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Abstract

In the following paper we investigate a recent algorithm for blind signal deconvolution and show
that the algorithm is appropriate to solve the deconvolution problem only, if the deconvolution filter
is constrained to be minimum phase. We improve the algorithm such that this constraint is removed
and present experimental results that demonstrate the improved properties of the extended algorithm.
Moreover, the experimental results show that the fixed signal density model implemented in the original
algorithm has to be extended also, to achieve a proper objective function for the general deconvolution
problem.

1 Introduction
Recently information theoretic formulation of
blind signal separation and blind signal decon-
volution criteria have received much interest [6;
8]. The goal of blind deconvolution [4] is to re-
cover a source signal x(n) given only the output
y(n) of an unknown filter with impulse response
{ak}. The problem is to find the inverse filter
{bk} that yields

x(n) =

M∑
k=0

bky(n− k) (1)

given only y(n). Because the knowledge of
y(n) is generally not sufficient to find the in-
verse filter we need to establish further con-
straints. In blind signal processing it is gener-
ally assumed that x(n) is a white noise signal
with non Gaussian density. Given this restric-
tion the inverse filter has to remove all statistical
dependencies across time that are introduced by
the filter {ak}. The infinitely many solutions of
this problem differ only with respect to scaling
and time shift. If we restrict the inverse filters
to the class B of causal filters with b0 6= 0 and
proper normalization the problem has a unique
solution.

If {ak} and {bk} are restricted to be mini-
mum phase with the normalization b0 = 1, then
the solution can be obtained by means of find-
ing the filter {bk} that achieves the source signal
x(n) with minimum variance. This is the foun-
dation of the well known and widely used lin-
ear prediction algorithm [7]. Without the restric-

tion to minimum phase, however, there exist 2M

different filters {bk} with the same variance of
the deconvolved signal. While one of these fil-
ters is the inverse of {ak}, all the others include
an additional all-pass component and, therefore,
are indistinguishable by means of second order
statistics.

It has been shown previously that many
other objective functions may be used to find the
inverse filter {bk}, and that minimizing the en-
tropy of x(n)

D(x) = −
∫
x

p(x)log(p(x))dx, (2)

where p(x) is the distribution of the samples of
x(n), yields asymptotically optimal results [2].
A deconvolution algorithm that properly mini-
mizes the signal entropy as defined in eq. (2)
is of special interest for data compression algo-
rithms or source/filter signal models, which to-
day use linear prediction to decorrelate the sam-
ples. Due to the restriction to minimum phase
filtering and due to possible nonlinear depen-
dencies in x(n), however, the minimum vari-
ance objective of the linear prediction algorithm
will generally fail to find the minimum entropy
source signal, and, therefore, the results of the
compression algorithms are suboptimal. The re-
lation between the distribution p(x) and the fil-
ter parameters {bk}, however, is generally un-
known, and, therefore, the use of the entropy as
objective function has been rather crucial.

In a recent investigation on information the-
oretic objectives for blind signal processing it



has been shown that by means of a matrix for-
mulation of the filter operation an approximate
solution to the minimum entropy deconvolution
can be obtained [1]. In that paper the inverse
filter {bk} is assumed to be causal, which is
no severe restriction. However, there exist two
problems with this method. First, as we will ar-
gue later, the matrix expression of eq. (1) given
in [1] is only suitable for minimum phase fil-
ters {bk} (which is considerably more restric-
tive then originally stated). Second, our experi-
mental results demonstrate that the fixed density
model used in [1] is not sufficient for deconvolu-
tion even for super Gaussian sources. In the fol-
lowing we will show, that the restriction to min-
imum phase filtering that is implicit in the algo-
rithm can be relaxed with affordable increase in
calculation complexity. To address the second
problem we propose the use of an adaptive bi-
modal density model, which can be used to de-
convolve super and sub Gaussian sources.

The following paper is organized as follows.
In section 2 we shortly describe the blind de-
convolution method introduced by Bell and Se-
jnowski. In section 3 we describe an alternative
matrix formulation of the filtering process and
argue that the methods differ only for non mini-
mum phase problems, for which the new meth-
ods achieves correct results. In section 4 we de-
scribe our adaptive bimodal source distribution
model. Section 5 shortly explains some experi-
mental results we have obtained for white noise
test signals and section 6 concludes with an out-
look on further work.

2 Information maximization
and minimum entropy

Bell and Sejnowski developed their deconvolu-
tion algorithm as an application of the minimum
entropy blind signal separation algorithm they
presented in the same paper [1]. In the follow-
ing we give a short summary of the key idea
of the algorithm, for detailed description see
the original paper. Assume we are given an L-
channel instantaneously mixed signal ~y(n) and
are searching the originalL source signals xi(n)
that are assumed to be statistically independent.
Formally, we are looking for the unmixing ma-
trix B that achieves

~x(n) = B~y(n). (3)

As Bell and Sejnowski has shown, the task can
be addressed by maximizing the joint entropy
of a nonlinearly transformed output signal ~z(n)
with components

zi(n) = fi(xi(n)),

with all fi being constraint to be monotonically
increasing with fixed range, i.e. [−1, 1]. Follow-
ing [1] the joint entropy D(~z) can be approxi-
mately expressed as

D(~z) = log(|det(B)|) (4)

+

L∑
i=1

1

N

N−1∑
n=0

log(
∂zi(n)

∂xi(n)
) + C,

where N is the length of the respective signal
vectors and C is constant and equal to the joint
entropy D(~y). The approximation is due to the
calculation of a sample mean instead of the en-
tropy integral. This term yields the expectation
of the logarithm of the derivative f ′i(x). Due to
the special structure of fi this derivative has the
properties of a density, and, therefore the expec-
tation is maximized if f ′i(x) equals the density
of x. In this case and with the same approxi-
mation as in eq. (4) this second term equals the
negative sum of the L entropies D(xi) and due
to the basic relations between joint and scalar
entropies we can rewrite eq. (4) as

D(~z) = log(|det(B)|)−D(~x)−T (~x)+C, (5)

where T (~x) is the mutual information between
the channels. From the basic laws of variable
transformation it is known that the joint entropy
D(~x) equals the sum of the joint entropy D(~y)
(= C), which is constant here, and a scaling
term given by log(|det(B)|). Therefore, we
conclude that the first term in eq. (4) com-
pensates any scaling that is produced by means
of the linear transformation B. As long as the
derivative of the nonlinearity fi equals the den-
sity of the samples xi we have

D(~z) = −T (~x), (6)

and, therefore, under this constraint maximiza-
tion of the joint entropy of ~z is equivalent to the
minimization of the mutual information [8]. To
simplify the algorithm Bell and Sejnowski pro-
posed to use a fixed nonlinearity

fi = tanh(xi)

which is equivalent to assume a fixed density
model for the signals xi. They conjecture that
successful separation of super Gaussian sources
is possible even if fi is not equal to the source
distribution. It has been shown that for zero
mean signals the position of local maxima of
eq. (4) is unchanged if fi does not match the
signal distribution [8]. However, the decrease in
entropy due to the mismatch between the den-
sity p(xi) and f ′i(xi) depends on the matrix B,
and our experimental results in section 5 show
that there exist cases where the entropy decrease
due to distribution mismatch is much larger for



the ideal unmixing matrix than for other matri-
ces, and, therefore, the global optimum might
become a local one.

To be able to apply the algorithm for blind
deconvolution, Bell and Sejnowski formulate
the deconvolution in eq. (1) by means of ma-
trix multiplication between an N × N ma-
trix B and an N -dimensional vector ~y(n) =

(y(n), y(n+ 1), . . . , y(n+N − 1))
T . To con-

structB they set the matrix elements on the k-th
diagonal to bk, where the main diagonal is iden-
tified with k = 0 and the diagonals are counted
from right to left. As an example we construct
the matrix B for a causal filter of order M = 3

B =


b0 0 0 0 0 · · ·
b1 b0 0 0 0 · · ·
b2 b1 b0 0 0 · · ·
0 b2 b1 b0 0 · · ·
...

...
...

...
...

...

 . (7)

Multiplication of B with ~y from the right yields
a vector representation of the output of the filter
x(n). Based on this matrix representation the
blind separation algorithm summarized above
may be applied. For causal filters B is lower
triangular. Using the same nonlinearity fi for
all channels i and employing the additional as-
sumption that channel and time averages are
equivalent eq. (4) becomes simply

D(~z) = L log(|b0|)+
L−1∑
i=0

log(
∂z(i)

∂x(i)
)+C. (8)

Using this equation the gradient of D(~z) with
respect to the filter parameters is easy to calcu-
late and can be employed for an adaptive algo-
rithm for blind signal deconvolution.

While Bell and Sejnowski has successfully
applied their algorithm to a number of blind de-
convolution tasks, there exists a weak point in
the above argumentation that restricts the usage
of the algorithm to the case of minimum phase
filters {bk}. The assumption of equal sample
distributions for all channels i that leads to the
simple form of eq. (8) is generally violated
for the first (M − 1) channels. Given a se-
quence of vectors ~y(n) that are constructed from
different segments of a signal y′(n) of length
N ′ > N we find that the first (M − 1) channels
always contain transients of the filter response
and, therefore, obey different distributions. The
impact of this deviation seems to be small for
M � L, however, for non minimum phase fil-
ters the transient channels change the scaling be-
havior of the matrix B compared to the filter
output such that an application of eq. (8) yields
incorrect results.

As explained above the first term in the
above entropy equations has to compensate for
the increase in entropy that is due to scaling.
While the first term in eq. (8) indicates that the
scaling due to linear transformation eq. (7) de-
pends solely on b0, this is not true for the output
x(n) of a non minimum phase filter. However,
from the above reasoning it is difficult to de-
velop the correct scaling compensation that has
to be applied in eq. (8).

3 Circular Filtering
The above formulation of the FIR-filtering as a
matrix multiplication is not the only one pos-
sible. While the above formulation leads to a
somewhat unclear relation between the filter op-
eration and the matrix representation, we will
now develop along a different line and will show
that eq. (8) is correct only for minimum phase
filters. Motivated by the FIR matrix algebra of
Lambert [5] we consider the use of so called
quadratic circular matrices1 B̂ of size L. In
contrast to Lambert, however, we use a slightly
different rule to construct the CM for a given
FIR filter. As a consequence the analysis of the
relation between matrix algebra and FFT FIR
filter algebra is simplified, because the variable
time shift that Lambert has to obey is fixed to
zero.

To construct a circular matrix for a periodic
sequence of length L we use as first row of the
matrix the period of the sequence with time ori-
gin positioned at the first column. All following
rows are built by circularly shifting the previ-
ous row to the right. The relation between a FIR
filter of order M < L and a CM is given by the
filter response to a unit impulse train with period
L. As an example we construct a CM B̂ of size
L = 5 for a FIR causal filter of order M = 3

B̂(bk) =


b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2
b2 0 0 b0 b1
b1 b2 0 0 b0

 . (9)

Using the circular matrices we are able to in-
terpret all matrix operations required for blind
signal separation in terms of operations on the
periodic sequences used to construct the CM.
The multiplication of two CM, B̂ and Ŷ , that
are constructed from sequences, b(n) and y(n),
yields a CM, X̂ , that can equivalently be con-
structed from the result x(n) of the L-point cir-
cular convolution of y(n) and b(n). Transposi-
tion of a CM is equivalent to reflecting the peri-
odic sequence at time n = 0. Inversion of a CM

1In the following denoted as CM.



yields again a CM and the result is equivalently
obtained by means of L-point discrete Fourier
transformation (DFT) of the related sequence,
invert the elements of the result, apply the in-
verse transformation and construct a CM from
the result. The determinant of a CM is equal to
the product of all elements of the L point DFT
of the elements of the related signal.

With the circular matrices obtained from the
filter coefficients {bk} and an N -periodic sig-
nal y(n) we can express blind deconvolution
for circular filtering without any error. Using
the above relations between circular matrices
and periodic sequences operations and neglect-
ing the constant term C we formulate the joint
entropy eq. (4) using the CM of size L = N as
follows

D(~z) =

L−1∑
i=0

log(|Hb(i)|) + log(
∂z(i)

∂x(i)
). (10)

Here Hb(i) is the L-point DFT of the filter im-
pulse response {bk}. Note that due to the sym-
metry of the CM in case of circular filtering
and provided we use the same nonlinearity in all
channels the assumption of equal channel distri-
butions is correct. Therefore, for circular filter-
ing the calculation of the mean in eq. (4) can be
neglected without error. However, we are inter-
ested in non circular deconvolution, and, there-
fore, we have to apply some corrections to the
above equation.

First we consider the scaling compensation.
If we consider y(n) to be of finite length we
may apply the circular deconvolution to its L-
periodic continuation. If we increase L to in-
finity then the results of circular and non cir-
cular convolution agree. For increasing L the
scaling term in eq. (10) yields an increasingly
dense sampling of the transfer function of the
FIR filter, and, besides a factor L, the sum over
Hb(i) achieves an continually improved approx-
imation of the integral of the log magnitude of
the transfer function Hb(jw)

Sb =
1

2π

∫
w

log(|Hb(jw)|)dw. (11)

It is well known that eq. (11) is related to the
scaling properties of the filter {bk} [7, p. 130],
and we conclude that eq. (11) is a normalized
(with respect to block length L) measure of the
appropriate scaling compensation for FIR filter-
ing operation. To be able to apply eq. (10)
to non circular deconvolution the mean of the
first term in eq. (10) should accurately approx-
imate eq. (11), and, therefore we shall choose
L as large as possible. For large L and min-
imum phase filtering the scaling compensation
obtained by the two formulars eq. (10) and eq.

(8) agree. For non minimum phase filters, how-
ever, the scaling effect is under estimated in eq.
(8) such that the entropy is systematically to
small, and, therefore, we expect that non min-
imum phase solutions can not be found. Con-
sider now the second term in eq. (10). From the
previous section we know that this term approx-
imates the negative channel entropy D(xi). As
long as we achieve a sufficient sampling of p(x)
we may choose to sum over a sample subset of
size K, and out weight the sub sampling by a
additional factor L/K. Moreover, if we want to
neglect the transients at the borders of the circu-
lar filtered x(n) from the density adaptation, we
may delete them from the summation with the
same correction applied as above. Due to the
possibility to use less than L samples to approx-
imate the entropy D(~xi) we are free to select L
as large as we need to achieve sufficient accu-
racy for the approximation of eq. (11) by the
first term in eq. (10).
Due to the algebraic relations stated above, the
gradient of eq. (10) can be caluclated efficiently
without any matrix operations.

4 Adaptive distribution
model

With a fixed nonlinearity fi the above algorithm
is only valid if the distribution of the decon-
volved signal x(n) is close to the derivative of
the nonlinearity. As will be demonstrated in the
next section this is a severe problem even for su-
per Gaussian distributions. Therefore, we pro-
pose to use an adaptive nonlinearity as follows

f(x) =
1

2
(w tanh(a1x+ b1)

+ (1− w) tanh(a2x+ b2))

w =
1

1 + exp(−wh)
. (12)

Because the related density is bimodal it can be
used to model sub and super Gaussian densities
[3]. The weighting parameter wh is transformed
such that w is always in the interval [0; 1] The
nonlinearity is equivalent to a neural network
with two hidden units, which can be adapted
by gradient ascend of eq. (10) with respect to
the network parameters. The model distribution
consists of a mixture of two distributions of the
form a

2 cosh(ax)2 . Using the Fourier Transform∫ ∞
−∞

a

2 cosh(ax)2
e−jwxdx =

wπ

2a sinh(wπ2a )

we have been able to calculate the moment gen-
erating function of this distribution and have
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Figure 1: The sample histograms (marked +) of the deconvolved signals p(x) in case of unknown filter
H1(z) for the correct inverse model (left) and the inverse model with reflected roots (right) compared with
the fixed model distribution 1

cosh2(x)
(solid line). Due to distribution mismatch the incorrect inverse filter

yields the global maximum of the joint entropy D(~z).

found that its variance is

σ2 =
π2

12a2
.

This result is used to initialize the distribu-
tion parameters, such that the model distribution
matches the variance of x(n) for the initial filter
matrix B̂. We initialize the model distribution
as follows

1.1a1 = 0.9a2 =
12σx
pi

b1 = −b2 = 0.001

wh = 0.0

such that the model is slightly non symmetric,
however, with a variance that is close to the vari-
ance σ2

x of the signal x obtained from the initial
CM B̂.

5 Experimental results
To verify our reasoning we have applied the
above algorithms to two deconvolution prob-
lems, with {ak} being minimum phase in the
first and maximum phase in the second exper-
iment. Due to the fixed density model, we se-
lected super Gaussian source signal x(n) with
exponential distribution and variance 1. For the
(unknown) filter {ak}we use the IIR filter trans-
fer functions

H1(z) =
1

1 + 0.5z−1 + 0.2z−2

H2(z) =
1

1 + 2z−1 + 1.5z−2
.

We realize the maximum phase filter H2(z) us-
ing a non causal filter. The inverse filter {bk} is

provided with five coefficients, while the ideal
deconvolution filter needs only three. We initial-
ized the filter coefficients randomly with normal
distribution and variance 1 and adapted the fil-
ters in batch mode with an epoch size of 10000
using the gradient calculated from the entropy
equations explained above.

As expected the Bell and Sejnowski algo-
rithm always converges to a minimum phase so-
lution. In case of the minimum phase filter the
solution is close to the inverse of {ak}, how-
ever, for the maximum phase problem the al-
gorithm have found solutions with roots of the
transfer function that are reflected at the unit cir-
cle. The circular matrix algorithm with fixed
density model finds the same results if the ini-
tial random filter is minimum phase, because for
minimum phase filters both algorithms agree in
their entropy estimation. With initial filters that
have at least two roots of the transfer function
on the proper side of the unit circle our new al-
gorithm converges to a filter with the correct de-
convolution filter.

Note, that in all cases the global maximum
of the joint entropy eq. (4) is not obtained for
the correct inverse filter, but, for the filter with
reflected roots. This is due to the fixed den-
sity model. While the all pass component that
remains in the signal introduce slight statistical
dependencies the entropy is maximal in this case
because the density of the source (exponential
distribution) is further apart from the fixed den-
sity model than the density of the all pass fil-
tered signal (figure 1). We conclude that for
general case blind signal deconvolution the non-
linearity fi has to be adapted even in case of
a super Gaussian signal. Otherwise the global



maximum of the joint entropy does not indicate
proper deconvolution. Using the adaptive non-
linearity proposed in section 4 the signal density
can be modeled more accurately and with this
algorithm the global maximum of the objective
function is reached for the correct deconvolution
filter.

6 Outlook and summary
In the present paper we have criticized a recent
blind deconvolution algorithm and have shown,
that the algorithm fails to solve the deconvolu-
tion problem if the unknown filter is not min-
imum phase. Motivated by the work of Lam-
bert, we have presented an extended algorithm
that is appropriate for the general deconvolu-

tion problem. Moreover, the experimental re-
sults demonstrate that the fixed density model
has to be extended to an adaptive bimodal dis-
tribution to be able to properly solve the decon-
volution problem, even if the source distribution
is super Gaussian. Forthcoming investigations
will consider applications of the algorithm to
data compression of audio signals. Due to the
explicit minimization of the entropy of the sig-
nal significant improvements of the actual algo-
rithms based on linear prediction are expected.
Initial investigations leads to the conclusion that
the optimal deconvolution filter for audio sig-
nals in many cases requires maximum phase fil-
tering. The compression improvements that are
achieved with the new method are currently in-
vestigated.

References
[1] A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind

deconvolution. Neural Computation, 7(6):1004–1034, 1995.

[2] David L. Donoho. On mimimum entropy deconvolution. In D. F. Findley, editor, Proceedings of the
Second Applied Time Series Symposium, 1980, pages 565–608, 1981.

[3] M. Girolami. An alternative perspective on adaptive independent component analysis algorithms.
Neural Computation, 10(8):2103–2114, 1998.

[4] S. Haykin, editor. Blind Deconvolution. Prentice-Hall, New Jersey, 1994.

[5] R. H. Lambert. Multichannel Blind Deconvolution: FIR Matrix Algebra and Separation of Multipath
Mixtures. PhD thesis, University of Southern California, Department of Electrical Engineering, 1996.

[6] T-W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski. A unifying information-theoretic frame-
work for independent component analysis. International Journal on Mathematical and Computer
Modeling, 1998. In press.

[7] J. D. Markel and A. H. Gray. Linear Prediction of Speech. Springer Verlag, 1976.

[8] H. Yang and S. Amari. Adaptive online learning algorithms for blind separation: Maximum entropy
and minimum mutual information. Neural Computation, 9:1457–1482, 1997.


