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Abstract 

The pressure drop across metallic porous medium is a critical element in cooling aerospace 

engineering application. This paper presents a metamodel based on artificial neural networks 

(ANN) for estimating the pressure drop through metallic porous media. The ANN is 

developed using experimental data obtained from an experimental bench, developed at 

PRISME laboratory, which ensure the monitoring of temperature, pressure and mass flow 

rate in stationary and transient conditions. For each case the gas pressure which crosses the 

metallic porous material is measured as a function of inlet gas pressure, gas mass flow rate 

and temperature. The optimal feedforward ANN architecture with error backpropagation 

(BPNN) was determined by the cross validation method. The ANN architecture having 35 

hidden neurons gives the best choice. Comparing the modelled values by ANN with the 

experimental data indicates that neural network model provide accurate results. The 

performance of the ANN model is compared with a metamodelling method using multilinear 

regression approximation.  
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NOMENCLATURE 

m number of hidden nodes  T dimensional temperature (K) 

n number of input nodes  t target value 

Oi simulation output measures, 

corresponding to Xi 

 Wij connection weights between the 

input layer and the hidden layer 

P gas pressure (Pa)  Wjk connection weights between the 

hidden layer and the output layer 

p number of output nodes  Xi particular input parameter 

setting, i 

q gas mass flow rate (kg s
-1

)  Subscripts 
S transfer function  in inlet 

s number of patterns  out outlet 

 

1. INTRODUCTION 

One of the many issues encountered in the development of future hypersonic vehicles is 

the problem of protecting the engines and airframe from high heat loads encountered at 

hypersonic speeds. At flight speeds near Mach 4, the air taken on board these vehicles will be 

too hot to cool the engines and airframe. Therefore, it will be necessary to study and develop 

other light weight and high-temperature materials. Among the materials which are intended 

to be used for high-speed flight are the metallic and the composite ones. The materials and 

cooling techniques and their interaction with aero-thermal loads must be addressed.  

In the literature, we can found different studies in relationship with this need, 

experimentally (Langener et al., 2011; Gascoin et al., 2012) or numerically (Jaber and Ziad 

Saghir, 2011; Shahnazari and Vahabikashi, 2011); even mathematically (Kim and Park, 

1999; Martin and Boyd, 2008). Such studies are not only dedicated to the flow description 

but also to the heat transfers (Kim and Park, 1999; Krishna et al., 2008; Younis, 2010); for 
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example for configurations close to fuel cooled structures (Zhao and Chen, 2003) and also for 

geophysics applications (Hadim, 1994). The flows in porous media are widely studied under 

common operating conditions. 

A lot of studies, often under high pressure (up to 2MPa) are available for ambient 

conditions or average temperature conditions (under 800K) (Park and Lawrence, 2003; 

Langener, 2011) or for low pressure and high temperatures (Kuhn and Hald, 2008). But only 

few are dedicated to both high temperature and high pressure conditions. Numerous 

equations (derived from Brinkman’s equation) which relate pressure drop (ΔP=Pin-Pout) 

through the porous media to the gas velocity have been published (Martin and Boyd, 2008; 

Khan and Reddy Gorla, 2010; Gascoin et al., 2012). They are based on coefficient, whose 

physical meaning is not evident. Furthermore, the dynamic viscosity, which appears in these 

equations, is often considered to be that of the fluid. It remains constant in most of 

experimental and numerical works. Nevertheless, this is questionable because this parameter 

varies across the porous medium in the case of reactive flow or a non-uniform temperature 

system. 

In this paper, we have used a simulation metamodelling to better simulate the pressure 

drop of nitrogen passing through the porous media (Stainless Steel) by taking into account 

both high temperature and high pressure conditions. Simulation metamodelling is based on 

the substitution of the complex simulation model by an approximation of the input-output 

relationship. Metamodelling, first proposed by Blanning (1975), makes the computations 

much faster, allowing for more cases to be studied. This wider exploration of the input 

variables improves the understanding of the model and it permits to carry out otherwise time 

consuming sensitivity analysis or solution optimization (Broad, 2004, Kleijnen et al., 2010), 

at the cost however of a lower accuracy of the outputs. Originally based on regression 

methods (Cohen et al., 2003; Freedman, 2008), metamodels now use various approaches such 
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as artificial neural networks (ANN) or kriging (Kleijnen, 2009; Ankenman et al., 2010). ANN 

has the advantage over regression that the form of the model needs not to be pre-determined. 

Moreover, ANN can theoretically approximate any function to any level of accuracy (El 

Tabach et al., 2007), which is very interesting when the governing physical mechanisms are 

highly non-linear like in high velocity fluid flow in porous medium. The database was built 

with three input parameters (inlet gas mass flow rate, inlet gas pressure and the temperature) 

and the outlet gas pressure as output parameters, using the results coming from an 

experimental bench. An artificial neural network has been trained and tested on this database 

using the error backpropagation algorithm and cross validation.  

2. THE EXPERIMENTAL BENCH AND SPECIFIC SET-UP 

The COMPARER pyrolysis test bench is used to pressurize and to heat the fuel under 

flow conditions (Gascoin et al., 2011). Its main characteristics are the following: 

 Maximum operating conditions: 1800K, 8MPa, 0.0006 kg.s
-1

 for liquid fluid and 

0.006 kg.s
-1

 for gas. 

 Sensors: 5 mass flow rates, 5 pressure transducers, over 10 K-type and R-type 

thermocouples with data acquisition system (16 bits, 48 channels, 0.1 Hz).  

A permeation test cell contains the porous sample (FIG. 1). This cell is inserted inside the 

furnace of the COMPARER bench and it is connected to the fluid supply system and to the 

appropriate sensors. The permeable medium bounds the cell in two high and low pressure 

chambers (upstream and downstream to the porous medium respectively). These chambers 

are noted HPC and LPC in this paper. An inlet pipe provides the fuel into the system. This 

cell is connected to a dynamic sampling system to get hot pressurized samples at three 

location points in the cell. Despite its small size (external diameter of 40mm), it enables 

measuring the temperature, pressure and mass flow rate on each side of the porous sample.  
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The permeable medium can be changed. In the present work, an isotropic stainless steel 

material is preferred to composite one to avoid considering complex microstructure (fibres, 

layers). It is characterized by a porosity around 30 %, a grain diameter of 14.1 µm and a pore 

diameter of 4.1 µm (Gascoin et al., 2012). Further geometrical information can be found in 

Gascoin et al. (2012). 

 

 

 
 

FIG. 1: Schematic of the permeation test cell with porous medium and associated measures 

(Gascoin, 2011). 

 

The different test conditions and most of the possible combinations have been achieved: 

 Temperature set-up: from 300K to 1200K by step of 100K. 

 Absolute pressure: from 0.05MPa (depressurized system) to 6MPa. 
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 Two experimental protocols have been tested: one by measuring the mass flow rate 

and changing the upstream pressure and a second by measuring the pressure drop and 

changing the upstream mass flow rate. 

3. CONSTRUCTION OF THE ANN METAMODEL 

3.1. Artificial neural networks 

The metamodel adopted in this paper is based upon the use of artificial neural networks 

(ANN). ANN operate like a “black box” model, requiring no detailed information about the 

physical parameters of the system. Instead, they learn the relationship between the input and 

output parameters as a result of training with previously recorded data. ANN can handle large 

and complex systems with many interrelated parameters. 

3.2. Construction of the database 

The database was built using experimental data which are obtained from the developed 

experimental bench with input parameters: gas inlet pressure (Pin), inlet gas mass flow rate 

(qin) and temperature (T) varying in a range of representative values: 35 values between 

0.1MPa and 1.3MPa for Pin; 35 values between 0.00008 kg/s and 0.0011 kg/s for qin and 10 

values between 290K and 1174K for T. In total; the database contains an appreciable size of 

350 experimental tests.  

The present database was subdivided in three subsets. A first subset (174 experimental 

tests) is used to train the networks. A second one (88 experimental tests) is used to test the 

ANN models to determine when to stop the training stage. The third subset (88 experimental 

tests) is used to validate the performance of the selected model on unseen cases. It should be 
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noted that the training subset should contain the widest variety of patterns, since ANN are 

more reliable if they are used as an interpolation tool for generalization on new cases. 

Note also that each input or output parameter has been normalized relative to its 

minimum and maximum values observed in the data, allowing for faster training by 

preventing larger numbers from overriding smaller ones. Normalization of an arbitrary 

parameter, X, can be carried out using Eq. 1. 

 
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
  (1) 

where Xnorm is the normalized value, and Xmax and Xmin are the maximum and minimum 

values of X.  

3.3. Construction of artificial neural network models 

A brief description of the model and program used in this study will be given in this 

section. For a detailed description, evaluation, and discussion on the overall performance of 

the model, readers are referred to Najjar et al. (1997). 

ANN are composed of a set of elements of calculation (nodes) connected to each other. 

The most popular type of network is the multilayer backpropagation neural network (BPNN) 

which is used in the present study. The architecture of a typical 3-layer backpropagation 

neural network is shown in Fig. 2. Mathematically, a 3-layer ANN with n, m, and p the 

number of input, hidden and output nodes respectively, is based on the following equation: 
























  

 

m

j

n

i

iijjkk
XWSWSO

1 1

 (2) 



8/20 

where Ok are the output values and Xi the input values of the network; Wij, the connection 

weights between the input layer and the hidden layer; Wjk, the connection weights between 

the hidden layer and the output layer; S is a transfer function. The sigmoidal function (Eq. 3) 

was used in the present study.  

x
e

)x(S





1

1
     (3) 

The input from each node in the previous layer (Xi) is multiplied by an adjustable 

connection weight (Wij). At each node, the weighted input signals are summed and an 

adjustable threshold value (Wj) is added. This combined input Aj is then passed through the 

non-linear transfer function S to produce the output of the node (Oj). The output of one node 

contributes to the input to the nodes in the next layer. This process is illustrated in Fig. 2. In 

the present study, all connection weights (Wij) and the thresholds (Wj) are initialized to 

random values in the range of [+1, -1] (Najjar et al., 1997). 

The learning process of BPNN is based on a series of connection weight adjustments in 

order to minimize a global error between predicted outputs and target values. It relies on a 

search technique (e. g. gradient descent) of the connecting weights yielding a minimum error. 

Inputs are first propagated forward through each layer of the network. Errors between outputs 

and target values are then propagated backwards and the connection weights are modified 

according to a specific learning algorithm (delta rule) to reduce the overall error. This 

forward-backward process is carried out for each epoch (set of training patterns used to 

compute the global error), and is repeated until predicted outputs and target answers coincide 

within a given tolerance.  

The most common convergence criterion is the average squared error (ASE) defined as: 
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where Oqk ant tqk are respectively the predicted and target value of the output node k for the 

pattern q, s is the number of patterns, and p is the number of output nodes. It should be noted 

that any level of agreement between predicted and target vectors can be achieved by 

providing a sufficient number of training cycles to be carried out. Such an overtraining is 

however detrimental to the capacity of the network to generalize from unseen data (a network 

that can accurately predict the output of the testing patterns is said to have generalized). It is 

thus preferable to compute the ASE both on training and testing patterns during training 

cycles for optimum convergence: this process is called cross-validation (FIG. 3). 

 

 

FIG. 2: Architecture of a typical multilayer backpropagation artificial neural network 
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FIG. 3: Convergence criterion and optimum network architecture. 

3.4. Optimum network architecture 

The overall performance of an ANN is very dependent on the number of hidden layers 

and of hidden nodes in each hidden layer. In the usual case of a 3-layer BPNN (one hidden 

layer), the optimum number of hidden nodes can be assessed by cross-validation in the same 

way as the optimum number of training cycles (Fig. 3). Starting with a few hidden nodes, 

more nodes are added up as the ASE computed on the testing patterns decreases. The number 

of hidden nodes beyond which the error starts to increase again is taken as the optimum. 

In the present study, a neural network relating inputs {X1, X2, …, Xn} to outputs {O1, O2, 

…, Op} and containing one hidden layer with m hidden nodes will be noted: 

{O1, O2, …, Op} = ANNnmp {X1, X2, …, Xn}   (5) 

In our case, the outlet gas pressure (Pout) is sought as a function of Pin, qin and T. So, it is 

possible to compute Pout by using a BPNN model with one node in the output layer (Eq. 6). It 

could be noticed that usually the pressure drop through the porous medium is investigated as 

Number of training cycles or number of hidden nodes 

training 

testing 

Stop training here (optimum 

number of cycles) 

ASE 
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a function of the through flow rate. In this present study, the choice of the outlet pressure is 

preferred to limit the impact of experimental uncertainties due to the two pressure transducers 

(which are generally multiplied if compared to a single transducer). In addition, since the 

upstream pressure is an inlet parameter, looking at the pressure drop or at the pressure outlet 

is equivalent when focusing on the behaviour of the ANN model. As can be observed in FIG. 

4 the optimal value of ASE was calculated while using 35 nodes in the hidden layer for our 

model. 

{Pout} = ANN3-35-1 {Pin, qin, T}     (6) 

The ASE values for the training, testing and validation phases for the optimal artificial 

neural network model (ANN3-35-1) are respectively 4
10150


. , 4

10011


.  and 4
10691


. . 

Somewhat larger value of the ASE is logically obtained during the validation phase.  
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FIG. 4: Absolute squared error (ASE) variations with the number of hidden nodes for the 

testing data subset. 
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3.5. Discussion of the performance of the model 

The performance of the model is assessed by comparing target and predicted values Yi 

and


i
Y . If predicted values are plotted against target values, the distance of these points to the 

bisectrix gives an indication about how close the model fits the data. FIG. 5 shows the 

comparison between the BPNN predicted values and the target values for Pout on previously 

unseen data (validation phase). On the same graphs the best fit line through the origin is also 

plotted and the coefficient of determination R
2
 for this line is computed according to Eq. 7: 

 
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2

2
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1     (7) 

where N is the number of data, 


i
Y  is the value predicted by the model, Yi is the target value 

and iY  is the mean of the N target values. R
2
 coefficients close to unity indicate a high degree 

of linearity between predicted and target values. Associated with a best fit line slope close to 

unity, it indicates a high model prediction accuracy.  

A basis of comparison for BPNN performance is usually sought in multiple linear 

regression (Tabachnick, 2007), a more ubiquitous prediction tool in fluid flow through 

porous media research. Least square parameter fitting for a linear model expressing Pout as a 

function of Pin, qin, and T (model 2) is performed on the same training database subset as for 

BPNN model. This model is tested to predict the never-seen data from the BPNN validation 

database subset. A greater scatter, quantified by a smaller R
2
 value, is obtained for multiple 

linear regression, as compared to backpropagation neural networks. It is also noted that the 

trend line deviates somewhat from the 1:1 line in the case of model 2. The coefficients of 

determination for model 1 and model 2 for all training, testing and validation phases are 
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given in Table 1. The multiple linear regression model fails to predict the variations of Pout. 

The poor performance of the linear model is not surprising: the physical phenomena captured 

in the database are quite complex and highly non linear. In artificial neural networks non-

linearity is accounted for by the use of transfer functions (Eq. 3), while complexity can be 

controlled by varying the number of hidden nodes. Artificial neural networks appears as a 

powerful prediction tool in the present case. 
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FIG. 5: Comparison between target and predicted values for Pout using BPNN (model 1) and 

multi-linear regression (model 2) for all data subset. 
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Table 1: R
2
 values between target and predicted outputs for all models 

 

R
2
 Neural network (model 1) Multiple linear regression (model 2) 

Training phase 0.999 0.682 

Testing phase 0.997 0.639 

Validation phase 0.996 0.592 

 

 

The evolution of the predicted outlet pressure (Pout) using BPNN as a function of 

temperature inside the porous medium corresponds to a decrease when the temperature 

increases (FIG. 7). The density decreases due to the thermal rise and since the mass flow rate 

inside the medium is kept constant, the mean fluid velocity increases. Thus, the outlet 

pressure decreases; which means that the pressure drop increases (for a given curve 

corresponding to a fixed inlet pressure). This is clearly understandable when paying attention 

to the Brinkman equation. It is thus very important to note that the ANN approach is able to 

reproduce physical variations. 
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FIG.7: Model 1 predicted Pout variations with the temperature for qin = 1g/s.  
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In addition, it can be seen that the same pressure drop (ΔP=Pin-Pout) is found for several 

couples of temperature/inlet pressure (FIG. 8). For example a pressure drop of 0.2 MPa is 

reached for (Pin=0.4 MPa and T=1173.15K) and for (Pin=0.6 MPa and T=573.15 K). This 

means that the pressure is divided by a factor 2 at high temperature while for about half of 

this temperature, the pressure losses only 33%. To divide the inlet pressure of 0.6 MPa by a 

factor 2, the temperature should be about 873.15 K. As a consequence, it can be concluded 

physically, that the temperature has a higher effect than the pressure itself. The thermal effect 

much increases the fluid velocity within the porous media (more than what the pressure 

does). This is the thermodynamic consequence of pressure and temperature parameters on the 

fluid density. This could be a way to get information of phenomena within the porous media 

where no direct measure seems to be possible for the fluid properties. 
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FIG. 8: Model 1 predicted ΔP variations with Pin for qin = 1g/s. 

4. CONCLUSIONS 

A metamodel based on artificial neural networks has been used to predict the nitrogen 

pressure which crossed a metallic porous media (Stainless steel). Based on experimental data, 
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the optimum architecture of artificial neural network was trained and validated, in order to 

generalise the prediction of gas pressure which crossed the studied porous media to cases not 

included in the database. The validation showed excellent performance of this metamodel for 

the prediction of gas transfer in the porous media.  

This study is a contribution to the growing evidence of the benefits of simulation 

metamodels in Aerospace engineering. This important result may be applied to automate Pout 

estimations which utilized in space flight applications without prior knowledge of correct 

material parameters. 
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