
HAL Id: hal-01253204
https://hal.science/hal-01253204

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static/Dynamic Validation of MPI Collective
Communications in Multi-threaded Context
Emmanuelle Saillard, Patrick Carribault Cea, Denis Barthou

To cite this version:
Emmanuelle Saillard, Patrick Carribault Cea, Denis Barthou. Static/Dynamic Validation of MPI
Collective Communications in Multi-threaded Context. the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Feb 2015, San Francisco, United States. pp.279-280,
�10.1145/2688500.2688548�. �hal-01253204�

https://hal.science/hal-01253204
https://hal.archives-ouvertes.fr

Static/Dynamic Validation of MPI Collective
Communications in Multi-threaded Context

Emmanuelle Saillard
CEA, DAM, DIF, F-91297 Arpajon,

France
emmanuelle.saillard@cea.fr

Patrick Carribault
CEA, DAM, DIF, F-91297 Arpajon,

France
patrick.carribault@cea.fr

Denis Barthou
Bordeaux Institute of Technology /
LaBRI INRIA, Bordeaux, France

denis.barthou@labri.fr

Abstract
Scientific applications mainly rely on the MPI parallel program-
ming model to reach high performance on supercomputers. The ad-
vent of manycore architectures (larger number of cores and lower
amount of memory per core) leads to mix MPI with a thread-
based model like OpenMP. But integrating two different program-
ming models inside the same application can be tricky and generate
complex bugs. Thus, the correctness of hybrid programs requires
a special care regarding MPI calls location. For example, iden-
tical MPI collective operations cannot be performed by multiple
non-synchronized threads. To tackle this issue, this paper proposes
a static analysis and a reduced dynamic instrumentation to detect
bugs related to misuse of MPI collective operations inside or out-
side threaded regions. This work extends PARCOACH [4] designed
for MPI-only applications and keeps the compatibility with these
algorithms. We validated our method on multiple hybrid bench-
marks and applications with a low overhead.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging aids

Keywords Static, Verification, MPI+OpenMP, Control Flow

1. Introduction
Hybrid programming with MPI and a shared-memory program-
ming language such as OpenMP is a promising solution for writ-
ing parallel applications for supercomputers. The MPI-2 standard
defines multiple levels of multi-threading integration, known as
thread levels, to indicate how MPI communications should inter-
act with threads. Even if some hybrid applications do not require
a specific thread level, performing MPI communications inside
parallel threaded regions may help reducing the penalty of Amd-
hal’s law. Thus, three thread levels enable MPI communications
inside OpenMP parallel regions. However, according to the stan-
dard, it is the user’s responsibility to ensure that MPI communica-
tions (including collective calls) are correctly placed, according to
the thread level used. More specifically, if the number of expected
calls to a collective operation or their sequence is not the same for
all processes, this can lead to errors or deadlocks. Finding such
bugs and, moreover, the source of the errors may be challenging.

Even if hybrid applications are more and more common, most
debugging tools are focused on one type of parallelism at a time.
However errors in hybrid programs (whatever the thread-level sup-
port) can result from the combination of both forms of parallelism.
To our knowledge, Marmot [1] is the only tool that provides a sup-
port for detecting collective errors in MPI+OpenMP programs.

We propose an extension of PARCOACH [4] to verify the flow
of MPI collective operations in a multi-threaded context. The pro-
posed method is compatible with all possible thread levels. It de-

tects deadlocks or error situations due to MPI collectives, stops pro-
gram execution as soon as this situation is unavoidable and reports
to the user the control-flow divergence and the parallel constructs
responsible for this situation. Our analysis is designed to be com-
patible with existing dynamic tools like MUST [2] and is focused
on detecting the MPI collective mismatches in a multi-threaded
context. The correctness of collectives arguments or the multi-
threaded model used is not checked. The multi-threaded model
should be an explicit fork/join model, with perfectly nested regions.
OpenMP corresponds to this kind of model. Throughout the rest of
the paper we consider MPI+OpenMP programs.

2. Compile-Time Verification
In our context, the problem statement can be expressed as follows:
A hybrid program is correct if all MPI processes execute the same
MPI collective operations in the same order in a deterministic
way. This means there is a total order between MPI collective
calls within each process and this order is the same for all MPI
processes. To prove that a hybrid program is correct, the analysis is
decomposed into three phases:

1. All MPI collectives are executed in a monothreaded context;

2. Any two collective executions are ordered sequentially;

3. All MPI processes execute the same sequence of collectives.

(1) and (2) ensure that collective operations are executed in an or-
der that does not depend on the number of threads, nor on their
execution schedule. (3) shows that the same sequence of collec-
tives is executed for all MPI processes, and when the compile-time
analysis is not able to prove this property due to some control flow
statements, checks are inserted at these statements.

The compile-time phase of PARCOACH takes place in the mid-
dle of the compilation chain where the code is represented as a
control-flow graph (CFG). In addition to the modification done
in [4] to highlight nodes containing a MPI collective operation,
OpenMP directives are put into separate basic blocks and new
nodes are added for implicit thread barriers. To verify the total or-
der of MPI collective calls, we define a parallelism word pw[n]
for a node n as the sequence of the parallel constructs (pragma
parallel, single, . . .) and the barriers traversed from the be-
gining of a function to the node. Parallel regions are denoted by
P i, with i the id of the node with the OpenMP construct, sin-
gle threaded regions (such as single, master,. . .) are denoted
similarly Si, and barrier by B. A simplification is done when
OpenMP regions end. Because the considered thread-based models
such as OpenMP have perfect nested parallelism, the control flow
has no impact on the parallelism word.

Checking that a collective is executed in a monothreaded region

boils down to check the parallelism word of its node. This requires
to use MPI with at least the MPI THREAD SERIALIZED level. If a
collective is executed in a multithreaded region, this requires fur-
ther the use of the level MPI THREAD MULTIPLE and the code is
then correct if only one thread executes the collective. To be in
a monothreaded region, the parallelism word has to end with an
S (Bs are ignored as barriers do not influence the level of thread
parallelism). Moreover, if the parallelism word has a sequence of
two or more P with no S in-between, it implies the parallelism is
nested: Even if the word ends with an S, one thread for each thread
team can execute the collective. We assume then the collective is
not executed in a monothreaded region. The language L defined by
L = (S|PB∗S)∗ describes the accepted words. The initial par-
allelism word at the function entrance is considered as an empty
word. A node n is then in a monothreaded context if pw[n] ∈ L.
As in practice, the initial parallelism word of the function is an
initial prefix unknown at compile-time, the programmer can select
with an option given to the analysis the initial level to consider at
compile-time. Whenever a collective is in a multi-threaded context,
a warning related to the initial level with the name of the collective
is returned to the programmer. Two sets are created: S and Sipw

containing respectively collective nodes in multithreaded regions
and the nodes that dominate these collective nodes before the exe-
cution/control flow changes.

Different MPI collectives can be called in monothreaded re-
gions, and still be executed simultaneously if the regions are ex-
ecuted in parallel. The second step of the static analysis detects
concurrent collective calls. Two nodes n1 and n2 are said to be in
concurrent monothreaded regions if they are in monothreaded re-
gions and if pw[n1] = wSju and pw[n2] = wSkv where w is a
common prefix, j 6= k, u and v words in (P |S|B)∗. Two nodes in
monothreaded regions can be executed simultaneously if and only
if they are in concurrent monothreaded regions. Two sets are cre-
ated: S and Scc. When collective nodes with the same number of
B are detected these nodes are put in the set S and the nodes that
begin the monothreaded regions are put in the set Scc.

Once the sequence of MPI collective calls is verified in each
process we must check that all sequences are the same for all pro-
cesses. To this end, we resort to the Algorithm 1 proposed in [4].

3. Static Instrumentation for Execution-Time
Verification

The static analysis could lead to false positives relatively to the
CFG that is possibly not correlated with the actual control flow. To
deal with false positive results, a dynamic instrumentation is added
in the nodes created by the static analysis (S, Sipw and Scc).

For each node in Sipw and Scc a runtime check is done to en-
sure the node is actually in a monothreaded region. For each node
in Scc the number of threads concurrently executing a given node is
counted dynamically. The check function CC depicted Algorithm
3 in [4] is inserted before each MPI collective operation and be-
fore return statements. As multiple threads may call CC before
return statements, this function is wrapped into a single pragma.
In all cases if an error is about to occur, the program is stopped and
an error message is returned with error type information.

4. Experimental results
We tested our analyses on the NAS Parallel benchmarks multizone
(NASPB-MZ v3.2) using class B, a mixed mode MPI/OpenMP
benchmark suite v1.0 (EPCC suite) and HERA [3], a large multi-
physics 2D/3D AMR hydrocode platform. At compile-time our
analysis issues warnings for potential MPI collective errors within
an MPI process and between MPI processes. The type of each po-
tential error is specified (collective mismatch, concurent collective

 0

 1

 2

 3

 4

 5

 6

 7

BT−MZ SP−MZ LU−MZ EPCCsuite HERA

Ov
er

he
ad

 i
n

%

Warnings
Warnings + verification code generation

Figure 1. Overhead of average compilation time with and without
verification code generation

calls,...) with the names and lines in the source code of MPI col-
lective calls involved. Figure 1 presents the compile-time overhead
with and without code generation for each benchmark. The over-
head acquired is acceptable as it does not exceed 6%.

5. Conclusion
Although large MPI+Threads applications appear, the lack of de-
bugging tools for hybrid programs does not encourage the develop-
ment of such applications and limits the use of thread levels. In this
paper we propose a method to overcome this issue, extending PAR-
COACH to detect collective patterns that can raise errors/deadlocks
in a multi-threaded context. First our method statically identifies
MPI collective operations that can deadlock or be performed by
multiple non-synchronized threads. Then we validate these poten-
tial errors/deadlocks during execution by a code transformation.
The cost of the runtime checks is limited by a selective instrumen-
tation, avoiding unnecessary checks.

References
[1] T. Hilbrich, M. S. Müller, and B. Krammer. Detection of violations to

the MPI standard in hybrid OpenMP/MPI applications. In Intl. Conf.
on OpenMP in a New Era of Parallelism, pages 26–35, 2008.

[2] T. Hilbrich, B. R. de Supinski, F. Hänsel, M. S. Müller, M. Schulz, and
W. E. Nagel. Runtime MPI collective checking with tree-based overlay
networks. In European MPI Users’ Group Meeting, pages 129–134,
2013.

[3] H. Jourden. HERA: A hydrodynamic AMR Platform for Multi-Physics
Simulations. In T. Plewa, T. Linde, and V. G. Weirs, editors, Adaptive
Mesh Refinement - Theory and Applications, pages 283–294, 2003.

[4] E. Saillard, P. Carribault, and D. Barthou. PARCOACH:combining
static and dynamic validation of mpi collective communications. Intl.
Journal on High Performance Computing Applications (IJHPCA),
2014.

