := % (pz(t,y) + am%t,y)) , (3.3)

with €mecn(¥) = €meen(0,7y). Comparing with the energy profile at
t =0, given by (2.I6]), we conclude that the residual energy, called the
initial thermal energy (or temperature) profile, satisfies

eth(y) = 6(y) - 6mech(y) > 0. (34)

Concerning the evolution of the energy profile we have the following
result.

Theorem 3.2. Suppose that conditions Z71), @I2) and ZI3) hold.
Then, for any G € C3°([0,+00) x R) the limit

) 00 t +o0
51—1>%1+€;/0 G(t,ex)E e, (6—2) dt :/0 /RG(t,y)e(t,y)dtdy.

(3.5)
exists. In addition, we have

€(t, y) = eth(tv y) + emech(t7 y)

where eyeen(t,y) s given by (B.3), while the thermal energy (tempera-
ture) e (t,y) is the solution of the following Cauchy problem:

Ohew(t,y) = cOrewm(t, y) + 37(0,p)*(t, ),
eth(07 ?/) = €th (y) (3-6)

The diffusivity coefficient equals

. (V3-1)a
¢ + 3. (3.7)

Remark 3.3. Notice that the gradient of the macroscopic momentum
p(t,y) appearing in ([B.06) causes a local increase of the temperature. It
is also straightforward to understand the appearance of this term in
the aforementioned equation. Consider for simplicity the case a = 0.
The dynamics is constituted then only by the random exchanges of
the momentum. The conserved quantities that evolve macroscopically
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are the momentum p, and the kinetic energy p2/2. The corresponding
macroscopic equations are

Op = 3v0;p
ore = 3’)/856

These can be proven easily since the microscopic dynamics is of gradient
type. It follows that the macroscopic equation for the temperature field,
defined by ey, = e — p?/2, is given by

Drealt.y) = 3y {asethu, u) + (0,21, y>} (3.9)

The interaction « affects the thermal diffusivity, but does not influence
the nonlinearity appearing in the evolution of the temperature profile.

(3.8)

4. SOME BASIC NOTATION

To abbreviate our notation we write
s(k) :=sin(wk) and c¢(k):=cos(nk), keT. (4.1)
Let ¢* be the space of all complex valued sequences (f,).ez, equipped

with the norm ||f||% = Y, |f.]>. Obviously f belongs to L*(T) -
the space of all complex valued functions equipped with the norm

||f||L2(T) = (f f>1/22 where
(f, 92 /f k, f.geL(T).
Given a set A and two functions f,g: A — R, we say that f(z) =~

g(x), v € A if there exists C' > 1 such that

@ <g(x) <Cf(x), VzeA.

We write g(z) < f(z), when only the upper bound on g is satisfied.
Denote by S the set of functions J : R x T — C that are of C* class
and such that for any integers [, m,n we have

sup (1+ yz)"|0§/8]§”J(y, k)| < +o0.
yER, keT

For J € S we let J be its Fourier transform in the first variable, i.e.

j@%%=/€%mﬂ%@@, (n,k) eRxT.
R

For any M > 0 let Ay, be the completion of § in the norm

g = [ a ([ 1t kyar) (12)
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Here By :=[n: |n| < M]. We drop the subsrcipt from the notation if
M = 400. Let A" and A, be the respective topological dual spaces of
A and A,y.

5. WIGNER FUNCTION AND ITS EVOLUTION

5.1. The wave function. The wave function corresponding to the
configuration ((ps, £)), e, is defined as

Vy = ak, +ip,, x € Z. (5.1)
Its Fourier transform is given by
O(k) = Vak (k) +ip(k), keT. (5.2)

The energy and its spectrum (Z.I0) can be written as
1 1 .
e =5l weZ and &)= S(0HR)P), KET (53)

Using the decomposition into the macroscopic profile and the fluctua-
tion part, see (2.9), we can write

Uy = d(ex) + ¥, z €, (5.4)
where
Oy) = Var(y) +iply) and Pl = ak, +ip,
are the wave functions corresponding to the macroscopic profile and

the fluctuation part, respectively.

5.2. Wigner functions. By the Wigner functions corresponding to
the wave function field (¢,),., we understand four tempered distribu-
tions W, 1, Y, 1 that we often write together in the form of a vector

wz = [Wer‘m Y;,+, }/;,—a W€7—]’ (55)

where

(Wea, )= | Wea(n, k)J*(n, k)dndk, (5.6)

RxT

and

(Yoes J) = / V.2 (1, k) J* (7, k) dndk (5.7)
RxT
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for any J € A. Here Wﬁ,i(n, k) and 17;71(7], k) — called the Fourier-
Wigner functions — are given by

Wealn )= 5((4) (k= F) 0 (k4 F))

P 30 (ke oo D), o

Vo (k) ==Y (=0, k), We_(n,k) = W, (n,—k).

For any J € A we can write

€ - eny\ -+ en
: << (© (k; — —) (© (k —) dk.
Wee D < Sl aso [ (9 (k= F) i (k+F))
Using the Cauchy-Schwartz inequality and (ZI1]) we get
SQISZ(HKLHA +[Weulla) < 4K,. (5.9)
€ 1=+
A simple calculation shows that for any function J(y, k) = J(y)
(Wer,J) = GZ ex)pJ " (Fex) (5.10)
and
(Yer,J) —EZ + £ iVA) . T (ex), (5.11)
where

1
[, = 5 (oz{%i — pi) , iz =, € Z.
Using the decomposition of the wave function into its mean, follow-
ing a macroscopic profile ¢(-), and the fluctuation part {@Dg(f), x € L},

see (B.4]), we can correspondingly decompose the vector of the Wigner
functions. Namely

W, = W, + W, (5.12)
where the Fourier-Wigner function corresponding to these wave func-
tions shall be denoted by

2
=
;*<|
~
=

and

We let

k)J*(n, k)dndk,

We,J / k)J*(n, k)dndk,
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where, using the Poisson summation formula, we have defined
= Z tk+x n\ .kt 7
€ 2

mk):;«@@y@ )i (344 D)), oa9

The formulas for (Y4, J) and <1767i, J) are constructed analogously
using the respective Fourier-Wigner functions. Notice that for small e

the expression above of W 4 is well approximated by the more natural

definition:
= ~ [ +k
Wex(n, )N—Cb <——g)¢<7+g) :

As a consequence of assumption (2.I4]) we conclude that for functions
Sy, k) = J(y):

lim (W1, J) = Aaiwf@m%

i (Ve ) = [ (1) £ i) )iy

and

ly) = 5 (amaly) ~ pa(a)

with j(-), ko(-) and po(-) given by (2I4). A simple calculation also
shows that

lim W, 4 (J) = Wa(J) ;zlfRz & (h—g)q%(m 2 J*(n, 0)dndh

e—0+ 2
=5 L1967 @ Fe 7 . 0)andy
(5.14)
Thus,
T (dy, d) = 316(s) 5o (dk)dy. (5.15)

One can also easily check that

Vo (dy, dk) = 56 ()doldk)dy and ¥ (dy, dk) = 50" ()]0 (dk)dy.

(5.16)

1
2

We denote the respective vector W= W, Y, Y_ W,
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5.3. Evolution of the wave function. Adjusted to the macroscopic
time, we can define the wave function corresponding to the configura-
tion at time ¢/¢?

PO(t) = Vat, (72) +ip, (%), z €L, (5.17)
where (p, (), €.(t)).ez satisfies (22)). Its Fourier transform

. -t [t
POt k) = at (6—2 k) + ip (6—2 k;) . ke, (5.18)

is the unique solution of the It6 stochastic differential equation, under-
stood in the mild sense (see e.g. Theorem 7.4 of [2])

a9, = { 25800 1) - B 5000 1) - 69 0.~ f e
(5.19)
+”€1/2 / Pl 1) 6Ot k= K) = (O) (1, — k)| B(dt, k),
where (9 (0) € L2(T),
w(k) :=2vas*(k), keT (5.20)
is a dispersion relation,
R(k) == 25°(k) [1 +2¢°(k)] = 257 (k) + 45°(2k). (5.21)
and

r(k, k') = 4s(k)s(k — K)s(2k — k'), kK €T. (5.22)
A simple calculation shows that 3(k) = 4R (k).
The process B(dt, dk) is a space-time Gaussian white noise, i.e.
E [B(dt, dk)B*(ds, dk")] = 6(t — s)d(k — k")dtdsdkdk'.

Since the total energy of the system is conserved in time, see Section
2 of [I], for each € € (0, 1] we have

OO = 199w, ¢20, Pas. (529
5.4. Wigner functions corresponding to ¥(°(t). Denote by
w?@) = [We,-l-(t)v }/;,+(t)7 }/;,—(t)u We,—(t)]

the vector made of Wigner functions corresponding to the wave func-
tions ¥ (). They can be defined by formulas (5.6) and (5.7), where
the respective Fourier-Wigner functions /V[Zvi(t,n, k) and ﬁvi(t,n, k)
are given by analogues of (5.8) in which the wave functions are substi-
tuted by ¢(9(¢) and the average (-),,. is replaced by E..



NON-ACOUSTIC CHAIN 15

From (5.23)) we conclude, thanks to (£.9), that

t>0 e€(0,1]

SUPZ ( sup [|We, (8] + Sup [Ye. (2 )HA’) <4Ko,  (524)

where K is the constant appearing in condition (2.I1]). As a direct
consequence of the above estimate we infer that the components of
(We(+)) (0 are x—weakly sequentially compact in (L1([0, +00); A))"
as € — 0+, i.e. given a component of the above family, e.g. W, i (+),
and any sequence €, — 04 one can choose a subsequence W, , ,(-)
converging x-weakly.

To characterize the limit we recall that the thermal energy density
ewm(t, y) is given by the solution of the Cauchy problem (B.€]), while the
mechanical one eyeen(t,y) is defined by ([B3)). The limit of the Wigner
functions corresponding to the macroscopic profile wave function

o(t,y) == Var(t,y) +ip(t,y), (t,y) € [0,+00) x R. (5.25)
equals
(1) 1= IV (1), Vo (6), V(1) W4 (1), (5.26)

where
T4t dy, dk) = 1(t, ) dySoldlk) = emecn(t,y)dydo(d).  (5.27)
and Y_(t) = Y, (t), with
Y, (. dy, dk) = %QSQ(t,y)dyéo(dk). (5.28)

Our main result concerning the limit of the Wigner transform can
be stated as follows.

Theorem 5.1. Suppose that the initial data satisfy the assumptions
Then, (W, (t))=0 converge, as e — 0+, *-weakly over (L*([0, +00), A))"
to

W(t) = [W(t), Y. (), Y_(t), W(t)], t=0, (5.29)
where W (t) is a measure on R x T given by
W (t,dy, dk) := ew(t,y)dydk + emeen(t, y)dyd(dk). (5.30)

Analogously to formulas (5.10) and (G.I1) we can write

eZE&c( )J* +ex) = (W= (1), J) (5.31)
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and

R [[x (i) L i/, (i)} P(ex) = (Vou(t), ), J € S(R).

(5.32)
Therefore, the conclusion of Theorem is a direct consequence of
Theorem [B.11

6. EvOoLUTION OF THE WIGNER FUNCTIONS

Using (5.19) we can derive the equations describing the time evolu-
tion of the Wigner functions. In particular, one can conclude that for
a fixed € the components of (2.(t));>0 belong to C([0, +00); A"). After
a straightforward calculation (see Section 8 of [5] for details) we obtain
that their Fourier transforms satisfy

O, s (1) = 6T (1) 4 LW (1) = 51 S0 LT (8), (61)

2¢2 rat en
and
~ 21~ ¥ ~
OYer(t) = —50Yer(t) + —EenYe +(t) (6.2)
’y ~
+ R (Ve = V. Z LW,
Here (cf (M))

S = [ ( 2) (k——)} — 2 /as(en)s(2k),

W =

Cof () = 2R, () — 2£ (k) / Rk, K\ )W,

L f(k) = 2Ry f (k) = 2R (k& 7) f(K),
Rof () i= [ RO ) )
T
where the scattering kernel (cf (5.22))

R(k, K\ n) ::%Zr(k—g,k—ak/>r<k+g,k—bk’>, kK € T.
1==+1

(6.4)

oler D) v (o D)) -l (2) s e

2

)

(6.3)
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A direct calculation yields
/ o / 2 (7N / 4 (M I3
Rk, K, n) = ROk, ) = 5% (2) Byl 1) + 8 (2) Ro(k, Kim). - (6.5)
2 2
Here

Rk ) = R(k,K,0) = Z (e_ Des+ep® e_) (k, k),
Rl(]{?, ]ﬁ/) = (16f+ X f+ -+ f+ Xe_+e_- X f+ + ?)f_ X (& + 3€+ &® f_) (]f, ]{7/),
Ry(k,K'sm) = 16 (f+(k) + f+(k/)) +4 (4f+ D+ +i+OF-+7-® f+) (k, k')

~s2s* (1) (mk) LR+ 2f(k)) veast (7) o).

where ¢4 and f. are the L'(T) normalized vectors given by

e, (k) = 254(1@, e (k) = 26%(2k) (6.6)
and f =1,
fo(k) :=2s%(k), f_(k):=2c%k), keT. (6.7)
Note also that (cf (21))
mm:/R@ﬁmHZZE:qu (6.8)
B ve{—+}
In addition
R'(k) = 2n(s(2k) + s(4k)) (6.9)
and
R'(k) = 47*(4¢*(2k) + ¢(2k) — 2). (6.10)

6.1. System of equations for the Laplace-Fourier transform of
the Wigner functions. Taking the Laplace transform of both sides
of (6] and (G2]), we get the following equations

D\wey + DYy + DYy, =R (6.11)
and . ) )

DYwe s + DYy y + DYw, =RY. (6.12)
Here

—+00 o
wes O k) = / N (2, k),
0

400 N
Y m ) = / ML (1, R)dt.
0
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In addition, we let
DO\, k) := €@\ + 2R, + iedw (6.13)
DA\, n, k) := €\ + 2yR. + 2iw,
DY (A k) == =R, £ gR/n,

where

R.:= R+ (<t 8) R". (6.14)

The right hand sides of (G.I1]) and (6.12]) are respectively equal
7(77577) RACLIC/V 3

€ e )

R = g+ EWo s (k) —
(6.15)
€ S Y 7-‘-677
RY = —got+ e k) + Ty )

where

3
e =37 2 ¢, (Ve, e} 12(T), (6.16)

fe = Ve, 164 4 e_) r2em) + e (ve, F) r2(m) + 3F=(Ve, 1) L2y + 3 (ve, F-) L2(1)-
Here, for the abbreviation sake we have let
1
'UG()\ana k) = 'LU57+()\,77, k) - §y670()‘7777 k)? (617)
where

Yeo A 1, k) = Ye s (N, 0, k) + ye— (N, m, k).

In addition, the remainder terms réi), 1 =1, 2 satisfy

limsup sup [|[r™(A)[|a,, < 400, i=1,2, Ao, M > 0. (6.18)
=0+ A>)o
A closed system of equations on
! (A7, k) = [We s Yerts Yoy We ] (6.19)
can be rewritten in the matrix form
Do, = R, (6.20)

where

n = R RY R RY
and DE is a 4 x 4 matrix that can be written in the block form

- A. B.
D, = [ B C ] : (6.21)
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where A., B., C. are 2 x 2 matrices given by

N (o) DY

- ~ * 6.22
Dl D o (o) |

and B, = D(_E)]g, with [,, denoting the n x n identity matrix.
We have also denoted

RO k) = RO, k), RELQA 0 k) = (RO =m.8))

Let ro" ()\ 1) be the column vectors obtained by scalar multiplication
of each component of w.(\,n, k) by ¢,. Note that

3
7ZeFm (A7) + €2b., (6.23)

where the matrix F' = (1/2)e @ e, vector e? := [1,—1, -1, 1],

b\, 1, k) = W (1, k) — 7(7;7’)2 fe+ .\, k) (6.24)

and @6(77, k) is the column vector corresponding to the Fourier-Wigner
transforms of the components of (Z3]), and

= p 0 @ @ W) (6.25)
rOun k) =D, —k), PO k) = (P, k)
Recall that a @ b = [a;b,], if a = [a1,...,a,] and b = [by, ..., by).

6.2. Invertibility of matrix D,. We prove that the matrix D, ap-
pearing in (620) is invertible, thus the vector of the Laplace-Fourier
transforms of Wigner functions is uniquely determined by the system.
It turns out to be true, provided that A is sufficiently large.

Let us denote d.(\, 7, k) := det D.(\, n, k). Since matrices B, and C,
commute we have (see p. 56 of [4])

5. = det(A.C, — B?)
- - - - 2
= [Df (DY) + D2 — (DY) — 4[DYIPRe D Re DY
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After a direct calculation we get

) S .
0c = AT+ 8N YR + 46"\ 5(vRe)z+w2+<€2w) _(%fn)

+4EN(R,) [4(71%6)2 445 + (ebw)? — (%R'nﬂ (6.26)
+4€” [(YROw)? = 2(vR.) 6wy R'n + (w0w)?] + 16(7R.w)>.

Define
0 .= (X + R)™ (6.27)

Proposition 6.1. For any M > 0 there exist eo(M), \g(M) > 0 such
that

SN, k) = 0O\ m,k), k€T, [n] < M, A> X, e € (0,¢)]. (6.28)
In particular, we have

d0e(A,my k) >0, k€T, |n| <M, A> X, € € (0, ). (6.29)

Proof. Using ([6.I0) we conclude that for any M > 0 there is ¢g > 0
such that

R.~ R(k) + (en)?, k€T, |n <M, ece€ (0,6 (6.30)
Comparing the second formula from (6.3) with (6.30) we get
wx R, keT, |n <M, ee(0e). (6.31)
From (6.9), the first formula of (6.3) and (6.31]) we get also
|0wR'| < R, |n| <M, keT. (6.32)
Therefore

8(e7)?R|6wwRn| = R, |n| <M, ke, ec (0, e
Choosing A sufficiently large we can guarantee also that
EXNYR)? > 8(ev)? Re|dww R (6.33)
for n| < M, k€T, A\ > X, e € (0, ).

In a similar fashion we can argue that

EN2(YR)? > 4N (YR, [(m)? _ (yfz'n)z} (6.34)

and
SN YR, > O)\? [(&w)z - (7R’77)2] (6.35)
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for n| < M, k€T, X\ > X\, € € (0,¢6)]. From estimates (6.33)-(G.35]) we
conclude that

0 = EMN + ENR + IR + AR + RY

Therefore, cf (6.27), we get 5 < 5. The reverse estimate is a simple
consequence of the first two formulas from (G.3]) and (G.32]). O

6.3. Inverse of De(A,p, k). Recall that [)E(A,p, k) is a 2 x 2 block
matrix of the form (G2I). Since B, is diagonal we have [A., B =
[Ce, B.] = 0. A simple calculation shows that also

AC. = C.A,. (6.36)

Therefore,

-~ [(CA - B 0 C. B,
D _[ 0 cA-By || B a4 | 637

provided that detD, # 0. Note that

©)2 —2DYRe DY)
(C.A-B*)™1 =

€

~2DRe D DY (D) + (DY) ~ [DYP?

Substituting into (6.37), using also (6.22) we conclude that the inverse
matrix D! is a 2 x 2 block matrix of the form D' = 0 "adj(D,) where
the adjugate of D, equals

Qe M.

where M., P. and (). are 2 X 2 matrices given by

FORC 9y g
P, = ~15 (e ’ QE = ~e+ ~0€ ’
[ 4 dy ) dyY

adj(D,) = [Pf @ ] , (6.38)
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Here

~ ~ ~ * ~ 2 ~ 2 ~
a0 =109 (D7) = (D) + () re DY)

9 .= 2D DORe DY
For the abbreviation sake we denote by O, J=1,...,4 the vectors

corresponding to the rows of the adjugate of D, given by (6.38). Com-
bining the above with (613]) and (G.26) we get.

Proposition 6.2. For any M, )\ > 0 we have
d\? = 4(YR)® 4+ 8yRw? + o(1),
dy) = 4(yR)® — 8i(YR)*w + o(1),
dY = 4(YR)* - 4i(yR)*w + o(1),
dy) = 4(YR)* + o(1),
0. = 16(yRw)? + 0(1), ase< 1,
uniformly in |n| < M for any k € T.

(6.40)

7. PROOF OF THEOREM [5.1]

As we have already mentioned for any sequence €, — 0+ there exists
a subsequence (QUEn, (t)) that convergences x—weakly to some 2J €
(LY([0, +0);.A))". We prove that the element 2 does not depend
on the choice of the sequence ¢, by showing that for any M > 0
there exists g > 0 such that the vector (w, (A)) made of Laplace
transforms of the components of 2. , () converges *-weakly over A},
for any A > Ag. In fact one can describe the respective limit as the
Laplace transform of the vector 20(¢) appearing in the statement of
Theorem [l This identifies the limit of (20.(t)), as € — 0+ finishing
in this way the proof of Theorem [B.11
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From (6.20) we obtain
w, = DR, (7.1)

Unfortunately, the right hand side of the above system contains also
terms that depend on the vector to., via the projections of its compo-
nents onto the vectors ex and fi. To describe the behavior of . we
need to determine first these projections.

Using (6.20) the above system can be rewritten in the form

1 3 ~
ey <me - _fy eLEemE_L)> = 367 (72)

2
€ 2 =
where
ST k) = [0, 22,22 0] = DM, (7.3)
be is given by (625) and the 4 x 4 matrix E.(\, 7, k) equals
~ 1
E .= 5eT ® A, (7.4)

Wlth AZ = [Al,ey AQ,FJ A;,e7 AT,E] and
Ayei=d® +d© —d9 — (@),
Agi=d +dP —dy —dv. (7.5)

Multiplying both sides of (T.2]) by e,, ¢ € {—,+} and then integrating
over T we get a system of 8 equations

Gsue =, (76)

where
(=) (=)
o 3
U (A, ) = , v.(\,n) = .
(A m) [ ) ] (A, m) Lg) ]
Here o) are column vectors obtained by a scalar multiplication of the
entries of o, (see (G.I9)) by ¢,. The same concerns

()" (A ) = 2000, 220,200, (0] (7.7)

Matrix G.(A,n) is a 2 X 2 block matrix of the form
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where Aﬁf), Ag_f) are 4 x 4 matrices defined as follows:

3y
A© = L —E —
L 262 T 55 dk L e { 7+}>

A9 = ¢ (1—3—7/6 e+Edk)
2 Jy 5

Note that vector v. appearing on the right hand side of (Z.0) still
depends on the projections of to. onto fu, cf ([6.20) and (6I0). It turns
out however that the asymptotics of these projections, as € — 04, can
be described by only one of them, e.g. mE". ThlS is a conclusion of
our next result. Denote by dw, := w™ — w!™). We shall also use the
following convention: for a given M > 0 the constants €0, Ao > 0 are
selected as in the statement of Proposition so that d.(\, 7, k) =~
56(0)()\,77, k) for all k € T, |n| < M and A > A¢. In particular, then we

have ([Z.1)).
Theorem 7.1. For any M >0 and A > )y we have

6w (N, )| < € (7.8)

and
O 2, ee (0,6, In] < M, i € {—, +}. (7.9)

Moreover, for any |n| < M and XA > \g we have

lim / | we (A, m, k) —w (A, m)| R(k)dk = 0 (7.10)

e—0+ T

and

lim /\yei (N, n, k)| R(k)dk (7.11)

e—0+

The proof of the theorem is presented in Section

To describe the limit of wé_)()\, n) we can use the the system (Z.0)),

which is "almost closed” with respect to the components of mE", ie.

it is closed modulo some corrections that in light of Theorem [{.1] are
of lower order of magnitude.

Let us first introduce some additional notation. Given the wave
function ¢(t,y) we define the vector of the Laplace-Fourier transforms
of the respective macroscopic Wigner functions

mg()\u 7, h) = [w(i),—l-v Yo+ Yo, —>» w(i),—]? (712)
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where

+oo .
wos ) = [ MWt b, (7.13)
0

o0 N
Ysr(A,m, h) = / e MY, (t,n,h)dt, >0, (n,h) € R
0
Here

Wiy (t,n,h) := %é (t h——)é(t,hjtg),

(7.14)
_1s ; i
Y¢+<t n.h) = §¢(t ~h+2)o(th+7),
t 777 ( ) -, )7 /Wqﬁ,—(ta 7, h) = /W¢7+(t>777 _h)
Define m¢> (A, m) [ y¢,+,y¢,_,w¢] , where

Wy (A, 1) ::/qub,ﬂ:()\a?% h)dh, Ts.(Nn) :Z/Rw,i(hn, h)dh.

(7.15)
Define w(~) (X, n) by the formula

(A +e2mn)?) w (A ) = =3y(mn) w4 (A, n) - e
(7.16)

+6ym? / h2m¢()\,77, h)-edh+éwn(n), (A\n) € (0,400) x R.
R

Here éy,(n) is the Fourier transform of e, (y) appearing in (84]) and ¢

is given by (B1).
We can show, see Section [0 below for the proof, the following result.

Theorem 7.2. For any M > 0 and J € S(R) such that supp.J C
[—M, M| we have

/w(‘)(km)J*( )dn = lim [ w) (A n)J*(n)dn
R

=0+ Jp

for all X > \g.

To obtain the asymptotics of w. (A, n, k) we use ((T.I]), which allows us
to describe the Fourier-Laplace transforms of the Wigner functions in
terms of their projections onto ex and f+. We obtain then the following
result.
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Theorem 7.3. For any M > 0 we have

i | [ e O ReR) k= 0l 0m) [ o)k =, m)e(0)| = 0
B : (7.17)
and
11}%14_ ye,:l:()‘v n, ]{Z)gO(k)dk = yqﬁ,:l:()‘v 7])30(0)7 (718)
€ T

forall |n| < M, X\ > Xy and p € C(T).
The proof of this result is contained in Section

The end of the proof of Theorem [5.1Il Thanks to (5.24]) we know
that 20.(¢) is sequentially pre-compact , as € — 0+, in the x-weak
topology of (L([0,+0),.A))". To identify its limiting points we con-
sider to.(\, 1, k) the vector of the Laplace-Fourier transforms of 20.(t).
Given A > 0 this family is sequentially pre-compact in the s-weak
topology opf A’, as ¢ — 0+. Thanks to Theorems and we
conclude that given M > 0 one can choose )y as in the statement of
Proposition [6], such that the the components of to (A, 7, k) converge
s-weakly over A, to the Laplace-Fourier transforms of the respective
functions appearing in the claim of Theorem B.] for any A > Ag. To
finish the proof we only need to verify that w(\,dn, dk) - the limit of
We 1+ (A, n, k) (the limit of w,. _ can then be trivially concluded) agrees
for A > A¢ with the Laplace transform of W (¢, dy, dk) appearing in
B.30).

According to Theorem [Z3]the limit in question is the Fourier-Laplace
transform of the measure-valued function

W/(t> dya dk) = e/th(t> y)dydk: + €mech (ta y)dyé()(dk)a
where, according to (Z.10), we have
e (0,y) = em(y), (7.19)

Oucy(t.9) = O3l (t,) + 2L Ohou(tsy) -+ 12977 [ 1,0y, ) e
R

Here w,(t,y) is defined in (7.15),

Qng(tv Y, k) = [W¢,+(t7 Y, k)7 Y¢,+(t7 Y, k)v Yd>,—(t7 Y, k)7 W¢,—(t7 Y, k)]
and

Wsa(t,y, k) = /

62”"3/"W¢¢(t, n, /{;)dﬂ, Y¢,i(t7 Y, k) = / e2myn?¢7ﬂ:(tv 7, k>dn7
R

R

with I//V\(b,i and }7¢¢ given by ([LI4). An elementary calculation yields
the following.
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Proposition 7.4. Suppose that ¢(t,y) is given by (5.25). Then,

[ Wastt,n.mydn = 5lote. )P
/R Y, (t,y, h)dh = %[cb(t,y)]z,
%W@MWWWH&%@W@M,
zmaéh%%AL%th:i{wﬁtwf—¢@yW%@W}

for any (t,y) € [0,400) x R.

L
7 [ BWostt h)dh = 116/(0) -
R

Using the proposition we conclude that the third term appearing in
the right hand side of the second equation of (ZI9) equals

1272 / B2 (W, (g, h) = Re Yy a(t,y, b)) dh
R

:?Km%m—mwwww]

On the other hand, the second term equals

3
%%{/M%ﬁ%m—mem%mm@ T o(t,)
R

7{ )2(ty) + p(t, )P (t,9) }

We can see therefore that ef, (¢,y) satisfies ([B.6]). Thus the conclusion
of Theorem [5.1] follows.

8. PROOF OF THEOREM [7.1]
We start with the following result.

Lemma 8.1. For any M > 0 and €y, \g as in Proposition[6.1 we have

R (e
S—Z\dﬂ <1, VEeT, |n|<M ece (e, A>X .  (81)

The summation extends over j € {1,2,0,—,+}.

Proof. From the definition of D\, see (GI3), we obtain

|D |<R + Ae® + e|dew| (8.2)

for k € T, |n| < M, € € (0,¢6], A > A\g. Using the first formula of (G.3)
we conclude that then

ID'9| < R, + \é%. (8.3)
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A similar consideration leads to the estimate
DY <R 42, keT, |n <M, ee (0,6, > X (8.4)
for any j € {1,2,+, —}. In particular we can conclude from ([G39) that

STV = (R + A) 233 T(Ae?) (8.5)

J

Thanks to ([6.28)) we infer that
RIdY) < (R + A" =<5, je{l.2,0,4+,—}.
O

8.1. Proof of (7.9). We show (Z.9)) for (¢,¢') = (—,+). The cases of
other values of (¢, ") can be handled in the same way. We use the second
equation of the system (6). Estimate in question follows, provided
we can show that the left hand side of the equation can be written in
the form

2y n) + Te(hn) = 227 (), (8.6)
where
Te(A,n) = 0O(1), (8.7)
229\ n) =0(1), ase< 1.

We can write

T.(\m) = =260 — 2p o), (8.8)
where v (X, ) = (v(A, 1, -), ex) (see (GIT)) and
A
b(E) . 37 zvfdk: (89)

= e et 5
b = _j_; Tei Aggzdk.
Substituting from (6.13) into (Z.H) we find
6_2A27E = dw [2nwR' — 2(yR.)dw]
—ANR) [(R) + EX] + EX [ (5)? = (R)?| + €N°
(8.10)

+i {4)\w(7R6) + ENWR + 20 (0.w)* + 262)\2w} :
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Therefore, cf ([621), we conclude that

6_2‘52’6‘ (9_64_ + 92_ + ei) = 6_2|A27E|R2 = Sgo) (811)
Thus,
6] + 6] + 617 = 1 (8.12)

and the first equality of (81) follows.

Since (see (6.16))
fe*()\7 -, k) = fe()‘a m, _k) = fe()‘a 1, k)

the right hand side of the second equation of system ([Z.f]) can be written
as

22 = Z 4 Zey+ Zes, (8.13)

€

where (9, are the rows of the adjugate matrix to D, given by (6.35))

— e_dk
Ze,l = /02,e : w6;7
T 0,

€

(8.14)
. _7(7”7)2/ A e—fe
Ze2 - 9 TA2€ 56 dka
Ze3 _6/026 tee_flk
T Oc

We can write

()‘ . R
|Zgl|<<2sup J| )Z(||WE,L||AI+||1@,L||A/). (8.15)

==+

Using Lemma we conclude that for any M > 0 there exists Ag
such that for any A > Ao we have |Z ;| = O(1), as ¢ < 1. A similar
argument allows us to conclude that also |Z. ;| = O(1), as e < 1 for
j = 2,3. Thus, the second equality in (87) follows as well.

8.2. Proof of (7.8]). The left hand side of the first equation of the
system ([.€]) can be rewritten in the following form

(=) ()

€ _ € 511)6 e) Ye,o Ye,o
EU)_wé ) — a(_)€—2 + &((,)6—2 + CL(_) 2 (816)



30 TOMASZ KOMOROWSKI AND STEFANO OLLA

with
Ay
auf)i =2 [1 —2/(”)/R)2:|: ~17 dk| , (817)
T Oe
Al
0= [ e, Blea,
T €
AV
of) =20 [ 2 Btegy
4 Jr .

Note that e_e¢, < R? (see (60)). From Lemma and the Lebesgue

dominated convergence theorem we conclude that a¥) and aiﬁ) are of

order O(1), as € < 1.
Using (ZH) together with formulas (6.40) we infer that

A =8yR&*+o(l), ase< L. (8.18)

Therefore, by the Lebesgue dominated convergence theorem

3 [ e_erdk
1 (E) = . ‘= — +
E£m0+ a, o =g /T >0

2
X (e - § eidk‘
El_1>r(1]r1+ajE =ay .—8/T 7 > 0.

After a direct computation we obtain
ag)_ = / e_idk‘,
) T 55
where

& = {4(73)7;56&@3’ + 2Py R (YR)@? + 4 [(yReéew)z — 2(yR.)Swiln + (aj(sew)ﬂ }

and

;N 2
2(vR)* + 2w° — 2 (dz—n)

—4(yR)A 5

eR'n
2

2
+4e2{ N2 5(736)2+w2+(ec¥ew)2—< ) — 2yRN*(YR.)

—2(YyR)N’e* + 8e* NPy R, + OA%.
Taking into account ([B28) we conclude that e_é, < 6,. In addition,
Ec = 20°YR" (YR )@* + SA(YR)[(YR)? + &%) + o(1), ase< 1.
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Combining this with the second formula of (8I8]) we obtain, by the
Lebesgue dominated convergence theorem,

a:= lim va'Y_ < 4oo0. (8.19)

e—0+ Ws

Using the above together with bound (7.9) we conclude that expres-
sion ([BIG) can be written as

ow,

@ 0 w™) —a 0
7[1+ (1)]we -1+ o(1)]—

Then bound (Z8) would follow, provided we can show that the right

+0(1), ase<x 1. (8.20)

hand side of the first equation of the system ([6l), given by 27 s of
order of magnitude O(1), as ¢ < 1. To see that we write
2 = Uy 4 Uea + U3, (8.21)
where the terms U, ;, 7 = 1,2, 3 are given by
— e¢_dk
Ue,l = /01,6 : wee~—7
T Oe
(8.22)
2
0., — 2 /Al ey,
2 T J.
_dk
U53 = /015 tee =
T Oe

The fact that 27 = O(1), as € < 1, can be argued in a similar way
as it has been done in the case of 2>, see (8I4) and (BIH) above.
8.3. Proof of (7.10). From (620) we obtain

wer O\, k) = I+ II, + III, + 1V,

where

3 A (€
I = %Ap 3 (e e rame, (8.23)
€ LE{—,+}

2
TE ~ (e

I = _%Ag) [f+<“sa 161 4 e-) r2(m) + e (v, 1) 22(1)

+3f_ <’U€, 2+>L2(']1*) + 3€+ <’U€, f—>L2(']T)] , (824)

I, := 0 0, - W, IV =0 "0y - te.
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8.3.1. Convergence of I.. Note that, (see (6.20])) for any &k # 0

RAY 1
lim A L (8.25)
e—+0 56 2
Using the above and the already proved estimates (Z8), (Z9) and
Lemma [8.1] we obtain
lim
e—0+

I — w§—>fHL1(T) = 0. (8.26)
Here f(k) = 1.

8.3.2. Convergence of Il., IIl. and IV,. Thanks to Lemma [R.1] we can
write

& / 5. d9 Rk < E|[TWo|lw — 0, ase— 0+
T

The remaining terms appearing in expressions I/, III. and [V, can be
estimated in the same manner allowing us to conclude that

lim [ (|| + |II.| + |IV.|) Rdk = 0.

e—0+ T
8.4. Proof of (ZII). From (G.20) we obtain
YN m k) = I+ I + Il + 1V,

where

37 A (€
]E = —~Ag) Z <’U€, 9L>L2(T)2—L7

256 Le{_7+}
2
TEN)® ~ (¢
11 = —”(257” AD [f1 (ve, 1684 + e )z + e (v Fihazen

+3f_(ve, e4) r2(m) + ey (v, f—>L2(T)] ;
II, := 6 0y - W, IV =0 "0es - te.
The analysis of the above terms is very similar to what has been done

in the precious section. Using (8I0) we conclude that for any A > A
A (A, k)

Sﬁ()\a na k)
We conclude in this way that all RI., RII., RIII. and RIV, tend to 0
in the L! sense. Thus, (Z.I1) follows.

<, keT,|n <M. (8.27)




NON-ACOUSTIC CHAIN 33

9. PROOF OF THEOREM

9.1. Determining w!™. Since functions ¢+ (k) are both even the fourth

and eighth equation of the system ([Z.6) coincide with the first and the
fifth ones respectively.
Adding the first and fifth equations of the system (Z.0) we get

yaGw D — > a5 = 4209 + qal)_ow, (9.1)

Here o), a, 1« € {o,—, 4} are given by (BI7) and 45 := ¢ 245, In

addition

(€) . <€>+<E>:i R|1—=2(yR)—==| dk
aw . CLU}’_ aw7+ 362 ”Y (fy ) 5 ’
. . ~ Rdk
aé)i :aS_L)jLage) /eiA1€7~
T €
and
26(1,0) = ze(l’_) + z£1’+), (9.2)

where 2" are the scalar products of 2" by e. (cf (Z3) and (Z7)).
The second and third equations of (6] read (cf (89I)

0 + b g = 87— e 650 + 05D
(9.3)
YOy w4y + ) = 427 — e [0y 9 + (1))

Adding sideways these equations we get

29w I Re b + 29w HRe b + g () =227 40, (9.4)
Here z€(2oi) =3 4 zg;i) and
r(o) = _9¢? (gg;jRe b + ) Re b(f)) , (9.5)

The sixth and seventh equations of (Z6]) yield
29w Re b + 29w Re bl + 9 = 4231 + ), (9.6)
and

€

P = _9¢? (g§;,>Re b 4 g Re bff)) . (9.7)
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Summarizing, we have obtained the following system

Z ay, Lgeo - (170) + ’}/CLS’)_(SUJE,
te{—,+}

29w Re b + 29w Re b + Ye. ) = fyzgo’_) +7r5(9.8)

2ywRe b + 2ywMRe b + §) = 4220 4 r(H),

Using Theorem [T.I] we conclude that given M > 0 and A > \g the

family (w!™, 95, 95)) remains bounded in L>®[—M, M], as € — 0+.

It is therefore x-weakly sequentially compact in this space. Denote by

( (_)7y(() )7y¢() )> (99)

its *-weak limit. Thanks to (8I9), (812) and the results of Theorem
[Tl we conclude that

lim yaw _<5wE =0,

e—0+
(© _
lim (Zib ) dw, = 0, (9.10)

lim r(i =0.
e—0+

Using Lemma B, equalities (6.40) and the Lebesgue dominated con-
vergence theorem we conclude that

1
61_1)1&@262 =—5 € {—+} (9.11)

Subtracting sideways from the first equation of (9.8]) the sum of the
remaining two and taking into account (@.I0) and (@11 we obtain

(2,0)
_ (€) ) _ [ 0 _ Feo _
El_lfon_i_fy { ( 2/7 ; Re bw¢) wE <z5 2 ) } - 07

(9.12)
where zﬁ?f) = zﬁ?g" + zgo’”. Moreover, a direct calculation shows that

( —2VZReb ) /T}fodk (9.13)
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where

fo .= 4y(R — R)ndwR + 2yn*R" (k) (vR.)&*

925% — 2 (ER/")2
2

FAN(YR,) [47(3 — R)(YR.) + 40% + (eduw)? — (eR'n)Z] (9.14)

4 [1(R ~ R)(YR)(6)” + (@60)?] — A(YR)A

+4¢? {%R((wa + X [57(R = Re)(vRe) + @ + (edew)’] } + 8N R + AL,

Using Lemma and the Lebesgue dominated convergence theorem

we obtain .
.4y [ Rf. 22 n* [ (W)?
| — —dk = — + — dk. 9.15
0% 3 /T 3. 5 "3y R (9.15)

Using the above formula and substituting

(2,0)

2o — 22 = (30 +35) -e
(cf (C3) and (Z71)) we can rewrite (@12 in the form
20 [ (W)? o) _ s &
<?+5 [k ) = i, > V.., (9.16)
where
2
‘/5,1 - %/ mEO)()\ana k) : ede:?
T
(9.17)
2(m)? [~  « .Rf.
‘/62 = _M /(Ale - A2 e)ﬁdk7
1 3 T 1 El 66

o

< RV 0 o e B
Vs = WE/Algf—dk:%—E/(Qd(f) —d — @Yk
b T b 2 T 5

€

Rr@Z

Y€ F(e)\ x J(e 7(€)\ )
tg [ () = dY) — (&))"=
T Oc
Here
(T (A7, &) = [,y 4w (9.18)

is the solution of the system

D@ (A, n, k) = . (n, k), (9.19)
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where @E(n, k) is the column vector of Fourier-Wigner functions corre-
sponding to the initial data, see (5.5)). In addition, f. is given by (6.16))
respectively, and r'”, i = 1,2 satisfy (GI8).

Thanks to Lemma we conclude, upon an application of the
Lebesgue dominated convergence theorem, that

lim V3= 0. (9.20)

e—0+

Using Theorems [T and [7.3] and the definition of f, (see (G.I6)) we get

ehm0+ Veo = —8v(mn) w 29(mn) Uy, (9.21)
with (cf (ZI5))

B ) = o) — 5 (o (Am) + Bk ) . (9.22)

9.2. Limit of V, ;. Using the decomposition of the Wigner functions of
the initial data into the parts corresponding to the macroscopic profile
and the fluctuations, see (B.I12)), we can write an analogous decom-

position @E = 2. + %E, for the Laplace-Fourier transforms of the

respective Wigner functions. It allows us to write V,; = VE(P + Vﬁ),
where

w0 (X, 0, k) - e Rdk,

€

L w9\ 5, k) eRdk.

€

w

S
1
i
[\
)
S— 5

Here

— —(0) —(0) —(0) —(0 ~ ~(0 0 0
B = [, g Bl W], o = (@0 5 G

are the solutions of the analogues of (9.19)) in which the right hand side
has been replaced by 20, and %6, respectively.

9.2.1. Macroscopic Wigner functions and their dynamics. From (3.1))
we get

Dib(t, k) = —imo(mk)2(t, k) — Gym2k? (gfs(t, k) — & (t, —k:)) . (9.23)
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Therefore the Fourier transforms ®¢(t) of the macroscopic Wigner
functions (cf (C14) satisfy

— , N2 | — 2
oWy, = —2r? {ngn + 6 {kz + (5) } } Wy 4 + 6ym° Z (k; - L/§> Yy,
LIE{_7+}
(9.24)

~ 2| ~ 2 _—
atY¢7+ = —271'2 ('éLTQ + 67) |:k52 + (g) :| Y¢7+ + 6771'2 Z (kf — ng) W(b’u.
V==*1

Taking the Laplace transforms of both sides of (0.24]) we obtain

Dywgt+ Dyys s + D_yg - = W (0,1, k) (9.25)
and . . . R
D—l-wd),-‘r + D2yd>,+ + D—w¢,— = Y¢,+(Ov n, k)v (926)
where
. 2
Dy =\ +27° {67 {kz + (g) } + iTQk‘U} , (9.27)

~ 2
D2 = )\"‘27’(’2 |i]€2 + <g> :| (6’7"‘7,7'2),

. 2
Dy = —6yn? (k; + g) . (9.28)
An elementary calculation shows that

lim e 2D\, q,ek) = D;(\m. k), je{1,2,— +} (9.29)
€E—
for any A > 0 and (n, k) € R%

The closed system of linear algebraic equations for the components
of the Laplace-Fourier transforms ro,, (cf (ZI2))) takes the form

Dto,, = 20,(0), (9.30)
where
- [A B
p-[4 2] o
with ~ ~ ~ ~
_[D D, _[Ds D,
A_{m DJ’ C‘{m D; (9:32)

and B = D_I, (cf 62I) and 622)). It can be checked by a direct
inspection that [A, B] = [B,C]| = [A, C] = 0. Therefore,

o(A\,m, k) := detD(\, n, k) = det(AC — B?) (9.33)
= detD()\, ¢, k) = |D, Dy + D> — D*|* —4D?Re D, Re D,.
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Thanks to ([@.29) we conclude that
lim e %0.(\, 1, ek) = 6(\, n, k) (9.34)
e—0+

for each A > 0 and (1, k) € R?.
The above, combined with (6.28]), implies that for any M > 0 and
Ao as in Proposition we have
S k) >0, |l <M, keR, XA> . (9.35)
The matrix D(), 1, k) is then invertible and, cf (6.33), D' = §tadj(D).
The adjugate of D equals

adj(D) = { g 5\24 ] : (9.36)

where M, P and @) are 2 X 2 matrices given by
di d- (dy) dy
P = ~ ~ = ~ ~
{d_ ds ] @ [do dy |’

Moe { (da)* (d)* ] ‘
(d-)" (dv)”
Here
dy := |Dy*D} — (D> + D*)Re Dy — i(D?% — D?)Im Dy,
dy := |Dy|*Dj — (D* + D*)Re Dy — i(D% — D*)Im Dy,
d_:=D,(D* — D?)— D,DiRe Dy +iD}{D,Im D,
D,(D* — D*)— D, DjRe D, +iD;D,Im Dy,
dy == —D_(D,Dj + D> — D?),
d, := 2D, D_Re D,. (9.37)
Thanks to (@.29) we conclude that
lim e %d\7(\,m,¢k) = d;(\ . k), j € {— +,1,2,0} (9.38)

e—0+

for each A\ > 0 and (n, k) € R?.

9.2.2. Limit of Vj? The limit in question is a special case of the fol-
lowing result.

Proposition 9.1. Suppose that ¢ € C*(T) is such that p(0) = ¢'(0) =
0. Then, for any M > 0 we have

1
lim | WL\ . k)e(k)dk = 5¢"(0) / kKws e (A, k)dk  (9.39)
R

e—0+ T
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and

1
lim [ 700 ek = 56" 0) [ RyosOunkidh, ol M. A
=0+ Jp 2 R
(9.40)
Here wy 1+ and yy+ are given by (TI3).
Proof. We only prove (@.39), as the argument for (9.40) is very similar.
The left hand side of ([@.39) for wﬁ?i can be rewritten in the form

—

/ 5 [EOW i+ A9V (@)Y o+ W, ] (k).
T

Denote by J;¢, 7 = 1,2, 3,4 the respective terms arising after opening
of the square bracket. Changing variables k := k/e we can write (cf

G.13))

1/(2¢) /
== S NN ek (k+Z Vo (k+Z £ 1) o(ek)dk.
he=g 3 [ GO (k4T =)0 (k4T w ] ) etk

z,x’

Thanks to Lemma [R.Il we conclude that there exist A\g, g > 0 such that
for any A > \g we have

A\ n, ek
sup sup R(ek) M < +o0.
e€(0,e0] k,|n|<M de (A, m, €k)
In addition, we have
sup  sup (€|k|)2 < +00
€€(0,1] |k|<1/(2€) R(ek)
Therefore,
A (A n, ek
sup  sup |p(ek)| M < Ho00.
e€(0,¢0] k,|n|<M de (A, m, €k)

In fact, thanks to the rapid decay of the macroscopic wave function ¢,

we can write
1/(2¢)

. _1 . <1 3(e) 2 /AW M\ 2/ n 2
Y ho=glim [ GO g (k=) 6 (k+5) e O ro(1)dk
(9.41)

By virtue of the Lebesgue dominated convergence theorem, we conclude
that the limit in (@41]) equals

90/10) /R (GO R (k= 1) 6 (k+ ) di

Dealing similarly with the remaining terms J;, j = 2, 3,4 we conclude
(@.39) for mﬂ. The cases of wﬁ?ﬁ and yﬁoi can be handled similarly. O




40 TOMASZ KOMOROWSKI AND STEFANO OLLA

Since R(0) = R'(0) = 0 and R"(0) = 1272 (cf (63) and (E.10)), b
a direct application of Proposition 0.1 we obtain

lim V) = 8yn? / rog(\,n, k) - e dk (9.42)

e—0+

for all |n| < M and A > .

9.2.3. Limit of Vﬁ) For any J € S(R) such that .J is supported in
[—M, M] we can write

/R VD (). () (0.43)

2 e = = Rdndk
= —7//J*{W€,+ALE+Y€7+A2,E+YE,_A I, Ay y Hdndl
3 RJT 6&
By virtue of Lemma we can use the Lebesgue dominated conver-
gence theorem to enter with the limit, as ¢ — 0+, under the integral.

Combining ([827) and (B21) we conclude that

: (2) s 2
Jim RVe,lJ( n)dn = gr&// We i (n, k)dndk
— N 7(€)
= lim < E 07 T (ex) /R ewm(y)J* (y)dy. (9.44)

The penultimate equality follows from (B.10).

10. PROOF OF THEOREM

10.1. Proof of (ZI7). Recall that czj()\,n, k), j € {1,2,0,—,+} and

det D(\, 7, k) are given by ([@37) and (@33) respectively. We recall

also Aj()\, q,k), 7 = 1,2 are defined by a modification of formulas (7.5))

where the coefficients d'° have been replaced by the corresponding d,.
Given ¢ € C(T) we can write

/w6,+()\, n, k)e(k)dk = /(IE + I+ 1. + IV.)p(k)dk.
T T

Here I., II., III., IV, are given by (823)). By virtue of (826]) we conclude
that

lim [ I.o(k)dk = lim w' )/go(k)dk:, In| < M, X > ).
T

e—0+ T e—0+

Lemma 10.1. For any M > 0

lim / \IVi|dk =0, || <M, \> . (10.1)

e—0+ T
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Proof. Note that, according to Proposition [6.1] for each M > 0 we can
choose \g, g > 0 such that for A > )\

4
W\, p, k)|dk < € rD|| 4 | sup ot v
JALYY) (Zn b Jsupd:" (3165

(10.2)

(Zur HA/)sup( ") (Z\d“)

for |n| < M and € € (0, ¢y]. Thanks to (83]) we conclude that

¢ (5§0>)_1| <€ ( ) (ZR3 (A2 ) (10.3)

Invoking the definition of 6., see ([G27), we can bound the right hand
side of (I03) by € (R, + Ae?)”" =< e. The conclusion of the lemma
follows then directly from the above estimate and (G.I8]). O

Using a similar argument we infer that for any A > A, |n| < M we
have

sup | I11.| < sup ! S
i = i (10

(10.4)

< s () (z\d&)

for € € (0, €], thanks to (85 and (€27). On the other hand, due to
Proposition [6.2 for any A > Ao, k£ # 0 and |n| < M we have

25 (e) _
lim €5 YO,k (Z\d (A, k ) =0 (10.5)

By virtue of the Lebesgue dominated convergence theorem we conclude
therefore that

lim | II.(k)dk = 0.

e—0+ T

Finally, we have

/ IIp(k)dk = € / S Wepd\ O +Y  dO+Y. (d )+ W, _dO}o(k)dk
T T
(10.6)



42 TOMASZ KOMOROWSKI AND STEFANO OLLA

The computation of the limit, as ¢ — 0+, of each of the four expressions
JJ(E), j=1,...,4 that arise in the right hand side after opening of the
bracket is almost identical so we explain only how to deal with the first
one. Using (5I3) we can write that J\9 = 25:1 J9 with (cf GI3))

15 >
SO = 2 / 51 dOTT ., (n, k) (k) dk,

o~

1y = [ (52d0) Westn. ety

In what follows we show that

: () _
lim Jf) = 0. (10.7)
and, cf (T.I4),
N Wy, (0)dy
51—1>I0n+ J7 = 51—1>I0n+ Ji7 = ¢(0) Ry dk. (10.8)

We repeat the above argument to compute the limits of the remaining
terms J}e) and obtain that, cf (9.30)

lim [ I .p(k)dk (10.9)
T

e—0+

— o(0) / det D (W (0)ds + T (0)d + Vo (0)(dy)* + W (0)d, )k

:QP(O)/RQ%#()\,H, k)dk.

10.1.1. Proof of ({I0.8). After the change of variables k' := k/e we can

write

1/(2¢) E—GdN(E)()\ 6]{,‘) . T )
)= / LRI (S kL <—+k+ﬂ) ck)dk.
1 ; ~1/20) € %0c(A,m, €k) i (6 2>¢ € 3 ) #ek)

(10.10)
Using the argument from the proof of Lemma I0.1] we conclude that
for any M > 0 and A > Ay, where \g, g > 0 are as in the statement of
Proposition [6.1],

e5d\9 (N, n, ek)

€80, (\, 7, ek)
for all k € R, [n] < M and € € (0,€]. Due to the decay of the wave
function ¢ we conclude that

1/(2¢) E—GCZ(E)()\ 6/{:) . R
lim J© = i 1 AT B (e Y G (e 4+ 1Y ek di.

<1, (10.11)
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Thanks to (I0.I1) to compute the last limit we can use the Lebesgue
dominated convergence and conclude, using ([9.34]) and (0.38]), that the
right hand side of the above equality coincides with the right hand side

of (ION).

10.1.2. Proof of (10.7). Using condition ([ZI2) we conclude that for
some 1 > 1

sup/ |/V[767+(77, k)|'dk < 4o0. (10.12)
n Jr

Combining the above with estimate (I0.4]) together with the limit (10.5])
we conclude that for any A > A\ and |n| < M

d\ (A n, k) i
o (A, k)

Jim ¢ /\WH 0, K)o ()

This obviously implies (I0.7).

10.2. Proof of (TI8). We use the notation from Section B4 and carry
out our analysis only for y. 4, as the argument for y, _ is very similar.
For any ¢ € C(T) we have

/ye()\,q, k)(pdk;:/]Egodk+/ﬂegodk+/Hlﬁwdk—i-/]‘/egodk.
T T T T

T

(10.13)

The analysis of the terms on the right hand side of (I0.I3) is very
similar to the one done in Section [[0.1.21 As a result we obtain

hm (|I|+|][[|+|N|)dk—0

e—0
In addition,
lim | ILdk (10.14)
=0+ Jp
= ©(0) / det D™ YWy od_ + Yy ody+ Yy (dy)* + Wy _d_}dk
R
= 0(0) [ o

and ([L.I8) follows.
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11. PROOF OF THEOREM [B.1]

Suppose that k(t,y) and p(t,y) satisfy (B.I)). Then, QAS(t, k) — the
Fourier transform of

T: .
Zr(t,y) +ip(t,y)

(t,y) =

satisfies

%é(t, K) = —ina(mh)6(t, k) — 697k |94, k) — ()" (1, k)| . (11.1)
Let
De(t, k) = EDO(t, ek).
From (B5.I8) we obtain

—iw(ek) =
2

'J}e(ta k) - fyR(Ek)

d ES IS

St k) = [t ) = (Do (t,—h)]
(11.2)

After a straightforward calculation we obtain, using (2.13)) that for any

G € C°(R)

/RG( )6 (y)dy = lim EZG ex) (i), = lim Ré(k)@ig (0, —k) dk.

e—0+
(11.3)
Since
lim w(ck) = nr?k? and R(Zk) = 6m2k?,
e—0+ € €

uniformly on compact intervals, an elementary stability theory for
solutions of ordinary differential equations guarantees that for any
T, M > 0 we have

Gelt k) = (1+ 0(1)O (8, k), (11.4)

uniformly on |[k| < M, [t] < T, as e < 1, where ¢e ( k) satisfies

(ITJ) with the initial condition w( (0, %) == (0, k). Equation (ITI)

can be solved explicitly. Taking into account (II.3)) we obtain, upon
letting € — 0+, that

lim [ G(k)b® (¢ dk_/G (k) (¢, (11.5)

e—0+ R
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fay ~

where v (t, k) satisfies (III]) with the initial @;(0, k) := ¢(0, k). There-
fore ¥(t, k) = ¢(t, k) and, in conclusion,

lim EZG ) B (t) = lim | Gk)v. (¢, —k) dk

e—0+ =0+ Jp
/ G(k) (¢, —k) dk = / Gly
O
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