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Hydrocarbon fuels appear as good candidates for cooling purpose within aerospace applications. Fuel flows through permeable structures. Thus, internal convection cooling is reinforced by chemical kinetics (endothermic effect of fuel pyrolysis). Perfectly tuned conditions may thus rapidly change due to unexpected coke formation that will clogged the pores of the material and thus strongly affect the cooling efficiency. The pressure drop is one of the indicator to monitor the modification of the through-flow and thus of the cooling.

Having a tool to predict these variations is of practical and theoretical interest for a better management of the complex chemical and physical phenomena. This paper presents a model based on artificial neural networks (ANN) for estimating the transient changes of the pressure drop of a reactive fluid (n-dodecane) under pyrolysis conditions passing through porous 2/27 metal material. The ANN is developed using experimental data obtained from an experimental bench, which assures the monitoring of fluid mass flow rate, pressure and temperature in stationary and transient conditions. For each case, the fluid pressure which crosses the metallic porous material is measured as a function of test time, inlet operating pressure, temperature and fuel mass flow rate. The optimal ANN architecture with error backpropagation (BPNN) was determined by the cross validation method. The ANN architecture having 9 hidden neurons gives the best choice. Comparing the simulated values by ANN with the experimental data indicates that the ANN model give correct results. The performance of the ANN model is compared with the multiple linear regression model. This work is expected to be used for later prediction of pressure drop under a wide range of clogging conditions.

Introduction

The development of hypersonic vehicles for future access to space or civil transport applications leads to an important heating of the engine and air frame. At flight speeds near Mach 4 and above, the air taken on board these vehicles will be too hot to cool the engines and airframe. Therefore, using fuel within regenerative cooling technique may be applicable [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: Key Technologies for Reusable Space Systems[END_REF]. To do so, it will be necessary to study and develop adapted light weight and hightemperature materials whose characteristics in terms of permeability and porosity are well defined. Among the materials the composite ones made of Ceramic Matrix (e.g. silicon based matrix) with carbon fibers are particularly interesting. For the lowest speed regime, metallic materials may also be used [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. The aero-thermal loads must be thus addressed to quantify permeability/porosity fluctuations of materials as a function of operating conditions. In the literature, different studies are found in relationship with this need, experimentally [START_REF] Langener | Experimental investigations on transpiration cooling for scramjet applications using different coolants[END_REF][START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF][START_REF] Zhang | On Temperature and Strain Rate Dependent Strain Localization Behavior in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy[END_REF] or numerically [START_REF] Romagnosi | Pyrolysis in Porous Media: Part 1. Numerical model and parametric study[END_REF][START_REF] Tabach | Neural-Network Metamodelling for the Prediction of the Pressure Drop of a Fluid Passing Through Metallic Porous Medium[END_REF]; even mathematically [START_REF] Zhou | Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb 3 Al 5 O 12[END_REF]. Such studies are not only dedicated to the flow description but also to the heat transfers [START_REF] Ji | Effect of Temperature on Material Transfer Behavior at Different Stages of Friction Stir Welded 7075-T6 Aluminum Alloy[END_REF][START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF][START_REF] Herbinet | Thermal decomposition of n-dodecane: Experiments and kinetic modeling[END_REF]. The flows in porous materials are widely studied under common operating conditions.

The problem becomes more difficult when the coolant can react with the materials or within the material (local coking) [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. In case of chemical reaction, the formation of carbon deposit on the surface and inside the porosities can impact the physical properties of the material (lowering the permeability and the porosity) and thus the cooling efficiency. These reactions can be due to the thermal fluid decomposition and to the degradation of the material itself. The degree of decomposition is highly dependent on the operating conditions (temperature, pressure, type of flow, nature of reactor) [START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF][START_REF] Billaud | Thermal coupling of methane in a tabular flow reactor: parametric study[END_REF][START_REF] Murphy | Analysis of products of high-temperature pyrolysis of various hydrocarbons[END_REF][START_REF] Liu | Supercritical thermal cracking of Ndodecane in presence of several initiative additives: products distribution and kinetics[END_REF][START_REF] Fau | Hydrocarbon pyrolysis with a methane focus: A review on the catalytic effect and the coke production[END_REF]. Thermal cracking of hydrocarbons have been widely studied in petrochemical industry [START_REF] Zhou | Thermolytic reactions of dodecane[END_REF][START_REF] Aribike | Thermal cracking of n-Butane and a light hydrocarbon mixture[END_REF][START_REF] Wauters | Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons[END_REF][START_REF] Chakraborty | High pressure pyrolysis of n-heptane[END_REF][START_REF] Sadrameli | Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review 1: Thermal cracking review[END_REF] and in the context of chemical vapor infiltration for the preparation of carbon/carbon composites [START_REF] Marinkovic | Carbon/carbon composites prepared by chemical vapor infiltration-15 years later[END_REF][START_REF] Li | Densification of unidirectional carbon-carbon composites by isothermal chemical vapor infiltration[END_REF][START_REF] Wu | Kinetics of thermal gradient chemical vapor infiltration of large-size carbon/carbon composites with vaporized kerosene[END_REF][START_REF] Deng | Densification behavior and microstructure of carbon/carbon composites prepared by chemical vapor infiltration from xylene at temperatures between 900 and 1250[END_REF][START_REF] Ren | Preparation of carbon/carbon composite by pyrolysis of ethanol and methane[END_REF]. It appears than the bigger the molecule, the higher the number of reactions which occur.

Considering dodecane pyrolysis, the number of reactions largely overpasses 1000 [START_REF] Herbinet | Thermal decomposition of n-dodecane: Experiments and kinetic modeling[END_REF]. This implies very complex phenomena (heat and mass transfers with chemistry).

A lot of studies, often under high pressure (up to 2MPa) are available for ambient to average temperature conditions (under 800K) [START_REF] Langener | Experimental investigations on transpiration cooling for scramjet applications using different coolants[END_REF] or for low pressure and high temperatures [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: Key Technologies for Reusable Space Systems[END_REF]. But only few are dedicated to both high temperature and high pressure conditions in case of reactive fluid. Numerous equations (derived from Brinkman's equation) which relate the pressure drop (ΔP=P in -P out ) through the porous material to the through-flow velocity have been published [START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF][START_REF] Romagnosi | Pyrolysis in Porous Media: Part 1. Numerical model and parametric study[END_REF]. They are based on coefficients, whose physical meaning is not evident [START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF]. One of the complexities of such configuration is due to the fact that along the chemical reactor (cooling channel of the hot vehicle), the fluid is supercritical [START_REF] Gascoin | High temperature and pressure reactive flows through porous media[END_REF]. Multi-species flow is found due to fuel degradation during which heavy compounds (coke particles) are formed and produce solid particles that can block the pore within the porous medium where they are flowing [START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF][START_REF] Gascoin | Charaterisation of coking activity during supercritical hydrocarbon pyrolysis[END_REF]. Due to these large and open difficulties, CFD calculations may not be relevant and experimental tests are costly and they cannot cover the entire range of test conditions/material variety, fluid nature.

As a consequence in this paper, we have used an approach based on the artificial neural networks (ANN) for simulating the transient changes of the pressure drop of n-dodecane (reactive fluid) passing through the porous material (Stainless Steel) by taking into account both high temperature and high pressure conditions. This work intends to indirectly predict the chemical effect of fuel pyrolysis, of coking and of clogging on the permeation process which directly controls the cooling efficiency. The description of the same numerical approach applied to another set of gas mixture (inert) and flow conditions can be found in a previous study [START_REF] Tabach | Neural-Network Metamodelling for the Prediction of the Pressure Drop of a Fluid Passing Through Metallic Porous Medium[END_REF]. Over the last two decades, ANN have been successfully used by many researchers for a wide range of engineering applications [START_REF] Tabach | Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project[END_REF][START_REF] Arumugam | Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data[END_REF][START_REF] Nazari | Computer-aided Prediction of the ZrO 2 Nanoparticles Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens[END_REF]. ANN is based on the 5/27 substitution of the complex simulation model by an approximation of the input-output relationship. ANN has the advantage over regression that the form of the model needs not to be pre-determined [START_REF] Kleijnen | Kriging metamodeling in simulation: A review[END_REF]. In addition, ANN can theoretically approximate any function to any level of accuracy, which is very interesting when the governing physical mechanisms are non-linear like in high velocity fluid flow in porous materials. The database was built with four input parameters (experiment time, inlet fuel mass flow rate, inlet operating pressure and the uniform temperature) and with the outlet fuel pressure as the output parameter. The results obtained experimentally are used to construct, to optimize and to validate the model. This artificial neural network has been trained and tested on this database using the error backpropagation algorithm and cross validation. The performance of the ANN model is compared with a multilinear regression approximation method.

Material

Experimental permeation bench

The COMPARER pyrolysis test bench (Fig. [START_REF] Kuhn | Application of transpiration cooling for hot structures, RESPACE: Key Technologies for Reusable Space Systems[END_REF]) is used to pressurize and to heat the fuel under flow conditions [START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF]. Its main characteristics are the following:  Maximum operating conditions: 1800K, 8MPa, 0.0006 kg.s -1 for liquid fuel and 0.006 kg.s -1 for gas.

 Sensors: 5 pressure transducers, 5 mass flow rates, over 10 K-type and R-type thermocouples with data acquisition system (16 bits, 48 channels, 0.1 Hz).

A permeation test cell contains the porous sample (Fig. 1). This cell is inserted inside the furnace of the COMPARER bench and it is connected to the fluid supply system and to the suitable sensors. The permeable material bounds the cell in two high and low pressure chambers (upstream and downstream to the porous material respectively). An inlet pipe provides the fuel into the system. This cell is connected to a dynamic sampling system to get 6/27 hot pressurized samples at three location points in the cell. Despite its small size (external diameter of 40mm), it enables measuring the temperature, pressure and mass flow rate on each side of the porous sample.

In the present work, an isotropic stainless steel material is preferred to composite one to avoid considering complex microstructure (fibres, layers). It is characterized by a porosity around 30 %, a grain diameter of 14.1 µm and a pore diameter of 4.1 µm. Further geometrical information can be found in Gascoin et al. [START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF].  The experimental protocol is achieved with constant mass flow rate and given downstream pressure (P out ). The upstream pressure (P in ) increases due to coking and clogging of the porous medium; which makes the pressure drop to increase as a function of the test time.

 Monitoring of the chemical species: transiently thanks to a FTIR spectrometer for 5 gaseous species (methane, ethane, ethylene, propane, propylene) and during the three thermal plateaus by using a dedicated sampling system [START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF] coupled with a GC/TCD/FID/MS apparatus (more than 40 species analysed).

Experimental results

We present in this section an experimental test result obtained for T=725K. As shown in Fig. 2, the measured pressure drop (Measured P in -P out ) varies as a function of experimental time (t) and the measured fuel mass flow rate (q in ) when the fuel (dodecane) temperature is kept constant (T=725K). Other obtained experimental results [START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF] showed that the temperature has a major effect on the measured pressure drop. Further details on the experimental results can be found in previous work [START_REF] Fau | Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability[END_REF]. Globally, based on the overall obtained experimental results, we can conclude that there are three parameters (t, q in and T) that have a great influence on the measurements of the pressure drop. ANN models learn the relationship between the input and the output parameters as a result of training with previously recorded data. The database was built using experimental data which are obtained from the developed experimental bench with input parameters: test time (t), operating inlet pressure (P in ), inlet fuel mass flow rate (q in ) and temperature (T) varying in a range of representative values: between 0 and 858s for t; between 3.3MPa and 3.8MPa for 8/27 P in ; between 0.000033 kg/s and 0.0001 kg/s for q in and 725K, 765K and 810K for T. Totally, the database contains an appreciable size of 979 experimental test points. Each input or output parameter has been normalized relative to its minimum and maximum values observed in the data (according to Eq. ( 1)) to make the training procedure more efficient.

    min max min norm X X X X X    (1)
where X is an arbitrary parameter, X norm is the normalized value, and X max and X min are the maximum and minimum values of X.

Architecture and learning process of ANN models

An artifial neural network model is composed of interconnected group of artificial neurons or nodes. The most frequently utilized network is the multilayer backpropagation neural network (BPNN) which is used in the present study. The BPNN structure consists of three layers, an input layer which receive data; an output layer which sends computed information; and one or more hidden layers to link input and output layer. All the neurons (nodes) in a layer are connected with all the neurons of the previous and the next layer. In general, the number of the nodes in the input and output layer are determined by the nature of the problem. The architecture of a typical 3-layer backpropagation neural network is shown in Fig. 3. Mathematically, a 3-layer BPNN with n, m, and p the number of input, hidden and output neurons respectively, can be formulated as in the following:
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where X i the input values of the network and O k are the output values; b j , the hidden unit biases; b k , output nodes biases; W ij , the connection weights between the input layer and the hidden layer; W jk , the connection weights between the hidden layer and the output layer; f is a transfer function. The sigmoid transfer function (Eq. ( 3)) was used in the present study.

x e x f    1 1 ) ( (3) 
Where x is the excitation.

The learning process of BPNN is based on a series of connection weight adjustments in order to minimize the gap (global error) between the outputs of the BPNN and the target values [START_REF] Najjar | Computational neural networks for predictive microbiology: i. Methodology[END_REF]. Initially, all biases and connection weights are initialized to random values in the range of [-1, +1]. Inputs are first propagated forward through each layer of the ANN. Errors between outputs and target values are then propagated backwards and the connection weights are modified according to a specific learning algorithm (delta rule) to reduce the overall error.

This process (forward-backward) is repeated until predicted outputs and target answers coincide within a given tolerance [START_REF] Duda | Pattern Classification[END_REF].

The commonest convergence criterion is the average squared error (ASE) defined as:

  2 s 1 q p 1 k qk qk O t s 1 p 1 ASE         (4) 10/27
where t qk and O qk are respectively the target and predicted value of the output node k for the pattern q, p is the number of output nodes, and s is the number of patterns. It should be noted that any level of agreement between predicted and target vectors can be achieved by providing a sufficient number of training cycles to be carried out. Such an overtraining is however detrimental to the capacity of the network to generalize from unseen data (a network that can accurately predict the output of the testing patterns is said to have generalized). It is thus preferable to calculate the ASE both on training and testing patterns during training cycles for optimum convergence: this process is called cross-validation (Fig. 4).

Figure 4 should be placed here

Results and Discussion

Optimum artificial neural network architecture

The determination of the ANN architecture constitutes one of the major tasks in the use of the ANN. The overall performance of an ANN is dependent on the numbers of hidden layers and hidden nodes. In the usual case of a 3-layer BPNN, the optimum number of hidden nodes can be determined by cross-validation in the same way as the optimum number of training cycles (Fig. 4).

In the present article, a neural network relating inputs {X 1 , X 2 , …, X n } to outputs {O 1 , O 2 , …, O p } and containing one hidden layer with m hidden nodes will be noted:

{O 1 , O 2 , …, O p } = ANN n m p {X 1 , X 2 , …, X n } ( 5 
)
In our case, the outlet operating pressure (P out ) is sought as a function of t, P in , q in and T. So, it is possible to compute P out by using a BPNN model with one node in the output layer (Eq. ( 6)). It could be noticed that usually the pressure drop through the porous medium is investigated as a function of the through-flow rate.
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In this present study, the choice of the outlet pressure is preferred to limit the impact of experimental uncertainties due to the two pressure transducers (which are generally multiplied if compared to a single transducer). In addition, since the upstream pressure is an inlet parameter, looking at the pressure drop or at the pressure outlet is equivalent when focusing on the behaviour of the ANN model. As can be observed in Fig. 5, the optimal value of ASE was calculated while using 9 nodes in the hidden layer for our model.

{P out } = ANN 4-9-1 {t, P in , q in , T} (6) 
The ASE values for the training, testing and validation phases for the optimal artificial neural network model (ANN 4-9-1 ) are respectively 0.000114, 0.000101 and 0.000132. through the origin is also plotted and the coefficient of determination R 2 for this line is computed according to Eq. ( 7):
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where N is the number of data, Y i is the target value, 1. The model 2 seems to be less efficient than model 1 for predicting the variations of P out . This result is expected::the physical phenomena captured in the database are complex and non linear. In ANN non-linearity is accounted for by the use of transfer functions (Eq. ( 3)), while complexity can be controlled by varying the number of hidden nodes. In the present case, the artificial neural networks provide good and realistic predictions. porous medium is given in Fig. 7. It is found with model 1 that the predicted outlet pressure decreases as a function of time. This expected result is due to the formation of carbon deposit (coke) on the surface and inside the porosities of the studied material. We can observe also that the model 1 predicted outlet pressure decreases when the temperature inside the porous medium increases. The density decreases due to the thermal rise and since the mass flow rate inside the medium is kept constant, the mean reactive fluid velocity increases. Thus, the outlet pressure decreases; which means that the pressure drop increases. This is clearly understandable when paying attention to the Brinkman equation. It is thus very important to note that the BPNN approach is able to reproduce physical variations. In particular, it is clear that the chemical effect strongly increases at 760 K and is clear at 770K.

 i Y is

Figure 7 should be placed here

The result of Fig. 7 can be not only related to thermal effect on density and velocity but also to the chemical effect. Indeed, the reactive fluid outlet pressure decreases as a function of time due to the formation of the coke on the surface and inside the studied material. The thermal effect may increase the fluid velocity within the porous material by enhancing coke formation and pore clogging (the lower the cross-section area, the higher the fluid velocity and the higher the pressure in case of constant mass flowrate configuration).

Measuring the pressure drop through porous material could be a way to get information of phenomena within the porous material where no direct microscopic measure seems to be possible for the fluid properties. In addition, these results should drive the engineering study of material cooling because ensuring constant cooling efficiency, thus constant fluid flow through the porous medium, clearly requires compensating higher pressure drop depending on the temperature seen by the solid materials. As a consequence, performance of pumping 14/27 system should be designed to furnish this increasing need for upstream pressure if outlet pressure should remain constant.

Conclusion

In this article, an artificial neural networks tool has been used to simulate the transient pressure drop of n-dodecane under pyrolysis conditions and crossing a metallic porous material (Stainless steel). Based on experimental data, the optimum architecture of artificial neural network was trained and validated, in order to generalise the prediction of the pressure drop under clogging configurations not included in the database for difficult access reasons.

The validation showed excellent performance of this ANN model for the prediction of dodecane transfer in the porous material (R²>0.983). An example of application was presented to detect the temperature at which chemistry starts to strongly impact the fluid flow within the porous medium. It was found that a turning point around 760 K-770K has to be expected in terms of clogging when using n-dodecane at 3.6 MPa in stainless steel medium.

This study is a contribution to the growing evidence of the benefits of ANN models in Aeronautical engineering. This important result may be applied to automate pressure drop estimations, which are used in space flight applications, without prior knowledge of material parameters and particularly for materials with transient changing properties. 
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  These experimental results are necessary to construct, to optimize and to validate a model based on ANN for predicting the transient changes of the pressure drop of a reactive fluid (n-dodecane) passing through porous metal material (stainless steel). The construction of the developed ANN model is discussed in the following section.
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  The present database was subdivided in three subsets. A first subset (490 experimental tests) is used to train the networks. A second one (245 experimental tests) is used to test the ANN models to determine when to stop the training stage. The third subset (244 experimental tests) is used to validate the performance of the selected model on unseen cases.
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Fig. 1

 1 Fig. 1 Schematic of the permeation test cell with porous material and associated measures.

Fig. 2

 2 Fig. 2 Measured pressure drop variations with the measured fuel mass flow rate and experiment time for T=725K.

Fig. 3

 3 Fig. 3 Architecture of a typical multilayer BPNN.

Fig. 4

 4 Fig.[START_REF] Gascoin | Comparaison of two permeation test benches and two determination methods for Darcy's and Forchheimer's permeabilities[END_REF] Convergence criterion and optimum network architecture.

Fig. 5

 5 Fig. 5 Average squared error (ASE) variations with the number of hidden nodes for the testing data subset.

Fig. 6

 6 Fig.[START_REF] Romagnosi | Pyrolysis in Porous Media: Part 1. Numerical model and parametric study[END_REF] Comparison between target and predicted values for P out using BPNN (model 1) and multi-linear regression (model 2) for all data subset.

Fig. 7

 7 Fig.[START_REF] Tabach | Neural-Network Metamodelling for the Prediction of the Pressure Drop of a Fluid Passing Through Metallic Porous Medium[END_REF] Model 1 predicted transient P out variations with the temperature for q in = 0.04g/s and P in = 3.6MPa.

  

  

  the value predicted by the model and i Y is the mean of the N target values. R 2 coefficients close to unity indicate a high degree 12/27 of linearity between predicted and target values. Associated with a best fit line slope close to unity, it indicates a high model prediction accuracy. A basis of comparison for BPNN performance is usually sought in multiple linear regression [33], a more ubiquitous prediction tool in fluid flow through porous material research. Least square parameter fitting for a linear model expressing P out as a function of t, P in , q in , and T (model 2) is performed on the same training database subset as for BPNN model. This model is tested to predict the never-seen data from the BPNN validation database subset. The lowest R 2 value is obtained for multiple linear regression model. It is also noted that the trend line deviates somewhat from the 1:1 line in the case of model 2. The coefficients of determination (R 2 ) for model 1 and model 2 are given in Table
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 1 An application of ANN is now proposed in the following part. Considering a constant inlet pressure at 3.6 MPa, it is now possible to investigate the chemical effect within the range of 725K-810K. It should be noticed that fixing arbitrarily the inlet pressure imposes the outlet pressure to decrease, which simulate the pressure drop increase. The evolution of the predicted outlet pressure (P out ) using BPNN as a function of time and temperature inside the
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Table 1

 1 R 2 values between target and predicted outputs for all models.

R 2

Neural network (model