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We study dynamic minimization problems of the calculus of variations with Lagrangian functionals containing Riemann-Liouville fractional integrals, classical and Caputo fractional derivatives. Under assumptions of regularity, coercivity and convexity, we prove existence of solutions.

Introduction

For the origin of the calculus of variations with fractional operators we should look back to 1996-97, when Riewe used non-integer order derivatives to better describe nonconservative systems in mechanics [START_REF] Riewe | Nonconservative Lagrangian and Hamiltonian mechanics[END_REF][START_REF] Riewe | Mechanics with fractional derivatives[END_REF]. Since then, numerous works on the fractional variational calculus have been written. In particular, we can find a comprehensive literature regarding necessary optimality conditions and Noether's theorem (see, e.g., [START_REF] Almeida | Fractional Euler-Lagrange differential equations via Caputo derivatives[END_REF][START_REF] Almeida | Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives[END_REF][START_REF] Bourdin | A continuous/discrete fractional Noether's theorem[END_REF][START_REF] Cresson | Fractional embedding of differential operators and Lagrangian systems[END_REF][START_REF] Frederico | A formulation of Noether's theorem for fractional problems of the calculus of variations[END_REF][START_REF] Herzallah | Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations[END_REF][START_REF] Klimek | Solutions of Euler-Lagrange equations in fractional mechanics[END_REF]). For the state of the art on the fractional calculus of variations and respective fractional Euler-Lagrange equations, we refer the reader to the recent book [START_REF] Malinowska | Introduction to the fractional calculus of variations[END_REF]. Here we remark that results addressed to the existence of solutions for problems of the fractional calculus of variations are rare, being, to the best of our knowledge, discussed only in [START_REF] Bourdin | Existence of a weak solution for fractional Euler-Lagrange equations[END_REF][START_REF] Klimek | Existence -uniqueness result for a certain equation of motion in fractional mechanics[END_REF]. However, existence theorems are essential ingredients of the deductive method for solving variational problems, which starts with the proof of existence, proceeds with application of optimality conditions, and finishes examining the candidates to arrive to a solution. These arguments make the question of existence an emergent topic, which requires serious attention and more interest [START_REF] Odzijewicz | Fractional calculus of variations in terms of a generalized fractional integral with applications to physics[END_REF].

In this note we discuss the problem of existence of solutions for fractional variational problems. We consider functionals with Lagrangians depending on the Riemann-Liouville fractional integral and classical and Caputo fractional derivatives. Necessary optimality conditions for such problems were recently obtained in [START_REF] Odzijewicz | Fractional variational calculus with classical and combined Caputo derivatives[END_REF]. Here, inspired by the results given in [START_REF] Bourdin | Existence of a weak solution for fractional Euler-Lagrange equations[END_REF], we prove existence of solutions in an appropriate space of functions and under suitable assumptions of regularity, coercivity and convexity. For the classical methods of existence of minimizers for variational functionals we refer the reader to [START_REF] Cesari | Optimization-theory and applications[END_REF][START_REF] Clarke | Methods of dynamic and nonsmooth optimization[END_REF][START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF].

The article is organized as follows. In Section 2 we provide the basic definitions and properties for the fractional operators used throughout the text. Main notations are fixed. Our results are then formulated and proved in Section 3: in Section 3.1 we prove existence of minimizers for fractional problems of the calculus of variations with a Lagrangian containing Caputo derivatives; Sections 3.2 and 3.3 are devoted to sufficient conditions implying regularity and coercivity, respectively. Finally, an example is given in Section 4.

Preliminaries

We recall here the necessary definitions and present some properties of the fractional operators under consideration. Moreover, we fix our notations for later discussions. The reader interested on fractional analysis is refereed to the books [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF].

Let a, b be two real numbers such that a < b, let d ∈ N * be the dimension, where N * denotes the set of positive integers, and let • denote the standard Euclidean norm of R d . For any 1 ≤ r ≤ ∞, we denote

• by L r := L r (a, b; R d ) the usual space of r-Lebesgue integrable functions endowed with its usual norm • L r ;

• by W 1,r := W 1,r (a, b; R d ) the usual r-Sobolev space endowed with its usual norm

• W 1,r . Furthermore, C := C ([a, b]; R d
) will be understood as the standard space of continuous functions and

C ∞ c := C ∞ c ([a, b]; R d )
as the standard space of infinitely differentiable functions compactly supported in (a, b). Finally, let us remind that the compact embedding W 1,r ֒։ C holds for 1 < r ≤ +∞ (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] for a detailed proof).

We define the left and the right Riemann-Liouville fractional integrals I α -and I α + of order α ∈ R, α > 0, by 

I α -[f ](t) := 1 Γ(α) t a f (y) (t -y) 1-α dy, t > a and I α + [f ](t) := 1 Γ(α) b t f (y) (y -t) 1-α dy, t < b,
c D α -[f ](t) := I 1-α -[ ḟ ](t) and c D α + [f ](t) := -I 1-α + [ ḟ ](t)
for all t ∈ (a, b] and t ∈ [a, b), respectively. Note that the Caputo derivatives of a function f ∈ W 1,1 are well defined almost everywhere on (a, b).

We make use of the following well-known property yielding boundedness of Riemann-Liouville fractional integrals in the space L r . Proposition 2.1 (see, e.g., [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF]). The left Riemann-Liouville fractional integral I α with α > 0 is a linear and bounded operator in L r :

I α -[f ] L r ≤ (b -a) α Γ(1 + α) f L r for all f ∈ L r , 1 ≤ r ≤ +∞.

Main Results

Along the work 1 < p < ∞. Let p ′ denote the adjoint of p and let α ∈ R, 0 < α < 1.

We consider the variational functional

L : E -→ R u -→ b a L(u, I α -[u], u, c D α -[u], t) dt
and our main goal is to prove existence of minimizers for L. We assume that E is a weakly closed subset of W 1,p , u is the derivative of u and L is a Lagrangian of class C 1 :

L : (R d ) 4 × [a, b] -→ R (x 1 , x 2 , x 3 , x 4 , t) -→ L(x 1 , x 2 , x 3 , x 4 , t).
By ∂ i L we denote the partial derivatives of L with respect to its ith argument.

A Tonelli-type Theorem

Using general assumptions of regularity, coercivity and convexity, we prove a fractional analog of the classical Tonelli theorem, ensuring the existence of a minimizer for L. Definition 3.1. We say that L is regular if

• L(u, I α -[u], u, c D α -[u], t) ∈ L 1 ; • ∂ 1 L(u, I α -[u], u, c D α -[u], t) ∈ L 1 ; • ∂ 2 L(u, I α -[u], u, c D α -[u], t) ∈ L p ′ ; • ∂ 3 L(u, I α -[u], u, c D α -[u], t) ∈ L p ′ ; • ∂ 4 L(u, I α -[u], u, c D α -[u], t) ∈ L p ′ ; for any u ∈ W 1,p . Definition 3.2. We say that L is coercive on E if lim u W 1,p →∞ u∈E L(u) = +∞.
Next result gives a Tonelli-type theorem for Lagrangian functionals containing fractional derivatives in the sense of Caputo.

Theorem 3.3 (Tonelli's existence theorem for fractional variational problems). If

• L is regular;

• L is coercive on E; • L(•, t) is convex on (R d ) 4 for any t ∈ [a, b];
then there exists a minimizer for L.

Proof. Because the Lagrangian

L is regular, L(u, I α -[u], u, c D α -[u], t) ∈ L 1 and L(u) exists in R. Let (u n ) n∈N ⊂ E be a minimizing sequence satisfying L(u n ) -→ inf u∈E L(u) < +∞. (3.1)
Coercivity of L implies boundedness of (u n ) n∈N in W 1,p . Moreover, since W 1,p is a reflexive Banach space, there exists ū and a subsequence of (u n ) n∈N , that we still denote as (u n ) n∈N , such that u n W 1,p --⇀ ū. Furthermore, since E is a weakly closed subset of W 1,p , ū ∈ E. On the other hand, from the convexity of L, we have

L(u n ) ≥ L(ū) + b a ∂ 1 L • (u n -ū) + ∂ 2 L • (I α -[u n ] -I α -[ū]) + ∂ 3 L • ( un -u) + ∂ 4 L • ( c D α -[u n ] -c D α -[ū]) dt (3.2)
for any n ∈ N, where

∂ i L is taken in (ū, I α -[ū], u, c D α -[ū], t), i = 1, 2, 3, 4. Now, because L is regular, (u n ) n∈N is weakly convergent to ū in W 1,p , I α
-is linear bounded from L p to L p and, since the compact embedding W 1,p ֒։ C holds, one concludes that In order to make the hypotheses of our Theorem 3.3 more concrete, in Sections 3.2 and 3.3 we prove more precise sufficient conditions on the Lagrangian L, that imply regularity and coercivity of functional L. For this purpose we define a family of sets P M for any M ≥ 1.

• ∂ 3 L(ū, I α -[ū], u, c D α -[ū], t) ∈ L p ′ and un L p -⇀ u; • ∂ 4 L(ū, I α -[ū], u, c D α -[ū], t) ∈ L p ′ and c D α -[u n ] L p -⇀ c D α -[ū]; • ∂ 1 L(ū, I α -[ū], u, c D α -[ū], t) ∈ L 1 and u n L ∞ --→ ū; • ∂ 2 L(ū, I α -[ū], u, c D α -[ū], t) ∈ L p ′ and I α -[u n ] L p -→ I α -[ū].

Sufficient Condition for a Lagrangian L to be Regular

For M ≥ 1, we define P M to be the set of maps P :

(R d ) 4 × [a, b] → R + such that for any (x 1 , x 2 , x 3 , x 4 , t) ∈ (R d ) 4 × [a, b] P (x 1 , x 2 , x 3 , x 4 , t) = N k=0 c k (x 1 , t) x 2 d 2,k x 3 d 3,k x 4 d 4,k
with N ∈ N and where, for any k = 0, . . . , N, c k :

R d × [a, b] -→ R + is contin- uous and satisfies d 2,k + d 3,k + d 4,k ≤ p/M.
The following lemma holds for the family of maps P M .

Lemma 3.4. Let M ≥ 1 and P ∈ P M . Then, for any u ∈ W 1,p , we have

P (u, I α -[u], u, c D α -[u], t) ∈ L M .

L. Bourdin, T. Odzijewicz and D. F. M. Torres

Proof. Because c k (u, t) is continuous for any k = 0, . . . , N, it is in L ∞ . We also have

I α -[u] d 2,k ∈ L p/d 2,k , u d 3,k ∈ L p/d 3,k and c D α -[u] d 4,k ∈ L p/d 4,k . Consequently, c k (u, t) I α -[u] d 2,k u d 3,k c D α -[u] d 4,k ∈ L r with r = p/(d 2,k + d 3,k + d 4,k ) ≥ M. The proof is complete.
With the help of Lemma 3.4, it is easy to prove the following sufficient condition on the Lagrangian L, which implies its regularity. Proposition 3.5. If there exists P 0 ∈ P 1 , P 1 ∈ P 1 , P 2 ∈ P p ′ , P 3 ∈ P p ′ and P 4 ∈ P p ′ such that

• |L(x 1 , x 2 , x 3 , x 4 , t)| ≤ P 0 (x 1 , x 2 , x 3 , x 4 , t); • ∂ 1 L(x 1 , x 2 , x 3 , x 4 , t) ≤ P 1 (x 1 , x 2 , x 3 , x , t); • ∂ 2 L(x 1 , x 2 , x 3 , x 4 , t) ≤ P 2 (x 1 , x 2 , x 3 , x 4 , t); • ∂ 3 L(x 1 , x 2 , x 3 , x 4 , t) ≤ P 3 (x 1 , x 2 , x 3 , x 4 , t); • ∂ 4 L(x 1 , x 2 , x 3 , x 4 , t) ≤ P 4 (x 1 , x 2 , x 3 , x 4 , t); for any (x 1 , x 2 , x 3 , x 4 , t) ∈ (R d ) 4 × [a, b], then L is regular.
The coercivity assumption in Theorem 3.3 is strongly dependent on the set E. In Section 3.3 we provide an example of such set. Moreover, with such choice for E, we give a sufficient condition on the Lagrangian L implying coercivity of L.

Sufficient Condition for a Functional L to be Coercive

Consider u 0 ∈ R d and E = W 1,p a , where W 1,p a := {u ∈ W 1,p , u(a) = u 0 }. We note that W 1,p a is a weakly closed subset of W 1,p because of the compact embedding W 1,p ֒։ C . The following lemma is important in the proof of Proposition 3.7.

Lemma 3.6. There exist

A 0 , A 1 ≥ 0 such that • u L ∞ ≤ A 0 u L p + A 1 ; • I α -[u] L p ≤ A 0 u L p + A 1 ; • c D α -[u] L p ≤ A 0 u L p + A 1 ;
for any u ∈ W 1,p a .

Proof. It is easy to see that boundedness of the left Riemann-Liouville fractional integral I α -implies the last inequality. In the case of the second inequality, we have

u L p ≤ u -u 0 L p + u 0 L p ≤ (b -a) u L p + (b -a) 1/p u 0 for any u ∈ W 1,p
a . Therefore, using again the boundedness of I α -, we arrive to the desired conclusion. Finally, let us consider the first inequality. We have u

L ∞ ≤ u -u 0 L ∞ + u 0 ≤ u L 1 + u 0 ≤ (b -a) 1/p ′ u L p + u 0 for any u ∈ W 1,p a .
The proof is completed by defining A 0 and A 1 as the maximum of the appearing constants.

Next proposition gives a sufficient condition for the coercivity of L. Finally, applying again Lemma 3.6, we have that

u L p → ∞ ⇐⇒ u W 1,p → ∞ in W 1,p a .
Therefore, L is coercive on W 1,p a . The proof is complete.

In the next section we illustrate our results through an example.

  respectively. Here Γ denotes the Euler Gamma function. Note that operators I α -and I α + are well defined a.e. on (a, b) for any f ∈ L 1 . Let 0 < α < 1 and ḟ denote the usual derivative of f . Then the left and the right Caputo fractional derivatives c D α -and c D α + of order α are given by

  Finally, returning to (3.1) and taking n → ∞ in inequality (3.2), we obtain that inf u∈E L(u) ≥ L(ū) ∈ R, which completes the proof.
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 3712344 Assume thatL(x 1 , x 2 , x 3 , x 4 , t) ≥ c 0 x 3 p + N k=1 ,k for any (x 1 , x 2 , x 3 , x 4 , t) ∈ (R d ) 4 × [a, b], where c 0 > 0, c k ∈ R, N ∈ N * , and 0 ≤ d 1,k + d 2,k + d 3,k + d 4,k < p (3.3) for any k = 1, . . . , N. Then, L is coercive on W 1,p a . Proof. First, let us define r = p/(d 2,k + d 4,k + d 3,k ) ≥ 1. Applying Hölder's inequality, one can easily prove that L(u) ≥ c 0 u p L p -(b -a) 1/r ′ any u ∈ W 1,p a . Moreover, from Lemma 3.6 and (3.3), we obtain that lim u L p →∞ u∈W 1,p a L(u) = +∞.
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Consider the following fractional problem of the calculus of variations:

It is not difficult to verify that the Lagrangian L for this problem is convex and satisfies the hypotheses of Propositions 3.5 and 3.7 with p = 2. Therefore, it follows from Theorem 3.3 that there exists a solution for problem (4.1). Such minimizer can be determined using the optimality conditions proved in [START_REF] Almeida | Fractional variational problems depending on indefinite integrals[END_REF][START_REF] Malinowska | Introduction to the fractional calculus of variations[END_REF] and approximated by the numerical methods developed in [START_REF] Pooseh | Approximation of fractional integrals by means of derivatives[END_REF][START_REF] Pooseh | Discrete direct methods in the fractional calculus of variations[END_REF].