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ABSTRACT

Dynamic modeling of sound is a new approach to model
and synthesize natural sound signals and is based on a re-
cent method of modeling dynamical systems with neural
networks. The following investigation addresses the prob-
lem of controlling the characteristics of the sound signals
that are obtained from a dynamical sound model. Here,
we propose an algorithm for morphing between the dy-
namics of different sounds. The dynamics of one dimen-
sional attractors can be used to model a large number of
sound signals. In the following we will give an example
of a dynamical model of a piano sound that is based on
one dimensional attractors. After having motivated the re-
striction to one dimensional attractor topologies, we the-
oretically investigate into a number of properties of the
proposed morphing scheme and experimentally verify our
conclusions. The topics that will be discussed in the light
of the special application are the selection of reconstruc-
tion parameters, necessary constraints on the network pa-
rameters and signal characteristics that can prevent a suc-
cessful application of the morphing method.

Keywords: Dynamic Modeling of Sound, State Space
Reconstruction, Attractor Morphing, Radial Basis Func-
tion Network.

1. INTRODUCTION

Recently it has been shown that neural networks may be
used to establish a so called dynamical model of chaotic
system dynamics given a time series of the system, only
[1, 8, 9, 2]. The method is based upon a reconstruction
of the systems original state space and an embedding of
the systems attractor [16, 15]. Using the state space re-
construction a neural network is trained as a predictor of
the system dynamics, which when used iteratively can be
regarded as a model of the system dynamics at the respec-
tive attractor. Stability of the model, and even more the
equivalence of the models and systems attractor are diffi-
cult to guarantee, however, it is widely accepted that by
means of recurrent training algorithms proper dynamical
models can be achieved [8, 2].
Application of dynamic modeling is not constrained to
chaotic dynamics, and it has been shown that dynamical
models of natural sound signals can be used to resynthe-

size sound signals with high quality [11]. Compared to
standard sound synthesis methods, however, the possibil-
ities to control the synthesized sound are somewhat lim-
ited. Due to the complicated relations between the net-
work parameters and the attractor of the model it appears
to be impossible to find any sensible algorithm that allows
a user to change the model characteristics by directly al-
tering the model parameters. Therefore, we have inves-
tigated another approach to achieve signal modification,
which we call attractor morphing.

Our approach to attractor morphing is based upon a
simple homotopic mixing algorithm [4] that interpolates
between two progenitor sound models to obtain a new
model with interpolating dynamics. The progenitor mod-
els are trained independently, and are combined linearly
to achieve intermediate dynamics. It is generally accepted
that harmonic sounds of musical instruments are mainly
characterized by amplitude and frequency of their par-
tials. A volume change of a natural instrument, for ex-
ample, is generally expected to change mainly the am-
plitudes of the partials with only very minor changes in
their frequency. In contrast a pitch change moves all par-
tials synchronously such that the sound remains harmonic
while minor additionally amplitude changes may occur.
Consequently, most sound morphing algorithms are based
upon frequency domain analysis [17]. Due to the fact that
frequency and amplitude have to be controlled indepen-
dently to achieve convienient control of the sound charac-
teristics we started the investigation of the attractor mor-
phing algorithm with the question whether the morph be-
tween two sounds which differ only with respect to pitch
or amplitude can be morphed without altering any of the
other fixed signal parameters. Because in this initial stage
of investigation we only morph between two progenitor
sounds there exists a single morphing parameter, only. In
the long run, however, the method is intended to inter-
polate between a higher number of attractors of the same
musical instrument such that a dynamical model not only
of a specific sound, but, for a part of the whole instrument
is obtained. For such an application the space of morph-
ing input parameters has to be organized in such a manner
that similar control inputs reflects similar dynamics in the
reconstructed state space. A possible method to solve this
problem in an automatic fashion is the hidden control neu-
ral network approach [3].

The results of our first experimental investigation of



the proposed morphing algorithm have been promising
[12]. Morphing synthetic sounds with one half tone of
pitch difference results in no perceivable alteration of am-
plitudes and morphing amplitude differences does not af-
fect pitch. Small changes of the phase of the partials
have been morphed independently of pitch and amplitude.
Even the morph between two real world saxophone sig-
nals with a pitch difference of one half tone has been
successfully achieved. Those experimental investigations,
however, lack any theoretical foundation and, moreover,
in some cases the morphed real world signals exhibit a
disturbing level of nonlinear distortions, which was not
observed for the synthetic test signals. As an additional
result we have found that the morph of attractors with
different topologies, for example morphing a closed line
(harmonic signal) into a torus (non harmonic signal), is
very difficult to achieve.

In the following article we will first explain our spe-
cial interest for morphing one dimensional attractors, that
is mainly due to the fact that non harmonic signals can be
modeled by means of non stationary harmonic signals. As
an example for such a situation we present the dynami-
cal model of a piano sound. Then we investigate into the
morphing algorithm based on some fundamental assump-
tions concerned with the dynamic modeling with normal-
ized RBF networks. We restrict our focus to the prob-
lem of morphing phase or amplitude changes for signals
with identical pitch and give some arguments why an in-
dependent and stable morph of phase and amplitude can
be expected at least for infinitesimally small parameter
changes. The case of pitch morphing is more difficulty
to handle and will be considered in forthcoming investi-
gations.
Besides the case of small parameter changes we investi-
gate a special worst case large scale parameter change and
argue that the morph of phase shifts of about π degree is
impossible to achieve without altering the partials ampli-
tude. However, it is interesting to note that in case of mor-
phing pitch and large phase differences the impact on the
amplitude is much smaller. As a last result we address the
problem of nonlinear distortions and demonstrate that the
problem is due to the undefined behavior of a dynamical
model well apart from the trained attractor. We demon-
strate that the distortion can be attenuated by means of
constraining the width parameters of the Gaussians of the
RBF network from below.

The article is organized as follows. In section 2 we
explain some fundamental aspects of the dynamic model-
ing of sounds and give an example for modeling a piano
signal, which motivates our interest in dynamical models
of one dimensional attractors. In section 3 we introduce
our morphing algorithm and give a explanation of the fun-
damental mechanism. In sections 4 we present morphing
results for a number of artificial sound signals that are in-
tended to verify the theoretical reasoning. Section 5 con-
cludes with a summary and an outlook on further work.

2. ATTRACTOR MODELING OF SOUNDS

Traditional musical instruments belong to the class of
dissipative, nonlinear mechanical systems. The discrete
time evolution of such a system may be described in a k-
dimensional state space S by means of a mapping f(.)

~zn+1 = f( ~zn) ~z ∈ S , (1)

which connects the system state ~z at time n, with the sys-
tem state at the next time step. For a stable system f(.)
and for large n → ∞ the state ~zn will be confined to
a bounded and closed subset A ⊂ S of the state space,
which is called an attractor of f(.) [13]. An attractor may
be as simple as a point or as complex as a fractal set if
the system dynamics are chaotic. If the dynamical system
generates an output (sound) signal yn, the characteristics
of this signal are closely related to the topology of the at-
tractor [7].

For a d-dimensional attractor generating a sound sig-
nal yn the fractal embedding theorem [16, 15] ensures un-
der weak assumptions concerning yn and f(.) , that for
D > 2d, the set of all delayed coordinate vectors

YD,T = {n > n0 : ~yn = (yn, yn−T , . . . , yn−(D−1)T )},
(2)

with an arbitrary delay time T , forms an embedding of A
in theD-dimensional reconstruction spaceG. Because an
embedding preserves the characteristic features of A, es-
pecially it is one to one, it may be employed for building a
system model. To achieve this we use a neural network to
approximate the system function f(.) in the reconstructed
state space G, yielding a prediction model

yn+T = fN (~yn). (3)

For stable predictor models fN the prediction can be it-
erated thereby establishing a model of the system dynam-
ics on attractor A. The building of predictor based neu-
ral network dynamical models has been successfully ap-
plied to chaotic system dynamics [8, 1] and also to non
chaotic sound dynamics of saxophone, piano and speech
signals[11]. Note, however, that in the case of music and
speech signals the system dynamics are generally not sta-
tionary. For slowly varying dynamics this situation can be
described by a system undergoing a parameter variation
and, therefore, following a sequence of attractors [14, 11].
The input/output relations of a dynamical sound model for
a non stationary sound is shown in Fig. 1. Note the control
input on the left that is required to model different dynam-
ics at different times. For modeling single sounds we have
been able to model the attractor sequence with the control
input being a fixed linearly increasing function of time.

Properties of Reconstructed Sound Attractors

It is well known that the attractors of sound signals with
harmonic spectra have the topology of a closed line [6].
Consequently, many sound signals that are originated
by musical instruments are well described by dynamical
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Figure 1: Input/output description of the neural network dynamical models (left) and a three dimensional reconstruction of a
short segment of a piano signal (right).

models with one dimensional attractors. Moreover, from
the theory of linear prediction it is clear that a stationary
signal that consists of a collection of k partials can be pre-
dicted without error by means of a linear predictor with
2k coefficients. Therefore, the prediction function fN is
linear for all points of the sound attractor if D ≥ 2k. In
contrast to the linear predictor which due to the roots on
the unit circle is always unstable, the iterated prediction
of the nonlinear dynamical model can be stable because
the linear relation is not extended to the attractor neigh-
borhood. While the dimension D = 2k is well above the
required reconstruction dimension it is often much easier
to model the dynamics in this case, due to the simple lin-
ear relation that are required for prediction.

If some partials of a signal are not harmonic the at-
tractor dimension is increased and exhibits the topology
of an k-torus, where k is the number of independent base
frequencies. An example is a sound of a piano, which
is well known to be inharmonic. The attractor of the pi-
ano sound is a point in state space, the resting position of
the string. For short times, however, we can neglect the
time dependence of the dynamics and can interpret the re-
constructed trajectories as part of a attractor, which due
to the non harmonic partials has the topology of a torus.
Because the frequency deviation of the partials from the
harmonic relation is rather small a long time is needed
until the trajectory describes the whole attractor. Due to
energy dissipation the amplitudes of the partials change
and the whole torus structure of the piano trajectory is not
available. Part of the torus is shown in Fig. 1, where a
three dimensional reconstruction of the decaying part of
a piano sound is shown. While there does not exist a pi-
ano attractor that describes the relaxation of the string, we
can describe the piano trajectory by means of a sequence
of one dimensional attractors with continually changing

phase and slowly decreasing amplitudes. Analysis of the
piano model presented in [11] has revealed the fact that
this is exactly the way the non stationary model shown in
Fig. 1 is modeling the dynamics of the piano signal.

3. MORPHING DYNAMICAL MODELS

The new morphing algorithm we are going to present now,
is based upon the homotopic mixing of dynamical systems
[4]. In our approach we use as the progenitor systems the
sound models obtained from the respective sounds. Then
we construct a new sound model with an additional mor-
phing parameter α that consists of the convex sum of the
progenitor sound models, f1(.) and f2(.), following

fm(~y, α) = αf1(~y) + (1− α)f2(~y). (4)

The morphing parameter α is confined to the interval
[0, 1], such that the parameterized model fm(., α) es-
tablishes a linear transformation between the progenitor
models. For α = 1.0 and α = 0.0 the morphing model
fm(., α) reproduces the progenitor models, and for inter-
mediate values of α new sound dynamics are produced.
Smooth changes of α result in smooth changes of the dy-
namical model fm(.). However, smooth changes in fm(.)
does not necessarily result in smooth changes of the at-
tractor, because for varying α all kinds of bifurcations
may occur [4]. To achieve reasonable interpolating dy-
namics the progenitor attractors have to be geometrically
and topologically similar.

To investigate into this problem let us assume that the
reconstruction dimension is

D ≥ 2k, (5)

with k being the number of partials in the quasi periodic
signal, such that the predictors f1(.) and f2(.) are lin-
ear functions at their respective reconstructed attractors,



where the linear functions have all their roots at the unit
circle. Further we assume that the nonlinear extension of
the linear prediction into the neighborhood of the attractor
can be described by means of a projection of the input vec-
tor ~y onto the attractor prior to the linear prediction. Due
to the projection each of the iterated predictors is a stable
oscillator. A dynamical model that is based on neural net-
works will hardly achieve this ideal behavior, however, if
we employ a so called normalized RBF network [5], sup-
ply sufficient data, and continually increase the number
of hidden units this type of prediction function is a possi-
ble limiting behavior of the network function. For finite
number of units and for large distances to the attractor the
projection and prediction mechanism is surely wrong. In
this cases a large scale interpolation of the behavior of the
predictor at different parts of the attractor will occur.
With this understanding of the prediction function we will
now investigate into the results that can be expected for the
above morphing algorithm and different characteristics of
the changes of the signals parameters. The simplest situa-
tion occurs if both progenitor signals differ only in ampli-
tude and phase of the partials. Therefore, we started our
theoretical investigation with this case. A lot of work has
to be applied before a full understanding of the proposed
morphing scheme can be obtained. However, the follow-
ing considerations are necessary foundations for a further
development of the method.

Due to the fact that the optimum linear predictor does
not depend on amplitude or phase of the predicted signal
the linear functions that the predictors fi(.) calculate are
identical. However, both predictors are constrained to dif-
ferent regions of the state space, due to the projection that
is performed prior to linear prediction. In this case Eq. (4)
can be expressed as

fm(~y, α) = α~a′(~y ⊥ A1) + (1− α)~a′(~y ⊥ A2), (6)

where Ai is the attractor of model i and the transposed
column vector ~a′ is the linear filter that describes both lin-
ear prediction functions. Note, that due to the linearity
of the morphing equation Eq. (4) a morph between any
two independent evolutions of the models f1(.) and f2(.)
on their respective attractors will result in a new attractor
with the same frequencies, but, with different phase andr
amplitudes of the partials. If we start with an initial point
~y in Eq. (6) this state vector is first projected onto A1 and
A2 to find the nearest points. By means of the linear pre-
diction the projections are then moved one step ahead at
the respective attractors and the resulting predictions are
then combined by means of the linear interpolation to ob-
tain the new state of the morphed dynamics. The next
step starts again with a projection of the state vector onto
the attractors. As long as this projection and the linear
interpolation are inverse operations the whole process is
simply an interpolation of two independent attractor mo-
tions. In such cases the morph between attractors with the
same frequencies would not affect the frequency of the in-
terpolated signals. In most cases, however, interpolation
and projection are not inverse, and, therefore, frequency
deviations may occur.

The closer the progenitor attractors are in the recon-
structed state space the closer is the projection operation
to the inverse of the linear interpolation and the smaller
are frequency deviations for morphing amplitude or phase
changes. If we continually change any single parameter of
a progenitor signal (amplitude or phase), then the related
attractor will change smoothly and will define a surface
in the reconstruction space. Because all intermediate at-
tractors are related to the same linear model, the surfaces
that are related with different parameters can not intersect
as long as the underlying signals are different. For small
parameter changes the local change of the attractor is ap-
proximately linear and, therefore, for small changes a lin-
ear interpolation of those attractors that are related to the
parameter limits will approximate the attractor for an in-
termediate parameter setting without considerable affect
on other signal parameters. A morph by means of linear
interpolation can be interpreted as a first order approxi-
mation of the dependence of the attractor on amplitude or
phase changes.

For large differences of phase or amplitude, however,
the linear interpolation will not be able to morph ampli-
tude and phase changes without affecting the other pa-
rameter. This is due to the fact that the linearization of
the attractor behavior around a parameter setting is only
a crude approximation for larger parameter changes. A
special situation is a phase shift of one partial of about
π. Note, that reconstructed attractor will not change if the
signals time origin is changing. Therefore, only relative
phase changes of the partials are considered here. Shift-
ing a partial phase by π yields the same result as a change
in amplitude to the inverse sign. Because the signals are
identical, so are the attractors and by means of morphing,
a independent morph of phase or amplitude changes can
not be expected. Think of two progenitor trajectories that
are concentric straight spirals with identical radius where
one spiral is shifted by π radiant along the axial center.
Due to the ideal symmetries of this setting the morphing
algorithm, driven by means of the global superposition of
all the hidden units would solely change the radius of the
partials. However, due to the curvatures of the attractors
the ideal symmetries will never exist and, therefore, the
results for morphing such signals will always show phase
and amplitude changes. The amount of phase and ampli-
tude changes that take place in practice depends on the
specific signal and attractor characteristics.

The Effect of the Width of the RBF Gaussians

The above discussion is based upon a simple notion of the
neural network dynamical models. Due to the fact that
training data is only available at the progenitor attractors
the network behavior in other regions of the state space
is to some extend random. Deviations from the trained
attractor may result in nonlinear signal distortions. In
our first investigation of the morphing algorithm we have
adapted all the network parameters without constraints
[12]. As a result the range of the widths of the different
RBF units is large. The width parameter affects the region



Signal Fundamental Amplitude Phase Frequency Attractor
abbrev. w0/2/π a3 φ3 shift wr dimension

BAS 100+π
6000 0.3 0.0 1.0 1

BASPID3 100+π
6000 0.3 π

3 1.0 1

BASPI 100+π
6000 0.3 π 1.0 1

HIG 1.0595 100+π
6000 0.3 0 1.0 1

Table 1: Parameter settings of Eq. (7) for all synthetic signals that has been investigated in the following experiments.

of influence of a hidden unit, which might be rather large
due to the normalization of the activation function. If two
adjacent hidden units have differing width then the influ-
ence of the one with larger width is for some parameter
settings global all around the hidden unit with the small
width, which is only locally effective. This will not harm
as long as the model is used only in a close neighborhood
of the attractor, because the effect might help the model
to decrease the error. However, in larger distance the ef-
fect is unpredictable and, moreover, may destroy the de-
termination of the model behavior by the nearest point of
the attractor, in effect what is the projection in the above
discussion. There is a further point concerning the width
parameter of the units that has to be considered. For an
increasing number of RBF units the width parameter will
generally decrease. As a consequence in a larger distance
away from the attractor, especially if there exist regions
with high curvature on the attractor, the model will ex-
hibit regions with steep transitions. Morphing the attrac-
tors through such regions will generally result in a high
amount of nonlinear distortion. This undesirable behavior
of the model can be improved to some extend if the width
parameters of the model is constrained from below.

Attractors with Local Loops

Local loops are typically obtained for reconstructed attrac-
tors of sound signals with an considerable amount of en-
ergy in different partials. This local loops are difficult to
model, because, the points where the trajectory closely re-
turns demands high precision of the model and are likely
to cause unstable behavior. In the light of the morphing
algorithm this local loops can generate further difficulties,
if this local loops are not present similarly for both pro-
genitor attractors. One goal for the attractor reconstruc-
tion is, therefore, to prevent local loops. Local loops are
due to high similarity of delayed coordinate vectors over
time distances other than an integer multiple of the base
period of the signal. These local loops are often due to
the existence of local extrema of the time signal. If the
delayed coordinate vectors cover only a short time seg-
ment the edges of local and global extrema are mapped to
close positions in state space such that local loop struc-
tures arise. To prevent the local loops the delayed coor-
dinate vectors should cover a considerable amount of the

base period such that effects of short time scale similari-
ties are suppressed. Due to the fact that the delay time T is
limited from above due to Nyquists sampling theorem we
have to increase the reconstruction dimension until a suffi-
cient length of the delayed coordinate vectors is achieved.
The best one do is to increase the D until the product DT
is equal to the base period of the signal. The increased
dimension does not harm the model, despite the increased
calculation demands, but is also desirable with respect to
the linearity limit of the prediction function given in Eq.
(5).

4. EXPERIMENTAL VERIFICATIONS

In the following section we want to experimentally verify
some of the results we have obtained by means of theoret-
ical investigation. Because we already have demonstrated
that the method can be applied to real world signals [12]
we restrict the following experiments to synthetic sound
signals, where we have fine control to set up and study
interesting situations. The mathematical description of all
signals we will study in the following is

yn = sin(w0n) + a3 sin(3w0n+ φ3) + 0.2 sin(5w0n).
(7)

The specific parameter settings we choose for the fol-
lowing experiments are shown in Tab. (1). Note that in
our previous investigation we used the same basic equa-
tion, however, with different parameters. As explained
earlier, we are mainly interested in morphing harmonic
signals, and, therefore all the signals we use in the fol-
lowing have one dimensional attractors. The signal with
indicator BAS is the basic harmonic signal with no phase
shift, for BASPID3 and BASPI the third harmonic partial
has been shifted by means of π/3 or π radiant respectively,
HIG has increased pitch of one half tone.

For all the signals given in Tab. (1) we trained dynam-
ical sound models as explained in [11]. The neural net-
works used are of the radial basis function type with nor-
malized hidden units. The network implements a function

~N(~yk) =
∑
j

~wj
exp (−( ~cj−~ykσj

)2)∑
i exp (−(

~ci−~yk
σi

)2)
+~b. (8)

The network parameters ~w, ~c and~b are adjusted by means
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of a standard training algorithm RPROP [10] to obtain op-
timal prediction of the following sample yk+T . Iteration
of the model and up sampling the output signal (to com-
pensate for the step size T ) yields a time series that, for
a stable model, closely resembles the training signal. In
contrast to our previous investigation we have chosen to
use recurrent training of iterated prediction, because the
recurrent training algorithm will generally adjust the pre-
dictor in the neighborhood of the attractor in a way to in-
crease model stability [2]. For our morphing algorithm
the design of the neighborhood of the attractor is impor-
tant, and, therefore, we use it here even if the iterated pre-
diction is generally stable without recurrent training. Be-
cause the Lyapunov exponents of our attractors are non
positive, the number of recurrent iteration during training
can be selected without constraints. Here we selected 6
recurrent iterations for each input vector during training.

In all following experiments we have used a delay time
T = 4. This selection is to some extend arbitrary and is
not critical as long as the subsampling of the time series
by the factor Tdoes not violate the Nyquist sampling the-
orem. In the latter case it would be impossible to recon-
struct the time series from the iterated dynamical model.

In our first experiment we want to demonstrate the im-
pact of the reconstruction parameters on the morph. We
used the signals BASPID3 and HIG and trained dynami-
cal models for different reconstructions. In the first case a

reconstruction dimension D = 3 is used, which is just the
sufficient embedding dimension for the one dimensional
attractors. In the second case we increase the dimension
until a linear prediction on the attractor is sufficient for
prediction D = 6, and, in the last case we increase the
dimension until all local loops are maximally suppressed.
To achieve the last goal we apply a simple rule. As one can
see from the display of the time series in Fig. 2 there exists
two parts in one period of the time series with rather steep
slopes. By selecting D such that for all times n at least
one component of the delayed coordinate vectors falls into
this region we increase the minimal distance for any pair
delayed coordinate vectors besides the ones that are neigh-
bors in time. Note that for all these dynamical models we
achieved stable iterated prediction, such that we can in-
terpret them as stable dynamical models. However, the
models differ significantly when used for our morphing
purposes. Typical results we have obtained are displayed
in Fig. 2. Here we display the results not in there respec-
tive reconstructed state spaces, but, due to dimension lim-
itations, as 3 dimensional reconstructions. For the 3 di-
mensional model we find that all models become unstable
if α differs significantly from 0 or 1. In the case shown
the model becomes unstable for α = 0.013. In the case
D = 6 (not shown) where linear relations at the attrac-
tor are achieved, the morph is stable, however, there ex-
ists nonlinear distortions. This distortions disappears for
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Figure 3: Spectral analysis of morphed signals with α = 0.5. Morphing dynamical models BAS to BASPID3 with uncon-
strained and constrained width parameter (top). The constrained models achieve less distortions. The bottom line compares
two different situations with phase difference φ3 = π. The morph of BAS to BASPI first attenuates the second partial by
approximately 25dB and then adjusts the phase. Morphing HIG to BASPI requires less attenuation of the second partial of
7dB, only. The levels of the partials of the original signals are indicated by grid lines.

D = 10. In the last case the local loops are sufficiently un-
folded to achieve a smooth neighborhood of the predictor
around the trained attractor.

The second experiment is concerned with the impact
of the width parameter of the normalized RBF networks
on the distortions that are obtained during morphing. We
used the same signals as before and trained two types of
networks with 10 input units, 30 hidden units, 1 output
unit and delay time T = 4. The networks differ with
respect to the constraint that is applied to the width pa-
rameter. Here we compare the results obtained for un-
constrained networks and for networks with the constraint
σj > 0.4. In each case we have trained four different
initializations such that all networks achieve comparable
RMSE of about 4 · 10−4 and are stable dynamical mod-
els. If we analyze the signal synthesized by means of the
morphing model Eq. (4) with the morphing parameter set
to α = 0.5 we find that the unconstrained model obeys
a significant increase of nonlinear distortion. The DFT
spectra of two representive examples are shown in the top

line of Fig. 3. Because only three partials are present in
the signal we would like an ideal morph to be restricted
to only three partials, also. From the higher number and
higher amplitude of additional partials that are present
when we morph the unconstrained models we conclude
that the constrained models achieve a much better extrap-
olation of the dynamics into the neighborhood of the at-
tractor. Similar results have been obtained for the con-
straints σj > 0.5 and σj > 0.6. The optimal selection of
this constraint, however, which can be expected to depend
on both progenitor attractors is not solved up to now.

Our last example is concerned with the morph of phase
differences of about π. The dynamical models we used
here have the same topology than the ones in the previ-
ous experiment. The signals we use are BAS, BASPI and
HIG. The spectra for a morph from BAS into BASPI are
shown in the bottom line of Fig. 3. We find that the third
harmonic which originally had a level of -10.3dB is atten-
uated by about 25dB for α = 0.5. This has been expected
from the discussion in the previous section. However, if



we try to morph from BASPI into HIG we find that the
attenuation of the harmonic is significantly smaller, while
the distortions are increased. At present we do not have
a explanation for the latter observation. We conjecture,
that the difference in pitch destroys the symmetries that
otherwise prevent the direct morph of the phase. Note,
however, that in the latter case the added partials are all
harmonic and, therefore, subjectively less annoying.

5. OUTLOOK AND SUMMARY

In the present article we have investigated into a new al-
gorithm for morphing dynamical models. We have mo-
tivated our special interest for one dimensional attractors
and have analyzed some fundamental properties of recon-
structed attractors of periodic or quasi periodic signals.
Those properties leads us to conjecture that a reconstruc-
tion dimension that is considerably above the embedding
dimension should be used to achieve best morphing re-
sults. An experimental investigation supports our con-
clusions. Based on a simple model of how normalized
RBF networks achieve function approximation, we give
theoretical support for the morphing algorithm, and argue
that by means of linear interpolation of the model predic-
tions independent morphing of small amplitude and phase
changes should be possible. However, if the phase dif-
ferences of the progenitor signals partials approach π an
independent morph of the phase can not be achieved. We
demonstrated that morphing this kind of phase differences
is always accompanied by considerable attenuations of the
amplitude of the respective partial.
Moreover, we argue that the extrapolation of the predic-
tion function into the neighborhood of the trained attrac-
tor requires some constraints on the network parameters to
suppress random effects and distortion during morphing.

Obviously, their is a lot of further work necessary to
understand the proposed algorithm. Current investigations
are dealing with the morphing of pitch changes and the
stability of the intermediate attractors. As an application
we investigate the morph of pitch and volume changes of
our piano sound model.
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[1] G. Deco and B. Schürmann. Neural learning
of chaotic dynamics. Neural Processing Letters,
2(2):23–26, 1995.

[2] S. Haykin and J. Principe. Making sense of a com-
plex world. IEEE Signal Processing Magazine,
15(3):66–81, 1998.

[3] E. Levin. Hidden control neural architecture mod-
elling of nonlinear time varying systems and its ap-
plications. IEEE Transactions on Neural Networks,
4(2):109–116, 1993.

[4] R. Mettin and G. Mayer-Kress. Chaotic attractors
from homotopic mixing of vector fields. Interna-

tional Journal of Bifurcation and Chaos, 6(2):395–
408, 1996.

[5] J. Moody and C. Darken. Fast learning in networks
of locally-tuned processing units. Neural Computa-
tion, 1:281–294, 1989.

[6] T. Parker and L. Chua. Chaos: A tutorial for engi-
neers. Proc. of the IEEE, 75(8):982–1008, 1987.

[7] T. Parker and L. Chua. Practical Numerical Algo-
rithms for Chaotic Systems. Springer-Verlag, New
York-Heidelberg-Berlin, 1989.

[8] J. C. Principe and J.-M. Kuo. Dynamic modelling
of chaotic time series with neural networks. In
G. Tesauro, D. S. Touretzky, and T. Leen, editors,
Neural Information Processing Systems 7 (NIPS 94),
1995.

[9] J. C. Principe, A. Rathie, and J.-M. Kuo. Prediction
of chaotic time series with neural networks and the
issue of dynamic modeling. Int. Jour. of Bifurcation
and Chaos, 2(4):989–996, 1992.

[10] M. Riedmiller. Advanced supervised learning in
multilayer perceptrons – From backpropagation to
adaptive learning algorithms. Computer Standards
and Interfaces, Special Issue on Neural Networks, 5,
1994.
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