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We derive sufficient conditions ensuring the existence of a weak solution u for fractional Euler-Lagrange equations of the type:

on a real interval [a, b] and where D α -and D α + are the fractional derivatives of Riemann-Liouville of order 0 < α < 1.

1. Introduction 1.1. Context in the fractional calculus. -The mathematical field that deals with derivatives of any real order is called fractional calculus. For a long time, it was only considered as a pure mathematical branch. Nevertheless, during the last two decades, fractional calculus has attracted the attention of many researchers and it has been successfully applied in various areas like computational biology [START_REF] Magin | Fractional calculus models of complex dynamics in biological tissues[END_REF] or economy [START_REF] Comte | Opérateurs fractionnaires en économétrie et en finance[END_REF]. In particular, the first and well-established application of fractional operators was in the physical context of anomalous diffusion, see [START_REF] Zoia | Continuous-time random-walk model of transport in variably saturated heterogeneous porous media[END_REF][START_REF] Zoia | Mass transport subject to time-dependent flow with nonuniform sorption in porous media[END_REF] for example. Let us mention [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF] proving that fractional equations is a complementary tool in the description of anomalous transport processes. We refer to [START_REF] Hilfer | Applications of fractional calculus in physics[END_REF] for a general review of the applications of fractional calculus in several fields of Physics. In a more general point of view, fractional differential equations are even considered as an alternative model to non-linear differential equations, see [START_REF] Bonilla | Fractional differential equations as alternative models to nonlinear differential equations[END_REF].

For the origin of the calculus of variations with fractional operators, we should look back to 1996-97 when Riewe used non-integer order derivatives to better describe non conservative systems in mechanics [START_REF] Riewe | Nonconservative Lagrangian and Hamiltonian mechanics[END_REF][START_REF] Riewe | Mechanics with fractional derivatives[END_REF]. Since then, numerous works on the fractional variational calculus have been made. For instance, in the same spirit, authors of [START_REF] Cresson | Lagrangian for the convection-diffusion equation[END_REF][START_REF] Cresson | Variational formulations of differential equations and asymmetric fractional embedding[END_REF] have recently derived fractional variational structures for non conservative equations. Furthermore, one can find a comprehensive literature regarding necessary optimality conditions and Noether's theorem, see [START_REF] Bourdin | Formulation of Euler-Lagrange equations for fractional variational problems[END_REF][START_REF] Almeida | A fractional calculus of variations for multiple integrals with application to vibrating string[END_REF][START_REF] Baleanu | Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives[END_REF][START_REF] Bourdin | A continuous/discrete fractional Noether's theorem[END_REF][START_REF] Frederico | A formulation of Noether's theorem for fractional problems of the calculus of variations[END_REF][START_REF] Odzijewicz | Fractional variational calculus with classical and combined Caputo derivatives[END_REF]. Concerning the state of the art on the fractional calculus of variations and respective fractional Euler-Lagrange equations, we refer the reader to the recent book [START_REF] Malinowska | Introduction to the fractional calculus of variations[END_REF].

In the whole paper, we consider a < b two reals, d ∈ N * and the following Lagrangian functional

L(u) = b a L(u, D α -u, t) dt, (1) 
where L is a Lagrangian, i.e. a map of the form:

L : R d × R d × [a, b] -→ R (x, y, t) -→ L(x, y, t), (2) 
where D α -is the left fractional derivative of Riemann-Liouville of order 0 < α < 1 and where the variable u is a function defined almost everywhere (shortly a.e.) on (a, b) with values in R d . The precise definitions of the fractional operators of Riemann-Liouville will be recalled in Section 2.2. It is well-known that critical points of the functional L are characterized by the solutions of the fractional Euler-Lagrange equation:

∂L ∂x (u, D α -u, t) + D α + ∂L ∂y (u, D α -u, t) = 0, (EL α )
where D α + is the right fractional derivative of Riemann-Liouville, see detailed proofs in [START_REF] Bourdin | Formulation of Euler-Lagrange equations for fractional variational problems[END_REF][START_REF] Baleanu | Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives[END_REF] for example. However, as far as the author is aware and despite particular results in [START_REF] Jiao | Existence of solutions for a class of fractional boundary value problems via critical point theory[END_REF][START_REF] Klimek | Existence -uniqueness result for a certain equation of motion in fractional mechanics[END_REF], no existence result of a solution for (EL α ) exists in a general case.

The aim of this paper is to derive sufficient conditions on L so that (EL α ) admits a weak solution.

Let us note that, in a more general setting, existence results for fractional equations is an emerging field. For instance, there are recent results about existence and uniqueness of solution for a class of fractional evolution equations in [START_REF] Wang | A class of fractional evolution equations and optimal controls[END_REF][START_REF] Zhou | Nonlocal Cauchy problem for fractional evolution equations[END_REF]. Let us enunciate the main result of the paper: Theorem 1. -Let L be a Lagrangian of class C 1 and 0 < (1/p) < α < 1. If L satisfies the following hypotheses denoted by (H 1 ), (H 2 ), (H 3 ), (H 4 ) and (H 5 ):

-

there exist 0 ≤ d 1 ≤ p and r 1 , s 1 ∈ C (R d × [a, b], R + ) such that: ∀(x, y, t) ∈ R d × R d × [a, b], |L(x, y, t) -L(x, 0, t)| ≤ r 1 (x, t) y d 1 + s 1 (x, t); (H 1 ) -there exist 0 ≤ d 2 ≤ p and r 2 , s 2 ∈ C (R d × [a, b], R + ) such that: ∀(x, y, t) ∈ R d × R d × [a, b], ∂L ∂x (x, y, t) ≤ r 2 (x, t) y d 2 + s 2 (x, t); (H 2 ) -there exist 0 ≤ d 3 ≤ p -1 and r 3 , s 3 ∈ C (R d × [a, b], R + ) such that: ∀(x, v, t) ∈ R d × R d × [a, b], ∂L ∂y (x, y, t) ≤ r 3 (x, t) y d 3 + s 3 (x, t); (H 3 ) -coercivity condition: there exist γ > 0, 1 ≤ d 4 < p, c 1 ∈ C (R d × [a, b], [γ, ∞[), c 2 , c 3 ∈ C ([a, b], R) such that: ∀(x, y, t) ∈ R d × R d × [a, b], L(x, y, t) ≥ c 1 (x, t) y p + c 2 (t) x d 4 + c 3 (t); (H 4 ) -convexity condition: ∀t ∈ [a, b], L(•, •, t) is convex, ( H 5 ) 
then (EL α ) admits a weak solution.

Hypotheses denoted by (H 1 ), (H 2 ), (H 3 ) are usually called regularity hypotheses, see [START_REF] Cesari | Optimization-theory and applications[END_REF][START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]. In Section 5, we prove that Hypothesis (H 5 ) can be replaced by different convexity assumptions.

1.3. Idea of the proof of Theorem 1. -In the classical case α = 1, D 1 -= -D 1 + = d/dt and consequently (EL α ) is nothing else but the classical Euler-Lagrange equation formulated in the 1750's. In this case, a lot of results of existence of solutions have been already proved. Let us recall that there exist different approaches:

-A first approach is to develop the classical Euler-Lagrange equation in order to obtain an implicit second order differential equation, see [START_REF] Godbillon | Géométrie différentielle et mécanique analytique[END_REF]. Then, under a hyper regularity or non singularity condition on the Lagrangian L, the equation can be written as an explicit second order differential equation and the Cauchy-Lipschitz theorem gives the existence of local or global regular solutions; -A second approach consists in using the variational structure of the equation, see [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF].

Indeed, under some assumptions, the critical points of L correspond to the solutions of the classical Euler-Lagrange equation. The idea is then to prove the existence of critical points of L. In this way, author makes some assumptions (like coercivity and convexity of the Lagrangian L) ensuring the existence of extrema of L. With this second method, author has to use reflexive spaces of functions and consequently, he deals with weak solutions (in a specific sense). In order to prove Theorem 1, we extend the second approach to the strict fractional case (i.e. 0 < α < 1). Indeed, although there exist fractional versions of the Cauchy-Lipschitz theorem (see [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF]), there is no simple rules for the fractional derivative of a composition and consequently, we can not write (EL α ) in a simpler way. Hence, in the strict fractional case, we can not follow the first method.

Theorem 1 is based on the following preliminaries:

-The introduction in Section 3 of an appropriate reflexive separable Banach space E α,p (see [START_REF] Hilfer | Applications of fractional calculus in physics[END_REF]); -Assuming Hypotheses (H 1 ), (H 2 ) and (H 3 ), Theorem 2 in Section 4 states that if u is a critical point of L, then u is a weak solution of (EL α ); -Assuming additionally Hypotheses (H 4 ) and (H 5 ), Theorem 3 in Section 5 states that L admits a global minimizer. Hence, the proof of Theorem 1 is complete. Let us note that the method developed in this paper is inspired by:

the reflexive separable Banach space introduced in [START_REF] Jiao | Existence of solutions for a class of fractional boundary value problems via critical point theory[END_REF] allowing to prove the existence of a weak solution for a class of fractional boundary value problems;

the suitable hypotheses of regularity, coercivity and convexity given in [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF] proving the existence of a weak solution for classical Euler-Lagrange equations (i.e. in the case α = 1).

1.4. Organisation of the paper. -The paper is organized as follows. In Section 2, some usual notations of spaces of functions are given. We recall the definitions of the fractional operators of Riemann-Liouville and some of their properties. Section 3 is devoted to the introduction and to the study of the appropriate reflexive separable Banach space E α,p . In Section 4, the variational structure of (EL α ) is considered and we prove Theorem 2. In Section 5, we prove Theorem 3. Then, Section 6 is devoted to some examples. Finally, a conclusion ends this paper. 

-C ∞ := C ∞ ([a, b]; R d ) the space of infinitely differentiable functions; -C ∞ c := C ∞ c ([a, b]; R d
) the space of infinitely differentiable functions and compactly supported in ]a, b[. We remind that a function f is an element of AC if and only if ḟ ∈ L 1 and the following equality holds:

∀t ∈ [a, b], f (t) = f (a) + t a ḟ (ξ) dξ, (3) 
where ḟ denotes the derivative of f . We refer to [START_REF] Kolmogorov | Eléments de la théorie des fonctions et de l'analyse fonctionnelle[END_REF] for more details concerning the absolutely continuous functions.

Finally, we denote by C a (resp.

AC a or C ∞ a ) the space of functions f ∈ C (resp. AC or C ∞ ) such that f (a) = 0. In particular, C ∞ c ⊂ C ∞ a ⊂ AC a .
Convention: in the whole paper, an equality between functions must be understood as an equality holding for almost all t ∈ (a, b). When it is not the case, the interval on which the equality is valid will be specified.

2.2.

Fractional operators of Riemann-Liouville. -Since 1695, numerous notions of fractional operators emerged over the year, see [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF]. In this paper, we only deal with the fractional operators of Riemann-Liouville (1847) whose definitions and some basic results are reminded in this section. We refer to [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF] for the omitted proofs.

Let α > 0 and f be a function defined a.e. on (a, b) with values in R d . The left (resp. right) fractional integral in the sense of Riemann-Liouville with inferior limit a (resp. superior limit b) of order α of f is given by:

∀t ∈]a, b], I α -f (t) := 1 Γ(α) t a (t -ξ) α-1 f (ξ) dξ, (4) respectively 
: ∀t ∈ [a, b[, I α + f (t) := 1 Γ(α) b t (ξ -t) α-1 f (ξ) dξ, (5) 
where Γ denotes the Euler's Gamma function. If f ∈ L 1 , then I α -f and I α + f are defined a.e. on (a, b). Now, let us consider 0 < α < 1. The left (resp. right) fractional derivative in the sense of Riemann-Liouville with inferior limit a (resp. superior limit b) of order α of f is given by:

∀t ∈]a, b], D α -f (t) := d dt I 1-α -f (t) resp. ∀t ∈ [a, b[, D α + f (t) := - d dt I 1-α + f (t) . (6) 
From [17, Corollary 2.2, p.73], if f ∈ AC, then D α -f and D α + f are defined a.e. on (a, b) and satisfy:

D α -f = I 1-α - ḟ + f (a) (t -a) α Γ(1 -α) and D α + f = -I 1-α + ḟ + f (b) (b -t) α Γ(1 -α) . (7) 
In particular, if

f ∈ AC a , then D α -f = I 1-α - ḟ .
2.3. Some properties of the fractional operators. -In this section, we provide some properties concerning the left fractional operators of Riemann-Liouville. One can easily derive the analogous versions for the right ones. Properties 1, 2 and 3 are well-known and one can find their proofs in the classical literature on the subject (see [ The first result yields the semi-group property of the left Riemann-Liouville fractional integral:

Property 1.
-For any α, β > 0 and any function f ∈ L 1 , the following equality holds:

I α -• I β -f = I α+β -f. (8) 
From Property 1 and Equalities ( 6) and ( 7), one can easily deduce the following results concerning the composition between fractional integral and fractional derivative. For any 0 < α < 1, the following equalities hold:

∀f ∈ L 1 , D α -• I α -f = f and ∀f ∈ AC, I α -• D α -f = f. (9) 
Another classical result is the boundedness of the left fractional integral from L p to L p : Property 2. -For any α > 0 and any p ≥ 1, I α -is linear and continuous from L p to L p . Precisely, the following inequality holds:

∀f ∈ L p , I α -f L p ≤ (b -a) α Γ(1 + α) f L p . ( 10 
)
The following classical property concerns the integration of fractional integrals. It is occasionally called fractional integration by parts:

Property 3. -Let 0 < α < 1. Let f ∈ L p and g ∈ L q
where (1/p) + (1/q) ≤ 1 + α (and p = 1 = q in the case (1/p) + (1/q) = 1 + α). Then, the following equality holds:

b a I α -f • g dt = b a f • I α + g dt. (11) 
This change of side of the fractional integral (from I α -to I α + ) is responsible of the emergence of D α + in (EL α ) although only D α -is involved in the Lagrangian functional L. We refer to Section 4.2 for more details.

The following Property 4 completes Property 2 in the case 0 < (1/p) < α < 1: indeed, in this case, I α -is additionally bounded from L p to C a : Property 4. -Let 0 < (1/p) < α < 1 and q = p/(p -1). Then, for any f ∈ L p , we have:

-I α -f is Holdër continuous on ]a, b] with exponent α -(1/p) > 0; -lim t→a I α -f (t) = 0.
Consequently, I α -f can be continuously extended by 0 in t = a. Finally, for any f ∈ L p , we have I α -f ∈ C a . Moreover, the following inequality holds:

∀f ∈ L p , I α -f ∞ ≤ (b -a) α-(1/p) Γ(α) (α -1)q + 1 1/q f L p . ( 12 
)
Proof. -Let us note that this result is mainly proved in [START_REF] Jiao | Existence of solutions for a class of fractional boundary value problems via critical point theory[END_REF]. Let f ∈ L p . We first remind the following inequality:

∀ξ 1 ≥ ξ 2 ≥ 0, (ξ 1 -ξ 2 ) q ≤ ξ q 1 -ξ q 2 . ( 13 
) Let us prove that I α -f is Holdër continuous on ]a, b].
For any a < t 1 < t 2 ≤ b, using the Hölder's inequality, we have:

I α -f (t 2 ) -I α -f (t 1 ) = 1 Γ(α) t 2 a (t 2 -ξ) α-1 f (ξ) dξ - t 1 a (t 1 -ξ) α-1 f (ξ) dξ ≤ 1 Γ(α) t 2 t 1 (t 2 -ξ) α-1 f (ξ) dξ + 1 Γ(α) t 1 a (t 2 -ξ) α-1 -(t 1 -ξ) α-1 f (ξ) dξ ≤ f L p Γ(α) t 2 t 1 (t 2 -ξ) (α-1)q dξ 1/q + f L p Γ(α) t 1 a (t 1 -ξ) α-1 -(t 2 -ξ) α-1 q dξ 1/q ≤ f L p Γ(α) t 2 t 1 (t 2 -ξ) (α-1)q dξ 1/q + f L p Γ(α) t 1 a (t 1 -ξ) (α-1)q -(t 2 -ξ) (α-1)q dξ 1/q ≤ 2 f L p Γ(α) (α -1)q + 1 1/q (t 2 -t 1 ) α-(1/p) .
The proof of the first point is complete. Let us consider the second point. For any t ∈]a, b], we can prove in the same manner that:

I α -f (t) ≤ f L p Γ(α) (α -1)q + 1 1/q (t -a) α-(1/p) --→ t→a 0. ( 14 
)
The proof is now complete.

Space of functions E α,p

In order to prove the existence of a weak solution of (EL α ) using a variational method, we need the introduction of an appropriate space of functions. This space has to present some properties like reflexivity, see [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF].

For any 0 < α < 1 and any p ≥ 1, we define the following space of functions:

E α,p := {u ∈ L p satisfying D α -u ∈ L p and I α -• D α -u = u a.e.}. (15) 
We endow E α,p with the following norm:

• α,p : E α,p -→ R + u -→ u p L p + D α -u p L p 1/p . ( 16 
)
Let us note that:

| • | α,p : E α,p -→ R + u -→ D α -u L p (17) 
is an equivalent norm to • α,p for E α,p . Indeed, Property 2 leads to:

∀u ∈ E α,p , u L p = I α -• D α -u L p ≤ (b -a) α Γ(1 + α) D α -u L p . (18) 
The goal of this section is to prove the following proposition:

Proposition 1. -Assuming 0 < (1/p) < α < 1, E α,p
is a reflexive separable Banach space and the compact embedding E α,p ֒։ C a holds.

Then, in the rest of the paper, we consider: 0 < (1/p) < α < 1 and q = p/(p -1).

Let us detail the different points of Proposition 1 in the following subsections.

3.1. E α,p is a reflexive separable Banach space. -Let us prove this property. Let us consider (L p ) 2 the set L p × L p endowed with the norm (u, v)

(L p ) 2 = ( u p L p + v p L p ) 1/p . Since p > 1, (L p , • L p )
is a reflexive separable Banach space and therefore, (L p ) 2 , • (L p ) 2 is also a reflexive separable Banach space.

We define

Ω := {(u, D α -u), u ∈ E α,p }. Let us prove that Ω is a closed subspace of (L p ) 2 , • (L p ) 2 . Let (u n , v n ) n∈N ⊂ Ω such that: (u n , v n ) (L p ) 2 ---→ (u, v). ( 20 
)
Let us prove that (u, v) ∈ Ω. For any n ∈ N, (u n , v n ) ∈ Ω. Thus, u n ∈ E α,p and v n = D α -u n . Consequently, we have:

u n L p -→ u and D α -u n L p -→ v. ( 21 
) For any n ∈ N, since u n ∈ E α,p and I α -is continuous from L p to L p , we have:

u n = I α -• D α -u n L p -→ I α -v. (22) 
Thus,

u = I α -v, D α -u = D α -• I α -v = v ∈ L p and I α -• D α -u = I α -v = u. Hence, u ∈ E α,p and (u, v) = (u, D α -u) ∈ Ω.
In conclusion, Ω is a closed subspace of (L p ) 2 , • (L p ) 2 and then Ω is a reflexive separable Banach space. Finally, defining the following operator:

A : E α,p -→ Ω u -→ (u, D α -u), (23) 
we prove that E α,p is isometric isomorphic to Ω. This completes the proof of Section 3.1.

The continuous embedding

E α,p ֒→ C a . -Let us prove this result. Let u ∈ E α,p and then D α -u ∈ L p . Since 0 < (1/p) < α < 1, Property 4 leads to I α -• D α -u ∈ C a . Furthermore, u = I α -• D α -u
and consequently, u can be identified to its continuous representative. Finally, Property 4 also gives:

∀u ∈ E α,p , u ∞ = I α -• D α -u ∞ ≤ (b -a) α-(1/p) Γ(α) (α -1)q + 1 1/q |u| α,p . (24) 
Since • α,p and | • | α,p are equivalent norms, the proof of Section 3.2 is complete.

3.3. The compact embedding E α,p ֒։ C a .
-Let us prove this property. Since E α,p is a reflexive Banach space, we only have to prove that:

∀(u n ) n∈N ⊂ E α,p such that u n Eα,p ---⇀ u, then u n C -→ u. (25) 
Let (u n ) n∈N ⊂ E α,p such that:

u n Eα,p ---⇀ u. (26) 
Since E α,p ֒→ C a , we have:

u n C -⇀ u. (27) Since (u n ) n∈N converges weakly in E α,p , (u n ) n∈N is bounded in E α,p . Consequently, (D α -u n ) n∈N is bounded in L p by a constant M ≥ 0. Let us prove that (u n ) n∈N ⊂ C a is uniformly lipschitzian on [a, b].
According to the proof of Property 4, we have:

∀n ∈ N, ∀a ≤ t 1 < t 2 ≤ b, u n (t 2 ) -u n (t 1 ) ≤ I α -• D α -u n (t 2 ) -I α -• D α -u n (t 1 ) ≤ 2 D α -u n L p Γ(α) (α -1)q + 1 1/p (t 2 -t 1 ) α-(1/p) ≤ 2M Γ(α) (α -1)q + 1 1/p (t 2 -t 1 ) α-(1/p) .
Hence, from Ascoli's theorem, (u n ) n∈N is relatively compact in C . Consequently, there exists a subsequence of (u n ) n∈N converging strongly in C and the limit is u by uniqueness of the weak limit. Now, let us prove by contradiction that the whole sequence (u n ) n∈N converges strongly to u in C . If not, there exist ε > 0 and a subsequence (u n k ) k∈N such that:

∀k ∈ N, u n k -u ∞ > ε > 0. ( 28 
)
Nevertheless, since (u n k ) k∈N is a subsequence of (u n ) n∈N , then it satisfies:

u n k Eα,p ---⇀ u. (29) 
In the same way (using Ascoli's theorem), we can construct a subsequence of (u n k ) k∈N converging strongly to u in C which is a contradiction to [START_REF] Riewe | Nonconservative Lagrangian and Hamiltonian mechanics[END_REF]. The proof of Section 3.3 is now complete.

3.4.

Remarks. -Let us remind the following property:

∀ϕ ∈ C ∞ c , I α -ϕ ∈ C ∞ a . (30) 
From this result, we get the two following results:

-

C ∞ a is dense in E α,p . Indeed, let us first prove that C ∞ a ⊂ E α,p . Let u ∈ C ∞ a ⊂ L p . Since u ∈ AC a and u ∈ L p , we have D α -u = I 1-α - u ∈ L p . Since u ∈ AC, we also have I α -• D α -u = u. Finally, u ∈ E α,p . Now, let us prove that C ∞ a is dense in E α,p . Let u ∈ E α,p , then D α -u ∈ L p . Consequently, there exists (v n ) n∈N ⊂ C ∞ c such that: v n L p -→ D α -u and then I α -v n L p -→ I α -• D α -u = u, (31) 
since

I α -is continuous from L p to L p . Defining u n := I α -v n ∈ C ∞ a for any n ∈ N, we obtain: u n L p -→ u and D α -u n = D α -• I α -v n = v n L p -→ D α -u. (32) 
Finally, (u n ) n∈N ⊂ C ∞ a and converges to u in E α,p . The proof of this point is complete;

-In the case (1/p) < min(α, 1 -α), E α,p = {u ∈ L p satisfying D α -u ∈ L p }. Indeed, let u ∈ L p satisfying D α -u ∈ L p and let us prove that I α -• D α -u = u. Let ϕ ∈ C ∞ c ⊂ L 1 . Since D α -u ∈ L p , Property 3 leads to: b a I α -• D α -u • ϕ dt = b a D α -u • I α + ϕ dt = b a d dt (I 1-α -u) • I α + ϕ dt. (33) 
Then, an integration by parts gives:

b a I α -• D α -u • ϕ dt = b a I 1-α -u • D 1-α + ϕ dt. (34) 
Indeed, I α + ϕ(b) = 0 since ϕ ∈ C ∞ c and I 1-α -u(a) = 0 since u ∈ L p and (1/p) < 1 -α. Finally, using Property 3 again, we obtain:

b a I α -• D α -u • ϕ dt = b a u • I 1-α + • D 1-α + ϕ dt = b a u • ϕ dt, (35) 
which concludes the proof of this second point. In this case, let us note that such a definition of E α,p could lead us to name it fractional Sobolev space and to denote it by W α,p . Nevertheless, these notion and notation are already used, see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF].

4. Variational structure of (EL α )

In the rest of the paper, we assume that Lagrangian L is of class C 1 and we define the Lagrangian functional L on E α,p (with 0 < (1/p) < α < 1). Precisely, we define:

L : E α,p -→ R u -→ b a L(u, D α -u, t) dt. (36) 
L is said to be Gâteaux-differentiable in u ∈ E α,p if the map:

DL(u) : E α,p -→ R v -→ DL(u)(v) := lim h→0 L(u + hv) -L(u) h (37)
is well-defined for any v ∈ E α,p and if it is linear and continuous. A critical point u ∈ E α,p of L is defined by DL(u) = 0.

4.1. Gâteaux-differentiability of L. -Let us prove the following lemma:

Lemma 1.
-The following implications hold:

-L satisfies (H 1 ) =⇒ for any u ∈ E α,p , L(u, D α -u, t) ∈ L 1 and then L(u) exists in R; -L satisfies (H 2 ) =⇒ for any u ∈ E α,p , ∂L/∂x(u, D α -u, t) ∈ L 1 ; -L satisfies (H 3 ) =⇒ for any u ∈ E α,p , ∂L/∂y(u, D α -u, t) ∈ L q .
Proof. -Let us assume that L satisfies (H 1 ) and let

u ∈ E α,p ⊂ C a . Then, D α -u d 1 ∈ L p/d 1 ⊂ L 1 and the three maps t -→ r 1 u(t), t , s 1 u(t), t , |L u(t), 0, t | ∈ C ([a, b], R + ) ⊂ L ∞ ⊂ L 1 . Hypothesis (H 1 ) implies for almost all t ∈ [a, b]: |L(u(t), D α -u(t), t)| ≤ r 1 (u(t), t) D α -u(t) d 1 + s 1 (u(t), t) + |L(u(t), 0, t)|. ( 38 
)
Hence, L(u, D α -u, t) ∈ L 1 and then L(u) exists in R. We proceed in the same manner in order to prove the second point of Lemma 1. Now, assuming that L satisfies (H 3 ), we have D α -u d 3 ∈ L p/d 3 ⊂ L q for any u ∈ E α,p . An analogous argument gives the third point of Lemma 1.

Let us prove the following result:

Proposition 2. -Assuming that L satisfies Hypotheses (H 1 ), (H 2 ) and (H 3 ), L is Gâteauxdifferentiable in any u ∈ E α,p and:

∀u, v ∈ E α,p , DL(u)(v) = b a ∂L ∂x (u, D α -u, t) • v + ∂L ∂y (u, D α -u, t) • D α -v dt. ( 39 
) Proof. -Let u, v ∈ E α,p ⊂ C a . Let ψ u,v defined for any h ∈ [-1, 1] and for almost all t ∈ [a, b] by: ψ u,v (t, h) := L u(t) + hv(t), D α -u(t) + hD α -v(t), t . (40) 
Then, we define the following mapping:

φ u,v : [-1, 1] -→ R h -→ b a L(u + hv, D α -u + hD α -v, t) dt = b a ψ u,v (t, h) dt. ( 41 
)
Our aim is to prove that the following term:

DL(u)(v) = lim h→0 L(u + hv) -L(u) h = lim h→0 φ u,v (h) -φ u,v (0) h = φ ′ u,v (0) (42)
exists in R. In order to differentiate φ u,v , we use the theorem of differentiation under the integral sign. Indeed, we have for almost all

t ∈ [a, b], ψ u,v (t, •) is differentiable on [-1, 1] with: ∀h ∈ [-1, 1], ∂ψ u,v ∂h (t, h) = ∂L ∂x u(t) + hv(t), D α -u(t) + hD α -v(t), t • v(t) + ∂L ∂y u(t) + hv(t), D α -u(t) + hD α -v(t), t • D α -v(t). (43) 
Then, from Hypotheses (H 2 ) and (H 3 ), we have for any h ∈ [-1, 1] and for almost all t ∈ [a, b]:

∂ψ u,v ∂h (t, h) ≤ r 2 u(t) + hv(t), t D α -u(t) + hD α -v(t) d 2 + s 2 u(t) + hv(t), t v(t) + r 3 u(t) + hv(t), t D α -u(t) + hD α -v(t) d 3 + s 3 u(t) + hv(t), t D α -v(t) . (44) 
We define:

r 2,0 := max (t,h)∈[a,b]×[-1,1] r 2 u(t) + hv(t), t (45) 
and we define similarly s 2,0 , r 3,0 , s 3,0 . Finally, it holds:

∂ψ u,v ∂h (t, h) ≤ 2 d 2 r 2,0 ( D α -u(t) d 2 + D α -v(t) d 2 ∈L p/d 2 ⊂L 1 ) v(t) ∈Ca⊂L ∞ +s 2,0 v(t) ∈Ca⊂L 1 + 2 d 3 r 3,0 D α -u(t) d 3 + D α -v(t) d 3 ∈L p/d 3 ⊂L q ) D α -v(t) ∈L p +s 3,0 D α -v(t) ∈L p ⊂L 1 . (46) 
The right term is then a L 1 function independent of h. Consequently, applying the theorem of differentiation under the integral sign, φ u,v is differentiable with:

∀h ∈ [-1, 1], φ ′ u,v (h) = b a ∂ψ u,v ∂h (t, h) dt. (47) 
Hence:

DL(u)(v) = φ ′ u,v (0) = b a ∂ψ u,v ∂h (t, 0) dt = b a ∂L ∂x (u, D α -u, t) • v + ∂L ∂y (u, D α -u, t) • D α -v dt. (48) From Lemma 1, it holds: ∂L ∂x (u, D α -u, t) ∈ L 1 and ∂L ∂y (u, D α -u, t) ∈ L q . ( 49 
) Since v ∈ C a ⊂ L ∞ and D α -v ∈ L p , DL(u)(v) exists in R.
Moreover, we have:

|DL(u)(v)| ≤ ∂L ∂x (u, D α -u, t) L 1 v ∞ + ∂L ∂y (u, D α -u, t) L q D α -v L p ≤ (b -a) α-(1/p) Γ(α) (α -1)q + 1 1/q ∂L ∂x (u, D α -u, t) L 1 + ∂L ∂y (u, D α -u, t) L q |v| α,p .
Consequently, DL(u) is linear and continuous from E α,p to R. The proof is complete.

4.2. Sufficient condition for a weak solution. -In this section, we prove the following theorem:

Theorem 2. -Let us assume that L satisfies Hypotheses (H 1 ), (H 2 ) and (H 3 ). Then:

u is a critical point of L =⇒ u is a weak solution of (EL α ). (50) 
Proof. -Let u be a critical point of L. Then, we have in particular:

∀v ∈ C ∞ c , DL(u)(v) = b a ∂L ∂x (u, D α -u, t) • v + ∂L ∂y (u, D α -u, t) • D α -v dt = 0. ( 51 
) For any v ∈ C ∞ c ⊂ AC a , D α -v = I 1-α - v ∈ C ∞ a . Since ∂L/∂y(u, D α -u, t) ∈ L q , Property 3 gives: ∀v ∈ C ∞ c , b a ∂L ∂x (u, D α -u, t) • v + I 1-α + ∂L ∂y (u, D α -u, t) • v dt = 0. (52) 
Finally, we define:

∀t ∈ [a, b], w u (t) = t a ∂L ∂x (u, D α -u, t) dt. (53) 
Since ∂L/∂x(u, D α -u, t) ∈ L 1 , w u ∈ AC a and ẇu = ∂L/∂x(u, D α -u, t). Then, an integration by parts leads to:

∀v ∈ C ∞ c , b a I 1-α + ∂L ∂y (u, D α -u, t) -w u • v dt = 0. (54) 
Consequently, there exists a constant C ∈ R d such that:

I 1-α + ∂L ∂y (u, D α -u, t) = C + w u ∈ AC. (55) 
By differentiation, we obtain: Let us note that the use of Property 3 in the previous proof leads to the emergence of D α + in (EL α ) although L is only dependent of D α -. This asymmetry in (EL α ) is a strong drawback in order to solve it explicitly. However, from Theorem 1, the existence of a weak solution for (EL α ) will be guarantee.

-D α + ∂L ∂y (u, D α -u, t) = ∂L ∂x (u, D α -u, t), (56) 

Existence of a global minimizer of L

In this section, under assumptions (H 4 ) and (H 5 ), we prove the existence of a global minimizer u of L, see Theorem 3. Then, u is a critical point of L and then, according to Theorem 2, u is a weak solution of (EL α ). This concludes the proof of Theorem 1.

As usual in a variational method, in order to prove the existence of a global minimizer of a functional, coercivity and convexity hypotheses need to be added on the Lagrangian. We have already define Hypotheses (H 4 ) (coercivity) and (H 5 ) (convexity) in Section 1.2. In this section, we introduce two different convexity hypotheses (H ′ 5 ) and (H ′′ 5 ) under which Theorem 1 is still valid:

-Convexity hypothesis denoted by (H ′ 5 ):

∀(x, t) ∈ R d × [a, b], L(x, •, t) is convex and L(•, y, t) (y,t)∈R d ×[a,b] is uniformly equicontinuous on R d . (H ′ 5 )
We remind that the uniform equicontinuity of L(•, y, t) (y,t)∈R d ×[a,b] has to be understood as:

∀ε > 0, ∃δ > 0, ∀(x 1 , x 2 ) ∈ (R d ) 2 , x 2 -x 1 < δ =⇒ ∀(y, t) ∈ R d × [a, b], |L(x 2 , y, t) -L(x 1 , y, t)| < ε. ( 57 
)
Let us note that Hypotheses (H 5 ) and (H ′ 5 ) are independent.

-Convexity hypothesis denoted by (H ′′ 5 ):

∀(x, t) ∈ R d × [a, b], L(x, •, t) is convex.
(H ′′ 5 ) Hypothesis (H ′′ 5 ) is the weakest. Nevertheless, in this case, the detailed proof of Theorem 3 is more complicated. Consequently, in the case of Hypothesis (H ′′ 5 ), we do not develop the proof and we use a strong result proved in [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF].

Let us prove the following preliminary result: Lemma 2. -Let us assume that L satisfies Hypothesis (H 4 ). Then, L is coercive in the sense that: lim

u α,p→+∞ L(u) = +∞. ( 58 
)
Proof. -Let u ∈ E α,p , we have:

L(u) = b a L(u, D α -u, t) dt ≥ b a c 1 (u, t) D α -u p + c 2 (t) u d 4 + c 3 (t) dt. (59) 
Equation [START_REF] Kiryakova | Generalized fractional calculus and applications[END_REF] implies that:

u d 4 L d 4 ≤ (b -a) 1-d 4 p u d 4 L p ≤ (b -a) α+1- d 4 p Γ(α + 1) D α -u d 4 L p = (b -a) α+1- d 4 p Γ(α + 1) |u| d 4 α,p . (60) 
Finally, we conclude that: 

∀u ∈ E α,p , L(u) ≥ γ D α -u p L p -c 2 ∞ u d 4 L d 4 -(b -a) c 3 ∞ (61) ≥ γ|u| p α,p - c 2 ∞ (b -a) α+1- d 4 p Γ(α + 1) |u| d 4 α,p -(b -a) c 3 ∞ . ( 62 
L(u n ) -→ inf v∈Eα,p L(v) =: K. (63) 
Since L satisfies Hypothesis (H 1 ), L(u) ∈ R for any u ∈ E α,p . Hence, K < +∞. Let us prove by contradiction that (u n ) n∈N is bounded in E α,p . In the negative case, we can construct a subsequence (u n k ) k∈N satisfying u n k α,p → +∞. Since L satisfies Hypothesis (H 4 ), Lemma 2 gives:

K = lim k∈N L(u n k ) = +∞, (64) 
which is a contradiction. Hence, (u n ) n∈N is bounded in E α,p . Since E α,p is reflexive, there exists a subsequence still denoted by (u n ) n∈N converging weakly in E α,p to an element denoted by u ∈ E α,p . Let us prove that u is a global minimizer of L. Since:

u n Eα,p ---⇀ u and E α,p ֒։ C a , (65) 
we have:

u n C -→ u and D α -u n L p -⇀ D α -u. (66) 
Case L satisfies (H 5 ): by convexity, it holds for any n ∈ N:

L(u n ) = b a L(u n , D α -u n , t) dt ≥ b a L(u, D α -u, t) dt + b a ∂L ∂x (u, D α -u, t) • (u n -u) dt + b a ∂L ∂y (u, D α -u, t) • (D α -u n -D α -u) dt. (67) 
Since L satisfies Hypotheses (H 2 ) and (H 3 ), ∂L/∂x(u, D α -u, t) ∈ L 1 and ∂L/∂y(u, D α -u, t) ∈ L q . Consequently, using (66) and making n tend to +∞, we obtain:

K = inf v∈Eα,p L(v) ≥ b a L(u, D α -u, t) dt = L(u). (68) 
Consequently, u is a global minimizer of L.

Case L satisfies (H ′ 5 ): let ε > 0. Since (u n ) n∈N converges strongly in C to u, we have:

∃N ∈ N, ∀n ≥ N, u n -u ∞ < δ, ( 69 
)
where δ is given in the definition of (H ′ 5 ). In consequence, it holds a.e. on [a, b]:

∀n ≥ N, |L u n (t), D α -u n (t), t -L u(t), D α -u n (t), t | < ε. (70) 
Moreover, for any n ≥ N , we have:

L(u n ) = b a L(u, D α -u, t) dt + b a L(u n , D α -u n , t) -L(u, D α -u n , t) dt + b a L(u, D α -u n , t) -L(u, D α -u, t) dt. (71) 
Then, for any n ≥ N , it holds by convexity:

L(u n ) ≥ b a L(u, D α -u, t) dt - b a |L(u n , D α -u n , t) -L(u, D α -u n , t)| dt + b a ∂L ∂y (u, D α -u, t) • (D α -u n -D α -u) dt. (72) 
And, using Equation (70), we obtain for any n ≥ N :

L(u n ) ≥ b a L(u, D α -u, t) dt -ε(b -a) + b a ∂L ∂y (u, D α -u, t) • (D α -u n -D α -u) dt. (73) 
We remind that ∂L/∂y(u, D α -u, t) ∈ L q since L satisfies (H 3 ). Since (D α -u n ) n∈N converges weakly in L p to D α -u, we obtain by making n tend to +∞ and then by making ε tend to 0:

K = inf v∈Eα,p L(v) ≥ b a L(u, D α -u, t) dt = L(u). (74) 
Consequently, u is a global minimizer of L.

Case L satisfies (H ′′ 5 ): we refer to Theorem 3.23 in [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]. Finally, combining Theorems 2 and 3, the proof of Theorem 1 is now complete.

Examples

Let us consider some examples of Lagrangian L satisfying Hypotheses of Theorem 1. Consequently, the fractional Euler-Lagrange equation (EL α ) associated admits a weak solution u ∈ E α,p .

The most classical example is the Dirichlet integral, i.e. the Lagrangian functional associated to the Lagrangian L given by: L(x, y, t) = 1 2 y 2 .

(75)

In this case, L satisfies Hypotheses (H 1 ), (H 2 ), (H 3 ), (H 4 ) and (H 5 ) for p = 2. Hence, the fractional Euler-Lagrange equation (EL α ) associated admits a weak solution in E α,p for (1/2) < α < 1.

In a more general case, the following Lagrangian L: L(x, y, t) = 1 p y p + a(x, t),

where p > 1 and a ∈ C 1 (R d × [a, b], R + ), satisfies Hypotheses (H 1 ), (H 2 ), (H 3 ), (H 4 ) and (H ′′ 5 ). Consequently, the fractional Euler-Lagrange equation (EL α ) associated to L admits a weak solution in E α,p for any (1/p) < α < 1. Let us note that if for any t ∈ [a, b], a(•, t) is convex, then L satisfies Hypothesis (H 5 ).

In the unidimensional case d = 1, let us take a Lagrangian with a second term linear in its first variable, i.e.:

L(x, y, t) = 1 p |y| p + f (t)x, (77) 
where p > 1 and f ∈ C 1 ([a, b], R). Then, L satisfies Hypotheses (H 1 ), (H 2 ), (H 3 ), (H 4 ) and (H 5 ). Then, the fractional Euler-Lagrange equation (EL α ) associated admits a weak solution in E α,p for any (1/p) < α < 1.

Theorem 1 is a result based on strong conditions on Lagrangian L. Consequently, some Lagrangian do not satisfy all hypotheses of Theorem 1. We can cite the Bolza's example in dimension d = 1 given by: L(x, y, t) = (y 2 -1) 2 + x 4 .

(78) L does not satisfy Hypothesis (H 4 ) neither Hypothesis (H ′′ 5 ). Nevertheless, as usual with variational methods, the conditions of regularity, coercivity and/or convexity can often be replaced by weaker assumptions specific to the studied problem. As an example, we can cite [START_REF] Sidi Ammi | Regularity of solutions to higher-order integrals of the calculus of variations[END_REF] and references therein about higher-order integrals of the calculus of variations. Indeed, in this paper, it is proved that calculus of variations is still valid with weaker regularity assumptions.

Conclusion

The method developed in this paper gives a framework in order to study the existence of weak solutions for fractional Euler-Lagrange equations. In this paper, we have studied the special case of a Lagrangian functional involving fractional derivatives of Riemann-Liouville. Nevertheless, such a method can also be developed in the case of fractional derivatives of Caputo or Hadamard. Indeed, these operators satisfy similar properties than Riemann-Liouville's ones, see [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF]. In fact, the same method can be developed in the case of general linear operators used in [START_REF]Generalized variational problems and Euler-Lagrange equations[END_REF][START_REF] Kiryakova | Generalized fractional calculus and applications[END_REF][START_REF] Odzijewicz | Fractional calculus of variations in terms of a generalized fractional integral with applications to Physics[END_REF][START_REF] Odzijewicz | Generalized fractional calculus with applications to the calculus of variations[END_REF]: this is the aim of a forthcoming paper.
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