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ABSTRACT

In the following paper we investigate two algorithms for
blind signal deconvolution that has been proposed in the
literature. We derive a clear interpretation of the infor-
mation theoretic objective function in terms of signal pro-
cessing and show that only one is appropriate to solve the
deconvolution problem, while the other will only work if
the unknown filter is constrained to be minimum phase.
Moreover we argue that the blind deconvolution task is
more sensitive to a mismatch of the density model than
currently expected. While there exist theoretical argu-
ments and practical evidence that blind signal separation
requires only a rough approximation of the signal density
this is not the case for blind signal deconvolution. We give
a simple example that supports our argumentation and for-
mulate a sufficiently adaptive density model to properly
solve that problem.

Keywords: Blind Signal Deconvolution, Infomax, Min-
imization of Entropy, Circular Matrices, Statistical Signal
Processing.

1. INTRODUCTION

Recently information theoretic formulation of blind signal
separation and blind signal deconvolution criteria have re-
ceived much interest [8, 12]. The goal of blind deconvo-
lution [6] is to recover a source signal x(n) given only the
output y(n) of an unknown filter with impulse response
{ak}

y(n) =

N∑
k=0

akx(n− k). (1)

The problem is to find the inverse filter {bk} that yields

x(n) =

M∑
k=0

bky(n− k) (2)

given only y(n). Because the knowledge of y(n) is gen-
erally not sufficient to find the inverse filter we need to

establish further constraints. In blind signal processing it
is generally assumed that x(n) is a white noise signal with
non Gaussian density. Given this restriction the inverse fil-
ter has to remove all statistical dependencies across time
that are introduced by the filter {ak}. The infinitely many
solutions of this problem differ only with respect to scal-
ing and time shift. If we restrict the inverse filters to the
class B of causal filters with b0 6= 0 and proper standard-
ization the problem has a unique solution.

If {ak} and {bk} are restricted to be minimum phase
with the standardization b0 = 1, then the solution can be
obtained by means of finding the filter {bk} that achieves
the source signal x(n) with minimum variance. This is
the foundation of the well known and widely used linear
prediction algorithm [10]. Without the restriction to mini-
mum phase, however, there exist 2M different filters {bk}
with the same variance of the deconvolved signal. While
one of these filters is the inverse of {ak}, all the others
include an additional all-pass component.

It has been shown earlier that many other objective
functions may be used to find the inverse filter {bk}, and
that minimizing the entropy of x(n)

D(x) = −
∫
x

p(x)log(p(x))dx, (3)

where p(x) is the distribution of the samples of x(n),
yields asymptotically optimal results [3]. A deconvolu-
tion algorithm that properly minimizes the signal entropy
as defined in Eq. (3) is of special interest for data compres-
sion algorithms or source/filter signal models, which to-
day use linear prediction to decorrelate the samples. Due
to the restriction to minimum phase filtering and due to
possible nonlinear dependencies in x(n), however, the
minimum variance objective of the linear prediction al-
gorithm will generally fail to find the minimum entropy
source signal, and, therefore, the results of linear predic-
tion compression algorithms are suboptimal. Due to the
fact, that the relation between the distribution p(x) and the
filter parameters {bk} is generally unknown, the use of the
entropy as objective function has been rather crucial[3].

In a remarkable investigation on information theoretic
objectives for blind signal processing it has been shown



recently that by means of a matrix formulation of the fil-
ter operation in Eq. (2) an approximate solution to the
minimum entropy deconvolution can be obtained [2]. In
that paper a triangular Toeplitz matrix has been used to ex-
press the filter operation. Later a different matrix formu-
lation based on circular matrices has been proposed [7, 4].
However, the relation between both methods and the im-
plications of the different approximations remain unclear.
In the following investigation we will show that the matrix
expression of Eq. (2) that is based on a Toeplitz matrix is
only suitable if the unknown filter {ak} is constrained to
be minimum phase, which is considerably more restrictive
than originally stated. The use of the circular matrices,
however, leads to a deconvolution algorithm that is able to
solve the general deconvolution problem. Because the cir-
cular matrices are related to circular deconvolution some
minor modifications have to be applied such that the so-
lution obtained with the algorithm is suitable for the non
circular deconvolution task.
By means of a simple experiment, we demonstrate that the
fixed density model used in [2] is not sufficient for blind
deconvolution even if the problem is constrained to su-
per Gaussian sources. Due to the mismatch between the
model and true signals distribution the inverse of the true
convolution filter is related to a local and not the global op-
timum of the objective function. The algorithms that have
been proposed recently to solve the general blind separa-
tion problem based on a sub and super Gaussian switch of
the density model [9, 5] are not appropriate to solve this
problem. Therefore, we propose the use of an adaptive bi-
modal density model which is able to properly solve our
example problem. Experimental results not presented in
this paper show that our adaptive density model can also
be used to deconvolve sub Gaussian sources.

It is interesting to note that our simple example that
shows the limitations of the blind signal deconvolution
with non adaptive densities appears to have no conse-
quences for blind signal separation applications. While
we can easily construct an equivalent signal separation
problem that can not be solved with existing algorithms,
this situations has not been observed in practical applica-
tions. Therefore, we conjecture that this problem is a con-
sequence of the special symmetries of the matrices that de-
scribe the blind deconvolution problem which, however,
are very unlikely to appear for a signal separation prob-
lem.

The following paper is organized as follows. In sec-
tion 2 we shortly describe the blind deconvolution method
introduced by Bell and Sejnowski. In section 3 we de-
scribe the alternative matrix formulation of the filtering
process and argue that the methods differ only for non
minimum phase problems, for which the second method
achieves correct results. In section 4 we describe our
adaptive bimodal source distribution model. Section 5
shortly explains some experimental results we have ob-
tained for white noise test signals and section 6 concludes

with a summary and an outlook on further work.

2. INFORMATION MAXIMIZATION AND
MINIMUM ENTROPY

Bell and Sejnowski developed their deconvolution algo-
rithm as an application of the minimum entropy blind sig-
nal separation algorithm they presented in the same pa-
per [2]. In the following we give a short summary of the
key idea of their algorithm, for detailed description see
the original paper. In the following we adopt the origi-
nal argumentation that is based on information maximiza-
tion. Note, however, that the same algorithm can be de-
rived also by means of a maximum likelihood approach
[11]. Assume we are given an L-channel instantaneously
mixed signal ~y(n) and are searching the original L source
signals xi(n) that are assumed to be statistically indepen-
dent. Formally, we are looking for the unmixing matrix B
that achieves

~x(n) = B~y(n). (4)

As Bell and Sejnowski has shown, the task can be ad-
dressed by maximizing the joint entropy of a nonlinearly
transformed output signal ~z(n) with components

zi(n) = fi(xi(n)),

with all fi being constraint to be monotonically increas-
ing with fixed range, i.e. [−1, 1]. Following [2] the joint
entropy D(~z) can be approximately expressed as

D(~z) = log(|det(B)|)

+
1

N

(
N−1∑
n=0

L∑
i=1

log(
∂zi(n)

∂xi(n)
)

)
+ C, (5)

where N is the length of the respective signal vectors and
C is constant and equal to the joint entropy D(~y). The
approximation is due to the calculation of a sample mean
instead of the entropy integral. This term yields the ex-
pectation of the logarithm of the derivative f ′i(x). Due to
the special structure of fi this derivative has the properties
of a density, and, therefore the expectation is maximized
if f ′i(x) equals the density of x. In this case and with the
same approximation as in Eq. (5) this second term equals
the negative sum of the L entropies D(xi) and due to the
basic relations between joint and scalar entropies we can
rewrite Eq. (5) as

D(~z) = log(|det(B)|)−D(~x)− T (~x) + C, (6)

where T (~x) is the mutual information between the chan-
nels. From the basic laws of variable transformation it is
known that the joint entropy D(~x) equals the sum of the
joint entropy D(~y) (= C), which is constant here, and a
scaling term given by log(|det(B)|). Therefore, we con-
clude that the first term in Eq. (5) compensates any scaling
that is produced by means of the linear transformation B.



As long as the derivative of the nonlinearity fi equals the
density of the samples xi we have

D(~z) = −T (~x), (7)

and, therefore, under this constraint maximization of the
joint entropy of ~z is equivalent to the minimization of the
mutual information [12]. To simplify the algorithm Bell
and Sejnowski proposed to use a fixed nonlinearity

fi = tanh(xi) (8)

which is equivalent to assume a fixed density model for
the signals xi. They conjecture that successful separa-
tion of super Gaussian sources is possible even if fi is
not equal to the source distribution (see Sec. 4.).

To be able to apply the algorithm for blind decon-
volution, Bell and Sejnowski formulate the deconvolu-
tion in Eq. (2) by means of matrix multiplication be-
tween an L × L matrix B and an L-dimensional vector
~y(n) = (y(n), y(n+ 1), . . . , y(n+ L− 1))

T . To con-
struct B they set the matrix elements on the k-th diagonal
to bk, where the main diagonal is identified with k = 0
and the diagonals are counted from right to left. As an
example we construct the matrix B for a causal filter of
order M = 3

B =


b0 0 0 0 0 · · ·
b1 b0 0 0 0 · · ·
b2 b1 b0 0 0 · · ·
0 b2 b1 b0 0 · · ·
...

...
...

...
...

...

 . (9)

Multiplication of B with ~y from the right yields a vector
representation of the output of the filter x(n). Based on
this matrix representation the blind separation algorithm
summarized above may be applied. For causal filters B is
lower triangular. Using the same nonlinearity fi for all L
channels i Eq. (5) becomes

D(~z) = L log(|b0|) +
1

N

(
N−1∑
n=0

L∑
i=1

log(
∂zi(n)

∂xi(n)
)

)
+ C.

(10)
Using this equation the gradient of D(~z) with respect to
the filter parameters is easy to calculate

∂D(~z)

∂bj
=

L · δ(j)
b0

+
1

N

N−1∑
n=0

L∑
i=1

∂
∂bj

∂zi(n)
∂xi(n)

∂zi(n)
∂xi(n)

,

with δ(j) =

{
1, for j = 0
0, for j 6= 0

(11)

and can be employed for an adaptive algorithm for blind
signal deconvolution.

While Bell and Sejnowski has successfully applied
their algorithm to a number of blind deconvolution tasks,

there exists a weak point in the above argumentation that
restricts the usage of the algorithm to the case of mini-
mum phase filters {bk}. The assumption of equal sam-
ple distributions for all channels i that leads to the sim-
ple form of Eq. (10) is generally violated for the first
(M − 1) channels. Given a sequence of vectors ~y(n) that
are constructed from different segments of a signal y′(n)
of length N ′ > N we find that the first (M − 1) chan-
nels always contain transients of the filter response and,
therefore, obey different distributions. The impact of this
deviation seems to be small for M � L, however, for
non minimum phase filters the transient channels change
the scaling behavior of the matrixB compared to the filter
output such that an application of Eq. (10) yields incorrect
results.

As explained above the first term in the above entropy
equations has to compensate for the increase in entropy
that is due to scaling. While the first term in Eq. (10) indi-
cates that the scaling due to linear transformation Eq. (9)
depends solely on b0, this is not true for the output x(n)
of a non minimum phase filter. However, from the above
reasoning it is difficult to develop the correct scaling com-
pensation that has to be applied in Eq. (10).

3. CIRCULAR FILTERING

The formulation of the FIR-filtering as a matrix multipli-
cation is not the only one possible. Therefore, we will
now adopt a different argumentation and will show that
Eq. (10) is correct only for minimum phase filters. As
have been shown by Lambert [7] and [4] the deconvolu-
tion task can also be formulated using so called quadratic
circular matrices1 B̂ instead of the Toeplitz matrices used
so far. Compared to the earlier work on CM the follow-
ing conduction gives a new interpretation of the objective
function with respect to the filter transfer function. More-
over the interpretation enables us to understand the limi-
tations of the Toeplitz filter matrix. In the following we
will use a slightly different rule to construct the CM for a
given filter than Lambert has proposed. As a consequence
the analysis of the relation between matrix algebra and
FFT FIR filter algebra is simplified, because the variable
time shift that Lambert has to obey is fixed to zero.

To construct a circular matrix for a periodic sequence
of length L we use as first row of the matrix the period of
the sequence with time origin positioned at the first col-
umn. All following rows are built by circularly shifting
the previous row to the right. The relation between a FIR
filter of order M < L and a CM is given by the filter
response to a unit impulse train with period L. As an ex-
ample we construct a CM B̂ of sizeL = 5 for a FIR causal

1In the following denoted as CM.



filter of order M = 3

B̂(bk) =


b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2
b2 0 0 b0 b1
b1 b2 0 0 b0

 . (12)

Using the circular matrices we are able to interpret all
matrix operations required for blind signal separation in
terms of operations on the periodic sequences used to
construct the CM. Moreover all matrix operations can be
solved by operating on the L-point discrete Fourier trans-
form (DFT) of the sequence {bk} and constructing a CM
from the inverse DFT of the result. The multiplication of
two CM, B̂ and Ŷ , that are constructed from sequences,
b(n) and y(n), can be calculated equivalently by means of
multiplication of the DFT of the sequences. Transposition
of a CM is equivalent to reflecting the periodic sequence at
time n = 0 and is equivalent to calculating the conjugate
complex of the DFT of the related sequence {bk}. Inver-
sion of a CM yields again a CM and the result is equiv-
alently obtained by inverting the elements of the DFT of
{bk}. The determinant of a CM is equal to the product of
all elements of the L-point DFT of {bk}.

With the circular matrices obtained from the filter co-
efficients {bk} and an N -periodic signal y(n) we can ex-
press blind deconvolution for circular filtering without any
error. Using the above relations between circular matrices
and periodic sequences operations and neglecting the con-
stant term C we formulate the joint entropy Eq. (5) using
the CM of size L = N as follows

D(~z) =

L−1∑
i=0

log(|Hb(i)|) + log(
∂z0(i)

∂x0(i)
). (13)

Here Hb(i) is the L-point DFT of the filter impulse re-
sponse {bk}. Note that due to the symmetry of the CM
in case of circular filtering and provided we use the same
nonlinearity in all channels the assumption of equal chan-
nel distributions is correct. Therefore, for circular filtering
the calculation of the mean in Eq. (5) can be neglected
without error. However, we are interested in non circu-
lar deconvolution, and, therefore, we have to apply some
corrections to the above equation.

First we consider the scaling compensation. If we con-
sider y(n) to be of finite length we may apply the circu-
lar deconvolution to its L-periodic continuation. If we in-
crease L to infinity then the results of circular and non
circular convolution agree. For increasing L the scaling
term in Eq. (13) yields an increasingly dense sampling of
the transfer function of the FIR filter, and, besides a factor
L, the sum over Hb(i) achieves an continually improved
approximation of the integral of the log magnitude of the
transfer function Hb(jw)

Sb =
1

2π

∫
w

log(|Hb(jw)|)dw. (14)

It is well known that Eq. (14) is related to the scaling prop-
erties of the filter {bk} [10, p. 130], and we conclude that
Eq. (14) is a standardized (with respect to block length
L) measure of the appropriate scaling compensation for
FIR filtering operation. To be able to apply Eq. (13) to
non circular deconvolution the mean of the first term in
Eq. (13) should accurately approximate Eq. (14), and,
therefore we shall choose L as large as possible. For large
L and minimum phase filtering the scaling compensation
obtained by the two formulas Eq. (13) and Eq. (10) agree.
For non minimum phase filters, however, the scaling ef-
fect is under estimated in Eq. (10) such that the entropy is
systematically to small, and, therefore, we expect that non
minimum phase solutions can not be found. Consider now
the second term in Eq. (13). From the previous section we
know that this term approximates the negative channel en-
tropy D(xi). As long as we achieve a sufficient sampling
of p(x) we may choose to sum over a sample subset of
size K, and out weight the sub sampling by a additional
factor L/K. Moreover, if we want to neglect the tran-
sients at the borders of the circular filtered x(n) from the
density adaptation, we may delete them from the summa-
tion with the same correction applied as above. Due to
the possibility to use less than L samples to approximate
the entropy D(~xi) we are free to select L as large as we
need to achieve sufficient accuracy for the approximation
of Eq. (14) by the first term in Eq. (13). For practical ap-
plications we propose to adapt L during the optimization
such that the L-point sampling of the transfer function is
always a close approximation to Eq. (14). Note, that L
depends on the position of the roots of the FIR Filter {bk}
and that L has to be increased if the roots of the Filter
approach the unit circle. To be able to adapt L during op-
timization it is convenient to use a standardized entropy
measure

Ds(~z) =
D(~z)

L
(15)

Due to the algebraic relations stated above, the gradient of
Eq. (13) with respect to the filter parameters {bk} can be
calculated efficiently without any matrix operations. The
gradient for the standardized joint entropy is simply

∂Ds(~z)

bi
= DFT−1i ({ 1

DFT ({bk})
}) +

+
1

K

ne∑
n=n0

∂
∂bj

∂z0(n)
∂x0(n)

∂z0(n)
∂x0(n)

. (16)

Here DFT ({bk}) denotes L-point DFT of the sequence
{bk}, DFT−1i denotes the ith element of the inverse L-
point DFT, and xk denotes the conjugate complex of a
sequence {xk}. Note, that the above algorithm consid-
ers batch processing of an entire block of samples. For
stochastic update rules, for example in an non stationary
environment, the use of the natural gradient should be con-
sidered [1, 4].



4. ADAPTIVE DISTRIBUTION MODEL

We now address a further weakness of the deconvolution
algorithm that is related to the use of a fixed nonlinearity
fi(xi) which is equivalent to assume a fixed signal den-
sity. It has been shown that for zero mean signals the
positions of the local maxima of Eq. (5) are unchanged
if fi does not match the signal distribution [12]. This is
the theoretical foundation to use fixed density models for
blind source separation. However, the decrease in entropy
due to the mismatch between the density p(xi) and f ′i(xi)
depends on the matrix B, and we can expect that there ex-
ist situations where a change of the model density fi(xi)
changes a global maximum of Eq. (5) into a local one.
In this case, the global maximum does no longer reflect
proper signal deconvolution or signal separation. To our
knowledge this problem has never been reported for sig-
nal separation tasks. As the experimental results in Sec. 5.
demonstrate this situation is not that exceptional for de-
convolution. This problem can not be addressed by means
of using different nonlinearities for sub and super Gaus-
sian sources as proposed in [9, 5], but only by means of a
nonlinearity that models the source distribution with suf-
ficient accuracy. Here we propose to use

f(x) =
1

2
(w tanh(a1x+ b1)

+ (1− w) tanh(a2x+ b2))

w =
1

1 + exp(−wh)
, (17)

because the adaptive bi-modal density can be employed to
model sub and super Gaussian densities. The mixture pa-
rameter wh is transformed such that w is always in the in-
terval [0; 1] The nonlinearity can be interpreted as a neural
network with two hidden units [11], which can be adapted
by gradient ascend of Eq. (13) with respect to the network
parameters. The density model consists of a mixture of
two densities of the form a

2 cosh(ax)2 . Using the Fourier
Transform∫ ∞

−∞

a

2 cosh(ax)2
e−jwxdx =

wπ

2a sinh(wπ2a )

we have been able to calculate the moment generating
function of this density and have found that its variance
is

σ2 =
π2

12a2
.

This result is used to initialize the distribution parameters,
such that the model distribution matches the variance of
x(n) for the initial filter matrix B̂. We initialize the model
distribution as follows

1.1a1 = 0.9a2 =
12σx
pi

b1 = −b2 = 0.001

wh = 0.0

such that the model is slightly non symmetric, however,
with a variance that is close to the variance σ2

x of the sig-
nal x obtained from the initial CM B̂.

5. EXPERIMENTAL RESULTS

To verify our reasoning we have applied the above algo-
rithms to two deconvolution problems, with {ak} being
minimum phase in the first and maximum phase in the
second experiment. First we consider the algorithms with
the fixed nonlinearity Eq. (8). To match the fixed density
model a super Gaussian source signal x(n) with exponen-
tial distribution and variance 1 has been selected. For the
(unknown) filter {ak} we use the IIR filter transfer func-
tions

H1(z) =
1

1 + 0.5z−1 + 0.2z−2
(18)

H2(z) =
1

1 + 2z−1 + 1.5z−2
. (19)

We realize the maximum phase filter H2(z) using a non
causal filter. The inverse filter {bk} is provided with
five coefficients, while the ideal deconvolution filter needs
only three. We initialized the filter coefficients randomly
with normal distribution and variance 1 and adapted the
filters in batch mode with an epoch size of 10000 using the
gradient calculated from the entropy equations explained
above.

As expected the Bell and Sejnowski algorithm always
converges to a minimum phase solution. In case of the
minimum phase filter the solution is close to the inverse
of {ak}, however, for the maximum phase problem the
algorithm have found solutions with roots of the transfer
function that are reflected at the unit circle. The circular
matrix algorithm with fixed density model finds the same
results if the initial random filter is minimum phase, be-
cause for minimum phase filters both algorithms agree in
their entropy estimation. With initial filters that have at
least two roots of the transfer function on the proper side
of the unit circle the CM algorithm converges to a filter
with the correct roots.

If we analyze the global maximum of the objective
function we find that in all cases the global maximum of
the joint entropy Eq. (5) is not obtained for the correct
inverse filter, but, for the filter with reflected roots. This is
due to the fixed density model. While the all pass compo-
nent that remains in the signal introduce slight statistical
dependencies the entropy is maximal in this case because
the density of the source (exponential distribution) is fur-
ther apart from the fixed density model than the density of
the all pass filtered signal (Fig. 1). We conclude that for
general case blind signal deconvolution the nonlinearity
fi has to be adapted even in case of a super Gaussian sig-
nal. Otherwise the global maximum of the joint entropy
does not indicate proper deconvolution. Using the adap-
tive nonlinearity proposed in Sec. 4. the signal density can
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Figure 1: The sample histograms (marked +) of the deconvolved signals p(x) in case of unknown filter
H1(z) for the correct inverse model (left) and the inverse model with reflected roots (right) compared with
the fixed model distribution 1

cosh2(x)
(solid line). Due to distribution mismatch the incorrect inverse filter

(right) yields the global maximum of the joint entropy D(~z).

be modeled more accurately. While the filter coefficients
obtained with adaptive nonlinearity does not change sig-
nificantly, the global maximum of the objective function
is now obtained for the correct deconvolution filter.

6. OUTLOOK AND SUMMARY

In the present paper we have investigated into recent blind
deconvolution algorithms and have shown, that only the
circular matrix formulation of the filtering is appropriate
to solve the deconvolution problem if the unknown filter
is not minimum phase. Moreover, the experimental re-
sults demonstrate that the fixed density model has to be
extended to an adaptive at least bi-modal distribution to
be able to properly solve the deconvolution problem, even
if the source distribution is constrained to be super Gaus-
sian. We presented a simple example that shows that for
insufficiently adapted nonlinearity the global optimum of
the objective function is not achieved for the true deconvo-
lution filter. Due to the close relations between signal de-
convolution and signal separation a similar problem exists
for the blind separation task. However, we conjecture that
the problem, that to our knowledge has not been reported
elsewhere, is related to the symmetries of the matrices that
describe the deconvolution problem, and, therefore, may
be of only marginal importance for signal separation ap-
plications.

Forthcoming investigations will consider applications
of the algorithm to data compression of audio signals. Due
to the explicit minimization of the entropy of the signal
significant improvements of the actual algorithms based
on linear prediction are expected. Initial investigations
leads to the conclusion that the optimal deconvolution fil-

ter for audio signals in many cases requires maximum
phase filtering. The compression improvements that are
achieved with the new method are currently investigated.
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