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Abstract

We study dynamic minimization problems of the calculus of variations with

Lagrangian functionals containing Riemann–Liouville fractional integrals, classi-

cal and Caputo fractional derivatives. Under assumptions of regularity, coercivity

and convexity, we prove existence of solutions.

AMS Subject Classifications: 26A33; 49J05.
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1 Introduction

For the origin of the calculus of variations with fractional operators we should look

back to 1996-97, when Riewe used non-integer order derivatives to better describe non-

conservative systems in mechanics [22, 23]. Since then, numerous works on the frac-

tional variational calculus have been written. In particular, we can find a comprehen-

sive literature regarding necessary optimality conditions and Noether’s theorem (see,

e.g., [1,3,5,9,11,12,14]). For the state of the art on the fractional calculus of variations

and respective fractional Euler–Lagrange equations, we refer the reader to the recent
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book [16]. Here we remark that results addressed to the existence of solutions for prob-

lems of the fractional calculus of variations are rare, being, to the best of our knowledge,

discussed only in [4, 15]. However, existence theorems are essential ingredients of the

deductive method for solving variational problems, which starts with the proof of ex-

istence, proceeds with application of optimality conditions, and finishes examining the

candidates to arrive to a solution. These arguments make the question of existence an

emergent topic, which requires serious attention and more interest [18].

In this note we discuss the problem of existence of solutions for fractional varia-

tional problems. We consider functionals with Lagrangians depending on the Riemann–

Liouville fractional integral and classical and Caputo fractional derivatives. Necessary

optimality conditions for such problems were recently obtained in [17]. Here, inspired

by the results given in [4], we prove existence of solutions in an appropriate space of

functions and under suitable assumptions of regularity, coercivity and convexity. For

the classical methods of existence of minimizers for variational functionals we refer the

reader to [7, 8, 10].

The article is organized as follows. In Section 2 we provide the basic definitions

and properties for the fractional operators used throughout the text. Main notations are

fixed. Our results are then formulated and proved in Section 3: in Section 3.1 we prove

existence of minimizers for fractional problems of the calculus of variations with a

Lagrangian containing Caputo derivatives; Sections 3.2 and 3.3 are devoted to sufficient

conditions implying regularity and coercivity, respectively. Finally, an example is given

in Section 4.

2 Preliminaries

We recall here the necessary definitions and present some properties of the fractional

operators under consideration. Moreover, we fix our notations for later discussions.

The reader interested on fractional analysis is refereed to the books [13, 19, 24].

Let a, b be two real numbers such that a < b, let d ∈ N
∗ be the dimension, where

N
∗ denotes the set of positive integers, and let ‖·‖ denote the standard Euclidean norm

of Rd. For any 1 ≤ r ≤ ∞, we denote

• by Lr := Lr(a, b;Rd) the usual space of r-Lebesgue integrable functions endowed

with its usual norm ‖ · ‖Lr ;

• by W1,r := W1,r(a, b;Rd) the usual r-Sobolev space endowed with its usual norm

‖ · ‖W1,r .

Furthermore, C := C ([a, b];Rd) will be understood as the standard space of continuous

functions and C
∞
c := C

∞
c ([a, b];Rd) as the standard space of infinitely differentiable

functions compactly supported in (a, b). Finally, let us remind that the compact embed-

ding W1,r
։֒ C holds for 1 < r ≤ +∞ (see [6] for a detailed proof).
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We define the left and the right Riemann–Liouville fractional integrals Iα− and Iα+ of

order α ∈ R, α > 0, by

Iα−[f ](t) :=
1

Γ(α)

∫ t

a

f(y)

(t− y)1−α
dy, t > a

and

Iα+[f ](t) :=
1

Γ(α)

∫ b

t

f(y)

(y − t)1−α
dy, t < b,

respectively. Here Γ denotes the Euler Gamma function. Note that operators Iα− and Iα+
are well defined a.e. on (a, b) for any f ∈ L1.

Let 0 < α < 1 and ḟ denote the usual derivative of f . Then the left and the right

Caputo fractional derivatives cD
α
− and cD

α
+ of order α are given by

cD
α
−[f ](t) := I1−α

− [ḟ ](t) and cD
α
+[f ](t) := −I1−α

+ [ḟ ](t)

for all t ∈ (a, b] and t ∈ [a, b), respectively. Note that the Caputo derivatives of a

function f ∈ W 1,1 are well defined almost everywhere on (a, b).
We make use of the following well-known property yielding boundedness of Riemann–

Liouville fractional integrals in the space Lr.

Proposition 2.1 (see, e.g., [13, 24]). The left Riemann–Liouville fractional integral Iα−
with α > 0 is a linear and bounded operator in Lr:

∥

∥Iα−[f ]
∥

∥

Lr ≤
(b− a)α

Γ(1 + α)
‖f‖Lr

for all f ∈ Lr, 1 ≤ r ≤ +∞.

3 Main Results

Along the work 1 < p < ∞. Let p′ denote the adjoint of p and let α ∈ R, 0 < α < 1.

We consider the variational functional

L : E −→ R

u 7−→

∫ b

a

L(u, Iα−[u], u̇, cD
α
−[u], t) dt

and our main goal is to prove existence of minimizers for L. We assume that E is a

weakly closed subset of W1,p, u̇ is the derivative of u and L is a Lagrangian of class C
1:

L : (Rd)4 × [a, b] −→ R

(x1, x2, x3, x4, t) 7−→ L(x1, x2, x3, x4, t).

By ∂iL we denote the partial derivatives of L with respect to its ith argument.
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3.1 A Tonelli-type Theorem

Using general assumptions of regularity, coercivity and convexity, we prove a fractional

analog of the classical Tonelli theorem, ensuring the existence of a minimizer for L.

Definition 3.1. We say that L is regular if

• L(u, Iα−[u], u̇, cD
α
−[u], t) ∈ L1;

• ∂1L(u, I
α
−[u], u̇, cD

α
−[u], t) ∈ L1;

• ∂2L(u, I
α
−[u], u̇, cD

α
−[u], t) ∈ Lp′;

• ∂3L(u, I
α
−[u], u̇, cD

α
−[u], t) ∈ Lp′;

• ∂4L(u, I
α
−[u], u̇, cD

α
−[u], t) ∈ Lp′;

for any u ∈ W1,p.

Definition 3.2. We say that L is coercive on E if

lim
‖u‖

W1,p→∞
u∈E

L(u) = +∞.

Next result gives a Tonelli-type theorem for Lagrangian functionals containing frac-

tional derivatives in the sense of Caputo.

Theorem 3.3 (Tonelli’s existence theorem for fractional variational problems). If

• L is regular;

• L is coercive on E;

• L(·, t) is convex on (Rd)4 for any t ∈ [a, b];

then there exists a minimizer for L.

Proof. Because the Lagrangian L is regular, L(u, Iα−[u], u̇, cD
α
−[u], t) ∈ L1 and L(u)

exists in R. Let (un)n∈N ⊂ E be a minimizing sequence satisfying

L(un) −→ inf
u∈E

L(u) < +∞. (3.1)

Coercivity of L implies boundedness of (un)n∈N in W1,p. Moreover, since W1,p is a

reflexive Banach space, there exists ū and a subsequence of (un)n∈N, that we still denote
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as (un)n∈N, such that un
W1,p

−−⇀ ū. Furthermore, since E is a weakly closed subset of W1,p,

ū ∈ E. On the other hand, from the convexity of L, we have

L(un) ≥ L(ū) +

∫ b

a

∂1L · (un − ū) + ∂2L · (Iα−[un]− Iα−[ū])

+ ∂3L · (u̇n − ˙̄u) + ∂4L · (cD
α
−[un]− cD

α
−[ū]) dt (3.2)

for any n ∈ N, where ∂iL is taken in (ū, Iα−[ū], ˙̄u, cD
α
−[ū], t), i = 1, 2, 3, 4. Now, because

L is regular, (un)n∈N is weakly convergent to ū in W1,p, Iα− is linear bounded from Lp to

Lp and, since the compact embedding W1,p
։֒ C holds, one concludes that

• ∂3L(ū, I
α
−[ū], ˙̄u, cD

α
−[ū], t) ∈ Lp′ and u̇n

Lp

−⇀ ˙̄u;

• ∂4L(ū, I
α
−[ū], ˙̄u, cD

α
−[ū], t) ∈ Lp′ and cD

α
−[un]

Lp

−⇀ cD
α
−[ū];

• ∂1L(ū, I
α
−[ū], ˙̄u, cD

α
−[ū], t) ∈ L1 and un

L∞

−−→ ū;

• ∂2L(ū, I
α
−[ū], ˙̄u, cD

α
−[ū], t) ∈ Lp′ and Iα−[un]

Lp

−→ Iα−[ū].

Finally, returning to (3.1) and taking n → ∞ in inequality (3.2), we obtain that

inf
u∈E

L(u) ≥ L(ū) ∈ R,

which completes the proof.

In order to make the hypotheses of our Theorem 3.3 more concrete, in Sections 3.2

and 3.3 we prove more precise sufficient conditions on the Lagrangian L, that imply

regularity and coercivity of functional L. For this purpose we define a family of sets

PM for any M ≥ 1.

3.2 Sufficient Condition for a Lagrangian L to be Regular

For M ≥ 1, we define PM to be the set of maps P : (Rd)4 × [a, b] → R
+ such that for

any (x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b]

P (x1, x2, x3, x4, t) =
N
∑

k=0

ck(x1, t)‖x2‖
d2,k‖x3‖

d3,k‖x4‖
d4,k

with N ∈ N and where, for any k = 0, . . . , N , ck : R
d × [a, b] −→ R

+ is contin-

uous and satisfies d2,k + d3,k + d4,k ≤ p/M .

The following lemma holds for the family of maps PM .

Lemma 3.4. Let M ≥ 1 and P ∈ PM . Then, for any u ∈ W1,p, we have

P (u, Iα−[u], u̇, cD
α
−[u], t) ∈ LM .
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Proof. Because ck(u, t) is continuous for any k = 0, . . . , N , it is in L∞. We also have

‖Iα−[u]‖
d2,k ∈ Lp/d2,k , ‖u̇‖d3,k ∈ Lp/d3,k and ‖cD

α
−[u]‖

d4,k ∈ Lp/d4,k . Consequently,

ck(u, t)‖I
α
−[u]‖

d2,k‖u̇‖d3,k‖cD
α
−[u]‖

d4,k ∈ Lr

with r = p/(d2,k + d3,k + d4,k) ≥ M . The proof is complete.

With the help of Lemma 3.4, it is easy to prove the following sufficient condition on

the Lagrangian L, which implies its regularity.

Proposition 3.5. If there exists P0 ∈ P1, P1 ∈ P1, P2 ∈ Pp′ , P3 ∈ Pp′ and P4 ∈ Pp′

such that

• |L(x1, x2, x3, x4, t)| ≤ P0(x1, x2, x3, x4, t);

• ‖∂1L(x1, x2, x3, x4, t)‖ ≤ P1(x1, x2, x3, x4, t);

• ‖∂2L(x1, x2, x3, x4, t)‖ ≤ P2(x1, x2, x3, x4, t);

• ‖∂3L(x1, x2, x3, x4, t)‖ ≤ P3(x1, x2, x3, x4, t);

• ‖∂4L(x1, x2, x3, x4, t)‖ ≤ P4(x1, x2, x3, x4, t);

for any (x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b], then L is regular.

The coercivity assumption in Theorem 3.3 is strongly dependent on the set E. In

Section 3.3 we provide an example of such set. Moreover, with such choice for E, we

give a sufficient condition on the Lagrangian L implying coercivity of L.

3.3 Sufficient Condition for a Functional L to be Coercive

Consider u0 ∈ R
d and E = W1,p

a , where W1,p
a := {u ∈ W1,p, u(a) = u0}. We note that

W1,p
a is a weakly closed subset of W1,p because of the compact embedding W1,p

։֒ C .

The following lemma is important in the proof of Proposition 3.7.

Lemma 3.6. There exist A0, A1 ≥ 0 such that

• ‖u‖L∞ ≤ A0‖u̇‖Lp + A1;

• ‖Iα−[u]‖Lp ≤ A0‖u̇‖Lp + A1;

• ‖cD
α
−[u]‖Lp ≤ A0‖u̇‖Lp + A1;

for any u ∈ W1,p
a .
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Proof. It is easy to see that boundedness of the left Riemann–Liouville fractional in-

tegral Iα− implies the last inequality. In the case of the second inequality, we have

‖u‖Lp ≤ ‖u − u0‖Lp + ‖u0‖Lp ≤ (b − a)‖u̇‖Lp + (b − a)1/p‖u0‖ for any u ∈ W1,p
a .

Therefore, using again the boundedness of Iα−, we arrive to the desired conclusion. Fi-

nally, let us consider the first inequality. We have ‖u‖L∞ ≤ ‖u − u0‖L∞ + ‖u0‖ ≤
‖u̇‖L1 + ‖u0‖ ≤ (b− a)1/p

′

‖u̇‖Lp + ‖u0‖ for any u ∈ W1,p
a . The proof is completed by

defining A0 and A1 as the maximum of the appearing constants.

Next proposition gives a sufficient condition for the coercivity of L.

Proposition 3.7. Assume that

L(x1, x2, x3, x4, t) ≥ c0‖x3‖
p +

N
∑

k=1

ck‖x1‖
d1,k‖x2‖

d2,k‖x3‖
d3,k‖x4‖

d4,k

for any (x1, x2, x3, x4, t) ∈ (Rd)4 × [a, b], where c0 > 0, ck ∈ R, N ∈ N
∗, and

0 ≤ d1,k + d2,k + d3,k + d4,k < p (3.3)

for any k = 1, . . . , N . Then, L is coercive on W1,p
a .

Proof. First, let us define r = p/(d2,k + d4,k + d3,k) ≥ 1. Applying Hölder’s inequality,

one can easily prove that

L(u) ≥ c0‖u̇‖
p
Lp − (b− a)1/r

′

N
∑

k=1

|ck|‖u‖
d1,k
L∞ ‖Iα−[u]‖

d2,k
Lp ‖u̇‖

d3,k
Lp ‖cD

α
−[u]‖

d4,k
Lp

for any u ∈ W1,p
a . Moreover, from Lemma 3.6 and (3.3), we obtain that

lim
‖u̇‖Lp→∞

u∈W
1,p
a

L(u) = +∞.

Finally, applying again Lemma 3.6, we have that

‖u̇‖Lp → ∞ ⇐⇒ ‖u‖W1,p → ∞

in W1,p
a . Therefore, L is coercive on W1,p

a . The proof is complete.

In the next section we illustrate our results through an example.
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4 An Illustrative Example

Consider the following fractional problem of the calculus of variations:

L(u) =

∫ b

a

‖u‖2 + ‖Iα−[u]‖
2 + ‖u̇‖2 + ‖cD

α
−[u]‖

2 dt −→ min
u∈W1,2

u(a) = u0.

(4.1)

It is not difficult to verify that the Lagrangian L for this problem is convex and satisfies

the hypotheses of Propositions 3.5 and 3.7 with p = 2. Therefore, it follows from

Theorem 3.3 that there exists a solution for problem (4.1). Such minimizer can be

determined using the optimality conditions proved in [2, 16] and approximated by the

numerical methods developed in [20, 21].
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