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Nonshifted calculus of variations on time scales with

V-differentiable o

Loic Bourdin*

Abstract

In calculus of variations on general time scales, an Fuler-Lagrange equation of integral
form is usually derived in order to characterize the critical points of nonshifted Lagrangian
functionals, see e.g. [R.A.C. Ferreira and co-authors, Optimality conditions for the calculus
of variations with higher-order delta derivatives, Appl. Math. Lett., 2011]. In this paper,
we prove that the V-differentiability of the forward jump operator o is a sharp assumption
on the time scale in order to V-differentiate this integral Euler-Lagrange equation. This
procedure leads to an Euler-Lagrange equation of differential form. Furthermore, from this
differential form, we prove a Noether-type theorem providing an explicit constant of motion
for Euler-Lagrange equations admitting a symmetry.

Keywords: Time scale; calculus of variations; Euler-Lagrange equations; Noether’s theorem.
AMS Classification: 34N05; 39A12; 39A13; 39A10.
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1 Introduction

The time scale theory was introduced by S. Hilger in his PhD thesis [I8] in 1988 in order to unify
discrete and continuous analyses. The general idea is to extend classical theories on an arbitrary
non-empty closed subset T of R. Such a subset T is called a time scale. In this paper, it is
assumed to be bounded with ¢ = min T and b = maxT. Hence, the time scale theory establishes
the validity of some results both in the continuous case T = [a,b] and in the purely discrete
case T = {a = tp < ... < ty = b}. Moreover, it also treats more general models involving
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both continuous and discrete time elements, see e.g. [I5] 0] for dynamical populations whose
generations do not overlap. Another example of application is to consider T = {a}U{a+ AN} with
0 < A <1 allowing the time scale theory to cover the quantum calculus [23].

Since S. Hilger defined the A- and V-derivatives on time scales, many authors have extended to
time scales various results from the continuous or discrete standard calculus theory. We refer to the
surveys [11 2, @] [10] of M. Bohner and co-authors. In the continuous case T = [a, b], the operators A
and V coincide with the usual derivative operator d/dt, i.e. u® = uY = @ where % is the classical
derivative of a function w. In the discrete case T = {a = tg < ... < ty = b}, A is the usual
forward Euler approximation of d/dt, i.e. Au(ty) = (u(tps+1) — u(ti))/(tx+1 — tr) and similarly, V
is the usual backward Euler approximation of d/dt, i.e. Vu(tx) = (u(ty) — u(tr—1))/(tx — th—1).

Context in shifted calculus of variations. The pioneering work on calculus of variations on
general time scales is due to M. Bohner in [7]. In particular, he obtains a necessary condition for
local optimizers of Lagrangian functionals of type

b
L(u) :/ L(UU(T),’U,A(T),T) AT, (1)

where L : R" x R" x T — R, (x,v,t) — L(x,v,t) is a continuous Lagrangian of class ¢*
in its two first variables, u is a Ci&A (T)-function, u = u o o, u® is the A-differential of u and
J A7 denotes the Cauchy A-integral defined in [9, p.26]. We refer to Section 2] for the precise
definitions.

Notation: in the whole paper, the function defined by t — OL/Ov(u’(t),u”(t),t), where u €
CiéA(T); is denoted by OL/0v(u?, ul, ).

Precisely, M. Bohner characterizes the critical points of £ as the solutions of the following A o A-
differential Euler-Lagrange equation, see [7, Theorem 4.2]:

A
2e.09]” 0= e, 000 L)

Here, the notation AoA refers to the composition of A with itself in the left-hand term of .
As it is mentioned in [7], the result of M. Bohner recovers the usual continuous case T = [a, D]
(where o is the identity) where the critical points of Lagrangian functionals of type

b
Llu) = / Llu(r), i(r), 7) dr 2)

are characterized by the solutions of the well known continuous Euler-Lagrange equation (see e.g.
[ p.12]) given by

d [OL oL

— | = 1) (1) = =—(u(t), u(t),t).

| Getwin| 0= S, aw. Q0
Moreover, the work of M. Bohner in [7] also recovers the following discrete case T = {a = to <
... <ty = b} where the critical points of discrete Lagrangian functionals of type

N—
Lu)= ) (tes1 — ti)L(ultptr), Au(te), tr) (4)
k=0

—

are characterized by the solutions of the well known discrete Euler-Lagrange equation (see e.g.
[3]) given by
oL

A [%(u“, Au, )] (tk) = g_i(u(tk+l)7 Au(tk), ). (5)



In what follows, we will speak about £ (defined in () as a shifted Lagrangian functional in
reference to the presence of u? (instead of u) in its definition. Note that this characteristic has no
consequence on the continuous case but let us mention the presence of u(t;11) (instead of u(ty)) in
the discrete case. We will see that this difference is important at the discrete level and a fortiori
at the time scale one too. In particular, this shifted framework does not cover the variational
integrator studied in [I7, [27]. We refer to the next paragraph for more details.

Since the publication of [7], the shifted calculus of variations is widely investigated in several
directions: with double integral [8], with higher-order A-derivatives [14], with nonfixed boundary
conditions and transversality conditions [20], with double integral mixing A- and V-derivatives
[25], with higher-order V-derivatives [28], etc. We also refer to [211, 22] for shifted optimal control
problems. Let us mention that shifted variational problems are particularly suitable (in comparison
with the nonshifted ones) because of the emergence of a shift in the integration by parts formula
on time scales (see [9, Theorem 1.77 p.28]) given by

b b
/ u(r) - ’UA(T) AT =u(b) - v(b) — u(a) - v(a) — / UA(T) -7 (1) AT. (6)

Context in nonshifted calculus of variations. As mentioned in the previous paragraph, the
shifted calculus of variations on general time scales developed in [7] does not cover an important
discrete calculus of variations. Precisely, recall that the critical points of (nonshifted) discrete
Lagrangian functionals of type

N—

Llu) =Y (ter1 — te) L(u(ts), Aulty), tr) (7)

k=0

=

are characterized by the solutions of the well known discrete Euler-Lagrange equation (see e.g.
[1I7]) given by
oL tk41 —tp OL
¥ |t A () = P SR ), dua), ), )

Recall that the above discrete Euler-Lagrange equation () corresponds to the variational integra-
tor obtained and well studied in [I7, 27]. In particular, it is an efficient numerical scheme for the
continuous Euler-Lagrange equation (8] preserving its variational structure and relative proper-
ties at the discrete level. In this (nonshifted) discrete case, note the emergence of the composition
between the operators V and A. In numerical analysis, it is well known that such a composition
allows to get a larger order of convergence.

Up to our knowledge, only few studies treat on the nonshifted calculus of variations on gen-
eral time scales, see [12] 13| [19]. In these papers, the critical points of (nonshifted) Lagrangian
functionals of type

b
L(u) = / Liu(r), ud(7),7) A (9)

are characterized by the solutions of the following A-integral Euler-Lagrange equation, see e.g.
[19, Theorem 4]:

O’(t) 8L

oz
The objective of this paper is to V-differentiate (ELZ,) in order to get a V o A-differential Euler-
Lagrange equation of type

OL
Sttt 0.0 = [

a

(u(r), u™(1),7) AT + . (ELA,)

v
Sewu)] 0 =wGE 0.0, (10)

that encompasses both the classical continuous case ([B]) and the (nonshifted) discrete case (8.
Towards this goal, a difficulty emerges due to the presence of ¢ in the upper bound of the A-
integral in (ELZ.)). In fact, we will exhibit a counter-example (see Example [[) showing that we



cannot V-differentiate on general time scales with a general Lagrangian L. It leads us to
consider a subclass of time scales. Precisely, we prove that the V-differentiability of ¢ is a sharp
assumption on the time scale in order to V-differentiate and to obtain a V o A-differential
Euler-Lagrange equation of type ([I{]). Moreover, in such a case, an interesting phenomena is the
direct emergence of this assumption in (I0) since we prove that w = oV.

In this paper, we study the consequences of the V-differentiability of o on the structure of T. In
particular, we will see how this assumption allows us to apply V on in order to obtain (0]
with w = oV. Note that the V-differentiability of o is not a loss of generality since it is satisfied in
the continuous case T = [a,b] (with 0¥ = 1) and in the discrete case T = {a =tg < ... < ty = b}
(with oV (t1) = (ter1 — tx)/(tk — tx—1)). In particular, note that our main result recovers both
the usual continuous case (@) and the nonshifted discrete case (8).

Derivation of Noether-type results. In shifted calculus of variations, we refer to the paper
[6] studying the existence of a constant of motion for A o A-differential Euler-Lagrange equations
(ELZ52). We refer to [29] for a similar study with V-derivatives. The common strategy is to
generalize the celebrated Noether’s theorem [24] [32] to time scales. Precisely, under invariance
assumption on the Lagrangian L, authors prove that a conservation law can be obtained.

In nonshifted calculus of variations, the nondifferential form of is an obstruction in
order to develop the same strategy. A direct application of our main result is then to provide a
Noether-type theorem based on the differential form (I0). This will be done in Section @l

Remark 1. For sake of completeness of this introduction, we mention that an Euler-Lagrange
equation of differential form in the nonshifted case is obtained in [19, Remark 4J. Precisely, the
author characterizes the critical points of L (defined in (@))) as the solutions of the following
differential Euler-Lagrange equation:

oL

O ()~ T2 )| (1) = GE ), u (1), 1) ()

%(u,u —ua—x(u,u

The advantage of this result is to be valid on every time scale. Nevertheless, this differential form
does not directly coincide with the usual discrete Euler-Lagrange equation ([8) and the obtaining
of a Noether-type result from this differential form remains an open problem. These observations

both give a particular interest to the V-differentiation of (ELZ.) and to the V o A-differential
formulation (I0).

Remark 2. Finally, it has to be noted that our whole study is made in terms of Lagrangian func-
tionals involving A-integral and A-derivative. However, thanks to the duality principle introduced
in [11)], all results can be analogously derived for Lagrangian functionals involving V-integral and
V-derivative. This will be done in Section [A

Organization of the paper. We first give basic recalls on time scale calculus in Section 2.]
and on nonshifted calculus of variations on general time scales in Section Section 23] is
devoted to our main result (Theorem[I]). A study on time scales with continuous o is provided in
Section B and with V-differentiable o in Sections and The results obtained in Section [3
are instrumental in order to prove Theorem [II We prove a Noether-type theorem (Theorem [2]) in
Section [4l In Section B we conclude this paper with the analogous results for nonshifted calculus
of variations defined in terms of V-integral and V-derivative.

2 Nonshifted calculus of variations on time scales with V-
differentiable o
In this paper, N denotes the set of nonnegative integers, N* denotes the set of positive integers and

R* denotes the set of nonnegative reals. We denote by T a bounded time scale with a = min(T),
b = max(T) and card(T) > 3. In Section 2] we give basic recalls on time scale calculus.



Section is devoted to recalls on nonshifted calculus of variations on general time scales
developed in [12] 13, 19]. In particular, the A-integral Euler-Lagrange equation is given as
a necessary condition for local optimizers of nonshifted Lagrangian functionals, see Proposition Bl

In Section[2.3] under the assumption of V-differentiability of o, our main result provides a VoA-
differential Euler-Lagrange equation of type ([I0)) as a necessary condition for local optimizers of
nonshifted Lagrangian functionals, see n Theorem[Il We also prove that this assumption
is sharp, see Example [Tl

2.1 Basic recalls on time scale calculus

We refer to the surveys [1I 2] 9] 0] for more details on time scale calculus. The backward and
forward jump operators p,o : T — T are respectively defined by

Vi e T, p(t) =sup{s € T, s <t}and o(t) =inf{s € T, s > t}, (12)

where we put sup() = @ and inf() = b. A point t € T is said to be right-scattered (resp. left-
scattered) if o(t) >t (resp. p(t) < t). A point t € T is said to be right-dense (resp. left-dense) if
t#band o(t) =t (resp. t # a and p(t) =t). Let RS (resp. LS, RD and LD) denote the set of all
right-scattered (resp. left-scattered, right-dense and left-dense) points of T. Note that a ¢ LD and
b ¢ RD. The graininess (resp. backward graininess) function p : T — R (resp. v : T — R™)
is defined by u(t) = o(t) — t (resp. v(t) =t — p(t)) for any ¢ € T.

We set T* = T\|p(b),b], T, = T\[a,0(a)] and T® = T*NT,. Note that T = @ since card(T) >
3. Let us recall the usual definitions of A- and V-differentiability. A function u : T — R"™, where
n € N*, is said to be A-differentiable at ¢t € T* (resp. V-differentiable at t € T};) if the following
limit exists in R™:

o u(o(t) —u(s) - uls) —u(p(t))
lim ——*——~% | resp. lim —— %~ (13)
gty oW oty oo

In such a case, this limit is denoted by u®(t) (resp. uY (t)). Let us recall the following results on
A-differentiability, see [0, Theorem 1.16 p.5] and [9, Corollary 1.68 p.25]. The analogous results
for V-differentiability are also valid.

Proposition 1. Let u: T — R™ and t € T*. The following properties hold:
1. if u is A-differentiable at t, then w is continuous at t.

2. if t € RS and if u is continuous at t, then u is A-differentiable at t with

WA (1) M. (14)

3. if o(t) =t, then u is A-differentiable at t if and only if the following limit exists in R™:

lin% u(ti — u(s) '
p -

(15)

In such a case, this limit is equal to u®™(t).

Proposition 2. Let u: T — R™. Then, u is A-differentiable on T with u® = 0 if and only if
there exists ¢ € R™ such that u(t) = ¢ for every t € T.

From Proposition [I and for every ¢t € RS, note that a function u is A-differentiable at ¢ if and
only if u is continuous at t. Still from Proposition [, note that every A-differentiable function on
T* is continuous on T.



Recall that a function u is said to be rd-continuous on T if it is continuous at every ¢ € RD
and if it admits a left-sided limit at every ¢ € LD, see [9, Definition 1.58 p.22]. We respectively
denote by C% (T) and Ci&A (T) the functional spaces of rd-continuous functions on T and of A-
differentiable functions on T* with rd-continuous A-derivative. Recall the following results, see
[9, Theorem 1.60 p.22]:

e o is rd-continuous.
e if u e C%(T), the composition u? = u o o is rd-continuous.
o if u € C%(T), the composition f owu with any continuous function f is rd-continuous.

Let us denote by [ At the Cauchy A-integral defined in [9, p.26]. For every u € C%(T*), recall
that the function U, defined by U(t) = f; u(T)Ar for every t € T, is the unique A-antiderivative
of u (in the sense that U® = u on T*) vanishing at ¢ = a, see [9, Theorem 1.74 p.27]. In particular,
we have U € Cif (T).

2.2 Recalls on nonshifted calculus of variations on general time scales

In this section, we recall some results on nonshifted calculus of variations on general time scales
provided in [12, 13, [19]. Let L be a Lagrangian i.e. a continuous map of class ¢! in its two first
variables
L: R*xR*"xT* — R (16)
(z,v,t) — L(z,v,t)

and let £ be the following (nonshifted) Lagrangian functional:
L: CLAT) — R : (17)
u / L(u(r),u?(7),7) AT.

In this section, our aim is to give a necessary condition for local optimizers of £ (with or
without boundary conditions at ¢ = a and ¢ = b). In this way, we introduce the following notions
and notations:

o Ciﬁ)('ﬂ‘) ={we Ci&A(T), w(a) = w(b) = 0} is called the set of variations of L.

o uc Ci&A(T) is said to be a critical point of L if DL(u)(w) = 0 for every w € Ci&%(T). Let
us precise that DL(u)(w) denotes the Gateaux-differential of £ at u in direction w.

In particular, if u is a local optimizer of £, then u is a critical point of £. Finally, let us recall the
following characterization of the critical points of L, see [12], Theorem 11], [13], Corollary 1] or [19}
Theorem 4].

Proposition 3. Letu € Ci&A(T). Then, u is a critical point of L if and only if there exists c € R™
such that o

oL 7 9L
%(u(t), uB(t),t) = / %(U(T), u®(1),7) AT + ¢, (EL&))

for every t € T".

Hence, Proposition [l provides a necessary condition for local optimizers of £. Precisely, if u is
a local optimizer of £, then there exists ¢ € R™ such that u satisfies the A-integral Euler-Lagrange
equation (ELZ.]). We refer to Example [ in Section 23] for an application of Proposition Bl



2.3 Main result

In this paper, we aim to V-differentiate the A-integral Euler-Lagrange equation (ELZ.|) in order
to get a V o A-differential one of type ([I0). Precisely, we prove the following result under the
assumption of V-differentiability of o.

Theorem 1 (Main result). Let us assume that o is V-differentiable on T, and let u € Ci(’iA (T).
Then, u is a critical point of L if and only if u is a solution of the following V o A-differential
Euler-Lagrange equation:

oL v oL i
FCa] URTACE I URECR) (BLE)
for every t € Tk.
Proof. We refer to Propositions 2] and Bl and Corollary [ in Section O

Note that this result encompasses both the usual continuous and discrete Euler-Lagrange
equations given by @) and (8) in Introduction. Indeed, as it is mentioned in Example [ in
Section [3.2], the following properties are satisfied:

e if T = [a,b], o is V-differentiable on T, with oV = 1.
o if T={a=ty<...<ty=b}, ois V-differentiable on T, with oV = p/v.

Let us prove, from the following simple example, that the assumption of V-differentiability of
o is sharp for the validity of Theorem [I] when the Lagrangian L is general (i.e. not specified).

Example 1. Let us consider n = 1, L(x,v,t) = x +v*/2 and u € CiéA(T) defined by u(t) =
fat o(T)AT for every t € T. Since u satisfies (EL2,) with ¢ = a, we conclude that u is a critical

point of L, see Proposition[3. However, note that OL/0v(u,u®,-) = u® = o and consequently, the
V o A-differential Euler-Lagrange equation has no sense if o is not V-differentiable.

Nevertheless, the following example proves that the V-differentiability of o is not necessary for
some Lagrangian (e.g. independent of the variable x).

Example 2. Let us consider n = 1, L(x,v,t) = v*/2 and u € CiéA(T) defined by u(t) =t for
every t € T. Since u satisfies with ¢ = 1, we conclude that w is a critical point of L,
see Proposition [3.  Note that u also satisfies even if o is not V-differentiable. This
phenomena comes from OL/0x = 0 and consequently is independent of o and it can be
V -differentiated.

However, it has to be noted that the independence of the Lagrangian L with respect to the
variable z is a very restrictive assumption while the V-differentiability of o is not. We refer
to Example B] for time scales with continuous and noncontinuous o. We respectively refer to
Examples @ and [{] for time scales with V-differentiable and non-V-differentiable o.

3 Time scales with V-differentiable o

In Section 311 we study the consequences of the continuity of . Then, we study the consequences
of the V-differentiability of o in Section[3.2] From these preliminaries, we prove the most important
results of this section (Proposition[6land some corollaries) in Section[3.3l In particular, Corollary[Il
is instrumental to prove our main result (Theorem [I).



3.1 Continuity of o
Let us prove the following characterizations of the continuity of ¢ at a given point t € T.
Lemma 1. Let t € T,. The following properties are equivalent:

1. o s continuous at t;

2. cgop(t)=1;

3. t¢RSNLD.

Proof. Let us prove that 1. implies 2.. If t = a € Ty, then a € RD. Then, g o p(a) = o(a) = a. If
t # a, let us assume by contradiction that oo p(t) # t. Necessarily, we have ¢ € RSNLD. Then, let
(sk) C T be a sequence such that s, <t for any k € N and s, — ¢. Thus, we have o(si) < t < o(t)
for any k € N and consequently, (o(sx)) does not tend to o(¢). This is a contradiction with the
continuity of o at t.

Let us prove that 2. implies 3.. If ¢ € RSN LD, then o o p(t) = o(t) # t.

Let us prove that 3. implies 1.. By contradiction, let us assume that ¢ is not continuous at
t. As a consequence, there exist ¢ > 0 and a monotone sequence (s5) C T such that s, — ¢ and
lo(t) — o(sk)| > € for every k € N. Firstly, let us assume that (s;) is decreasing. Then, ¢ € RD
and we have t < s < sx—1. As a consequence, t = o(t) < o(si) < sx—1 for any k € N*. Tt is a
contradiction since s;_; — t. Secondly, let us assume that (s;) is increasing. As a consequence,
t € LD and then ¢t ¢ RS (see 3.) i.e. o(t) = t. Finally, we have s;_1 < s, < t and then,
Sp—1 < o(sk) <t =o(t) for any k € N*. Tt is a contradiction since sy_1 — t. In both cases, we
have obtained a contradiction. o

Note that o is always continuous at a. Indeed, if a € RD, then a € Ty, a ¢ RSN LD and
LemmalIl concludes. If a € RS, then a is isolated and thus, ¢ is continuous at a. This remark and
Lemma [T lead to the following proposition.

Proposition 4. o is continuous on T if and only if RSNLD = .

A similar remark is already done in [9, Example 1.55]. Let us see some examples and counter-
examples.

Example 3. 1. If T = [a,b], o is continuous on T.

¢ RS

2. IfT={a=ty<...<ty =0b}, o is continuous on T.

¢ LD

3. If T={0,1}U[2,3], o is continuous on T.

1
I
D ¢LD

H T+ o

¢ ¢ RS

4. If T=[-1,00U{1/k, k € N*}, o is continuous on T.



-1 0 1

¢ RS ¢ LD

5. IfT=1[0,1U[2,3], o is not continuous at 1 € RSNLD.

0 1 2 3

| | | |
€ RSNLD

6. If T is the usual Cantor set (see [9, Example 1.47 p.18]), o is not continuous at 1/3 €
RSNLD.

Remark 3. Let us give a short discussion on the notion of reqular time scale originally introduced
in [16l, Definition 9]. We refer to [, [31] for other applications of this notion. Recall that T is said
to be regular if for everyt € T, cop(t) = poo(t) =t. In particular, for every bounded reqular time
scale (containing at least two elements), a is necessarily right-dense and b is necessarily left-dense,
see [16, Proposition 10]. Hence, all finite time scales (containing at least two elements) are not
regular. The reqularity of a time scale is then an assumption relatively restrictive.

Consequently, we suggest the introduction of the following weakened notion: a time scale is
said to be quasi-reqular if o and p are continuous on T. Hence, a time scale is quasi-regular if and
only if oo p(t) =1t for every t € T,; and poo(t) =t for every t € T*. Such a weakened notion
allows to cover the finite time scales and to preserve the essence of the initial notion.

3.2 V-differentiability of o

From Lemma [Il and from the nabla version of Proposition[I, we derive the following result.
Proposition 5. The following properties are satisfied:
1. if o is continuous at t € LS, then o is directly V-differentiable at t with oV (t) = u(t)/v(t).
2. if o is continuous on T, then o is V-differentiable on T\, if and only if for every t € T,, such

that p(t) = t, the following limit exists in R:

—t
hn%%,
A 5T

(18)

In such a case, this limit is equal to o (t).
Proof. Let us prove the first point. From the nabla version of Proposition [Il and since o is
continuous at t € LS C T, o is directly V-differentiable at ¢ with
t) — t t)—1t t
STy - T =olot) o=t _ ) )

v(t) oty )’

since o o p(t) =t from Lemma [l

Let us prove the second point. Since o is continuous on T, o is directly V-differentiable at
every t € LS from the first point. Consequently, o is V-differentiable on T if and only if o is
V-differentiable at every ¢t € T, such that p(t) = t i.e. if and only if for every t € T, such that
p(t) = t, the following limit exists in R:

o(s) —alp®) _ . ols)—a(t) (20)

im 5~ im ’
oty 5P =/

To conclude, it is sufficient to note that if ¢ = a € Ty, then a € RD and o(a) = a and if ¢ # q,
then t € LD and the continuity of o implies that ¢ ¢ RS (see Proposition H]) i.e. o(t) =t¢. The
proof is complete. o



Let us give some examples of time scale with V-differentiable o.

Example 4. 1. If T = [a,b], o is V-differentiable on T, with o¥ = 1.

2.
3.

10.

IfT={a=ty<...<ty=b}, o is V-differentiable on T, with oV = p/v.

If T = {0} U {zk, k € N} where (z1) is a decreasing positive sequence tending to 0 and if
limg—y o0 2x—1/2k exists (denoted by L), then o is V-differentiable on Tx. In particular, we
have oV (0) = £. Indeed, let (sx) C T be a positive sequence tending to 0. Then, for every
k € N, there exists pi, € N such that s, = zp, . Since s, — 0, we have p, — +00. Finally,
we obtain

-0 _
lim 2B =0 Zmer (21)
k—oo S —0 k—oo  Zp,
0 2k 2k-1 20
T R |
11— — |
5 o(s)

Application: if T = {0} U {1/r*, k € N} with r > 1, then o is V-differentiable on T,. In
particular, we have oV (0) = r.

Similarly to 3., we can prove that if T = {0} U {25, k € N} where (z1) is an increasing
negative sequence tending to 0 and if limg_,o 2k41/2k exists (denoted by £), then o is V-
differentiable on T,. In particular, we have oV (0) = ¢.

20 2k Zk+1 0
| | | L
| | | T

Application: if T = {0} U{=1/r* k € N} with r > 1, then o is V-differentiable on T,. In
particular, we have oV (0) = 1/r.

Similarly to 3., we can prove that if T = [-1,0] U {zx, k € N} where (z1) is a decreasing
positive sequence tending to 0 and if img_yo0 2x—1/2k = 1, then o is V-differentiable on T,.
In particular, we have o (0) = 1.

Application: if T = [-1,0]U{1/k? k € N*}, then o is V-differentiable on T,. In particular,
we have oV (0) = 1.

Similarly to 3., we can prove that if T = {0} U {2z, k € N} U {2}, k € N} where (z)
(resp. (z,j)) is an increasing negative (resp. decreasing positive) sequence tending to 0 and
if img 00 zk__H/Zk_ = limg_ z,':_l/z;' =/{, then o is V-differentiable on Ty. In particular,
we have oV (0) = £. Note that, in such a case, we can only have £ = 1 since 21/ z, <1<
z /2 for every k € N*.

Application: if T = {0} U{z,, k € Ny U{z, k € N} with z;, = —1/k and z;" = 1/k? for
every k € N, then o is V-differentiable on T,. In particular, we have oV (0) = 1.

Let us give some examples of time scale with continuous but non-V-differentiable o.

Example 5. 1. If T = {0} U{1/k!, k € N}, then o is not V-differentiable in 0 since k!/(k —

2.

DI'=k tends to +o0.

If T = [-1,0] U {1/2%, k € N}, then o is not V-differentiable in 0 since 2% /2k=1 = 2 does
not tend to 1.

10



3. If T = {0} U {£1/2F k € N}, then o is not V-differentiable in 0 since 2% /2=t = 2
2k 12K+ —1/2 and 2 # 1/2.

Examples [, @ and Bl allow to get a better understanding of the restrictions imposed on a time
scale by the V-differentiability of ¢. Indeed, we conclude that such a time scale has to satisfy the
following properties:

e Due to the continuity of o, no point can be right-scattered and left-dense.

e Due to the V-differentiability of o, the density in a dense point cannot be too weak, in
contrary to 1. in Example[Bl Secondly, in a left- and right-dense point, the left and the right
densities have to be homogeneous with limit equal to 1, as in 8., 10. of Example [ and in
contrary to 2., 3. of Example [Bl

3.3 Some results and proof of Theorem [1]

The most important result of this section is the following one.

Proposition 6. Let v : T — R" and let t € T. If the two following properties are satisfied:
o o is V-differentiable at t;
o u is A-differentiable at t;

then, u’ is V-differentiable at t with (u®)¥ (t) = oV (t)u(t).

Proof. Since o is continuous at t, recall that o o p(t) = t from Lemmal[ll We distinguish two cases:
t € LS and p(t) =t.

e Firstly, let us consider that ¢ € LS. Since o is continuous at ¢, we have oV (t) = pu(t)/v(t),
see Proposition Bl If moreover ¢ € RS, then u®(t) = (u(o(t)) — u(t))/u(t) and since t is
isolated, u? is V-differentiable at ¢t with

(UU)V(t) — ua(t) - ua(p(t)) _ ’U,(O'(t)) — ’U,(t) — MUJA(t) — O'v(t)uA(t). (22)

In the contrary case o(t) = t, since o is continuous at ¢ and since u is continuous at t = o(t),
we deduce that u” is continuous at ¢ € LS. Then, from the nabla version of Proposition [I]
u? is V-differentiable at ¢t with

) (o) ulo(t) - ult)
v(t) v(t)

since o(t) = t. However, in this case, we have oV (t) = u(t)/v(t) = 0. Consequently, we also
retrieve (u®)V (t) = oV (t)u®(t) in this case.

=0, (23)

e Secondly, let us consider that p(¢t) = t. Necessarily, t € RD. Indeed, if t = a € Ty, then
a € RD. If t # a, then t € LD and since o is continuous at t and ¢t € Ty, we deduce that
t € RD from Lemmal[ll Finally, since u is A-differentiable at ¢ and since o is V-differentiable
at t, we have

(W)Y (1) = lim u?(s) —u?(p(t)) — im o(s) —t u(o(s)) — u(t) oV (1l (1), (24)

s s—p(t) sot s— t o(s)—t

In the previous limit, since o is continuous at ¢ € LD N RD, we have used that s — ¢, s # ¢
implies that o(s) — o(t) =t, o(s) # t.

The proof is complete. o

From Proposition [@ the following corollary is directly derived.

11



Corollary 1. Let u: T — R™. If the following properties are satisfied:
e o is V-differentiable on Ty;
o u is A-differentiable on T";

then, u’ is V-differentiable at every t € T with (u?)V (t) = oV (t)u?(t).

From Propositions 2l Bl and Corollary [[l our main result (Theorem [I]) is proved. We conclude
this section by introducing the following Leibniz formula useful in order to derive a Noether-type
theorem (Theorem [2]) in Section [l

Proposition 7 (Leibniz formula). Let u,v: T — R™ and t € T%. If the following properties are
satisfied:

o o is V-differentiable at t;
o u is A-differentiable at t;
o v is V-differentiable at t;

then, u® - v is V-differentiable at t and the following Leibniz formula holds:
(u? - v)V (t) = u(t) - vV (t) + oV (Hu?(t) - v(t). (25)

Proof. Since o is continuous at ¢ € T, we have o o p(t) =t from Lemma[ll From Proposition [G]
u? is V-differentiable at ¢ with (u?)V(t) = oV (t)u®(t). Finally, from the usual Leibniz formula
on time scale (see [9, Theorem 1.20 p.8]), we have u” - v is V-differentiable at ¢ with

(u” - 0)¥(t) = u? (p(t)) - 0¥ (&) + (u?) ¥ () - 0(t) = u(t) - 0¥ (t) + 0¥ (Q)u(t) - v(t).  (26)

The proof is complete. O

4 Application to a Noether-type theorem

We first review the definition of a one-parameter family of infinitesimal transformations of R™.

Definition 1. Let n > 0. A map ® is said to be a one-parameter family of infinitesimal transfor-
mations of R™ if ® is a map of class €2

o: [-nn xR* — R (27)
0,2) — @(0,2),

such that ®(0,-) = Idgn.

The action of a one-parameter family of infinitesimal transformations of R™ on a Lagrangian
allows us to introduce the notion of symmetry for a V o A-differential Euler-Lagrange equa-

tion (ELTFY).
Definition 2. Let ® be a one-parameter family of infinitesimal transformations of R". A La-
grangian L is said to be invariant under the action of ® if for every solution u of and

every t € Tk, the map
0 — L(®(0, u(t)), B(6, ) (1), 1) (28)

has a null derivative at @€ = 0. In such a case, ® is said to be a symmetry of the V o A-differential

Euler-Lagrange equation associated.

The most classical examples of invariance of a Lagrangian under the action of a one-parameter
family of infinitesimal transformations of R™ are given by quadratic Lagrangians and rotations:

12



Example 6. Let us consider n =2, L(z,v,t) = ||z]|? + ||[v]|?, n =7 > 0 and ® defined by
®: [-m7]xR? — R? (29)
cos(f) —sin(0) x1
0,21,22) — ( sin(f)  cos(6) “\a )

we have ®(0,u)>(t) = ®(0, ( )) from

linearity and continuity of ® in its two last variables. Consequently, for every u € C (']T) and
every T%, one can easily prove that the map

Then, for every u € Ci&A(T), every (0,t) € [—m, 7] x T%

K7

0 — L(®(0, u(t)), ®(0,u)> (t). 1) (30)
is independent of 0 and consequently is constant and has a null derivative at 8 = 0.

Finally, on time scales with V-differentiable o, we prove the following Noether-type theorem
providing a constant of motion for V o A-differential Euler-Lagrange equations admitting
a symmetry.

Theorem 2 (Noether). Let us assume that o is V-differentiable on T, and let ® be a one-
parameter family of infinitesimal transformations of R™. If L is invariant under the action of @,

then for every solution u of , there exists ¢ € R such that

0L 0
S (), ud (0),0) - 2 (0,47 (1) = . (31)

for every t € T*.

Proof. Let u be a solution of . Let us differentiate the map given by (28]) at # = 0 and
let us invert the operators A and /96 from the ¢?-regularity of ®. We obtain for every ¢t € T%:

oL 0P oL o
S (), ud (0),8) - 52 (0, u(t)) + 5 (ult), ud (1),0) - 57 (0,w)A(t) = 0. (32)

Finally, multiplying this last equality by ¢V (¢) and using that u is solution of on T%, we
obtain

v
S| 0 50,00 + o700 0.0 S0 =0 (39

for every ¢t € T%. Finally, from the Leibniz formula obtained in Proposition[ it holds

oL, A . 00 v
St S0 =0 (3)
for every t € T#. From the nabla version of Proposition[2 the proof is complete. O

Note that this theorem encompasses both the well known Noether’s theorems given in the
continuous case [4, p.88] and in the (nonshifted) discrete case [I7, Theorem 6.4]. For an example
of application of Theorem 2] one can consider the framework given in Example

5 The V-analogous results

We conclude this paper with the following remark. The whole study made in this paper can be
analogously derived for nonshifted calculus of variations with Lagrangian functionals involving a
V-integral dependent on a V-derivative. We refer to the duality principle introduced in [I1] and
to [26] for an example of application in calculus of variations on general time scales.
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Precisely, let us assume that p is A-differentiable on T*. Then, the following A o V-differential
Euler-Lagrange equation on T%:

oL

A
S| 0 =05 a0, (BL4)

v
characterizes the critical points of the following (nonshifted) Lagrangian functional:
1,V
L: Cy (T) — R , (35)
U — / L(u(r),u (1),7) V7.
a

In particular, a necessary condition for local optimizers of £ is to be a solution of .
Finally, let us assume that L is moreover invariant under the action of a one-parameter family
® of infinitesimal transformations of R™ in the sense that for every solution u of and

every t € T%, the map
6 — L(D(0, u(t)), ®(6,u)" (£),1) (36)

has a null derivative at # = 0. Then, for every solution u of , there exists ¢ € R such that

OL o0,
S, u¥ (1),0) - 52 (0,u(1) = c. (37)

for every t € T.
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