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Abstract

We give new contributions on the distribution of the zeros of the Riemann zeta
function by using the techniques of the Malliavin calculus. In particular, we obtain the
error bound in the multidimensional Selberg’ s central limit theorem concerning the zeta
zeros on the critical line and we discuss some consequences concerning the asymptotic
behavior of the mesoscopic fluctuations of the zeta zeros.
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1 On the Riemann zeta function and Selberg’s theorem

The Riemann zeta function is usually defined, for Re s > 1, as

ζ(s) =
∑

n≥1

1

ns
(1)

and for Re s ≤ 1, as an analytic continuation of (1). The Riemann zeta function is strongly
related to the prime numbers theory via the Euler product formula

ζ(s) =
∏

p

(

1− 1

ps

)−1

for Re s > 1, where p ranges over primes. The distribution of the zeta zeros is one of the
outstanding problems in mathematics. We know that ζ(−2n) = 0 for every n ≥ 1. The
points s = −2n are called the trivial zeros of the zeta function. It is known that the possible
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non-trivial zeros of the zeta-function could only lie inside the critical strip 0 < Re s < 1.
They are of great interest since their distribution leads to many important results in prime
numbers theory.

We also know that the numbers of zeta zeros is infinite and they lie symmetrical
about the real axis and about the vertical line Re s = 1

2 . The Riemann hypothesis posits
that all the non-trivial zeros lies on the critical line Re s = 1

2 .

A probabilistic way to analyze the zeta zeros is to look at the values of log ζ(s) on
the critical line s = 1

2 + it and to consider t as a random variable uniformly distributed that
takes huge values. That is, one considers t ∼ U [T, 2T ] with T close to infinity. By U [a, b]
we will denote throughout this work the uniform distribution over the interval [a, b], a < b.

Selberg’ s theorem (see [10], [11], [12] or the surveys [4], [14], [16]) gives the asymp-
totic distribution of log ζ(s) on the critical line Re s = 1

2 . Selberg theorem says that, if t is
a random variable uniformly distributed over the interval [T, 2T ], then the sequence

log ζ
(

1
2 + it

)

√

1
2 log log T

(2)

converges in distribution to a complex-valued standard normal random variable X1 + iX2

with X1,X2 ∼ N(0, 1) being independent random variables. There are several versions
of this theorem. In particular, the result (2) holds if t ∼ U [0, T ] of, more generally, if
t ∼ U [aT, bT ] with b > a ≥ 0.

Selberg’s theorem basically says that the zeta zeros does not affect too much the
behavior of ζ on the critical line. Actually, the primes do most of the work. The very small
normalization of order

√
log log T is usually interpreted as a repulsion of zeros (see [14],

[1], [2]).
Selberg theorem is actually equivalent to the convergence of the real and imaginary

parts of log ζ on the critical line, i.e. (recall that, if s is a complex number, then log s =
log |s|+ i arg s)

log
∣

∣ζ
(

1
2 + it

)∣

∣

√

1
2 log log T

→(d)
T→∞ X1 ∼ N(0, 1) (3)

and
arg log ζ

(

1
2 + it

)

√

1
2 log log T

→(d)
T→∞ X2 ∼ N(0, 1) (4)

where ” →(d) ” stands for the convergence in distribution. The idea of the proof of (3) and
(4) is (see [10], [11], [12], [14], [15]) to approximate log ζ

(

1
2 + it

)

by a Dirichlet series and
to look to the behavior of this Dirichlet series, which can be easier handled. The Dirichlet
approximation will be of the form

∑

p≤T ε

1

p
1
2
+it

=
∑

p≤T ε

cos(t log p)√
p

+ i
∑

p≤T ε

sin(t log p)√
p

. (5)
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with t ∼ U [aT, bT ], b > a ≥ 0 and ε small enough. We will work throughout with ε = 1.
One of the main issues in our work is to study the speed of the convergence in (3)

and (4). Some information concerning the rate of convergence to the normal distribution in
the Selberg’s central limit theorem can be found in the more recent Selberg’s work [13] or
in [16], [17]. Actually, it follows from [13] (see also Appendix A in [17] for a detailed proof)
that (for ε sutably chosen in (5)) the Kolmogorov distance between the sequence (2) and
the standard normal distribution is less than C log log log T√

log log T
(throughout, by C we will denote

a generic strictly positive constant that may change from one line to another). It is actually
shown in [13], [17] that the Kolmogorov distance between the Dirichlet series (5) and the
Gaussian law N(0, 1) is less C 1√

log log T
and it is deduced that the distance between (2) and

N(0, 1) is less than C log log log T√
log log T

. It seems that there are not results concerning other metrics.

Therefore, in a first step, we will investigate the rate of convergence in the (one-dimensional)
Selberg’s theorem in terms of the Wasserstein distance.

We use recent techniques based on Malliavin calculus combined with Stein method
(see [5]) in order to obtain our error bounds. Let us describe our new contributions. First,
concerning the one-dimensional Selberg’s theorem: we prove that the distance (under several
metrics, such as the Kolmogorov, total variation, Wasserstein or Fortet -Mourier metrics)
between the Dirichlet approximation (5) and the standard normal law if less than C 1

log log T .
This improves the known result for the Kolmogorov distance. We also prove that the
rate of convergence of log ζ(12 + iUT ) to N(0, 1) is, under the Wasserstein metric, less
than C 1√

log log T
and this improves the result in [13], [17] (which states, recall, that the

Kolmogorov distance between (2) and N(0, 1) is less than C log log log T√
log log T

). In our work, U

denotes a standard uniform random variable i.e. U ∼ U [0, 1].
We also study the multidimensional context. The multidimensional extension of

the Selberg’s theorem has been proved more recently. First, in the paper [3], the authors
showed that for any 0 < λ1 < . . . λd, the random vector

XT :=
1

√

1
2 log log T

(

log ζ

(

1

2
+ iPi

))

i=1,..,d

(6)

with Pi = Ue(log T )λi (i = 1, . . . , d), converges in distribution, as T → ∞ to (λ1Y1, . . . , λdYd)
where Y1, . . . , Yd are independent standard complex Gaussian random variables. There is
no correlation between the components of the limit vector because the evaluation points Pi

are rather distant one from each other. When these points are less distanced, then non-
trivial correlations appear in the limit. The result is due to [1]. In this reference, the author

showed that for Pi = TU + f
(i)
T with f

(i)
T − f

(j)
T not too big (the exact meaning is given

later), then the random vector (6) converges in law to a d-dimensional complex Gaussian
vector with dependent components.

We will regard these results from the Malliavin calculus point of view and we will
give the associated error bounds. We will treat the case when Pi = TU + iT (here the
space between points is pretty big and the limit is a Gaussian vector with independent
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components) and Pi = TU + f
(i)
T with f

(i)
T − f

(j)
T small if i 6= j (non-trivial correlations

appear). We will see that the order of the speed of convergence to the limit distribution is
not affected by the distance between the evalution points.

All these results lead to several consequences for the fluctuation of the number of
zeros of the zeta function on the critical line. More precisely, we prove that the number
of zeta zeros on the critical line Re s = 1

2 between some random heights satisfies a central
limit theorem and we obtain the associated error bound. Our results extend the findings in
[1], [2] or [3].

Our paper is organized as follows. In Section 2 we analyze the speed of convergence
in the classical Selberg’s theorem under several metrics via the Stein’ s method combined
with Malliavin calculus. In particular, we obtain explicit formulas for the Malliavin opera-
tors applied to the random variables in the left-hand side of (3), (4). In Section 3 we make
the same study in the multidimensional settings, while in Section 4 we apply our findings
to prove new results concerning the number of zeros of the Riemann zeta function. In
the Appendix we included some elements from the Malliavin calculus and from the prime
numbers theory needed in our work.

Throughout the paper we fix H a real and separable Hilbert space and (W (h), h ∈
H) an isonomal Gaussian process (as introduced in Section 5.2) on the probability space
(Ω,F , P ).

2 Rate of convergence in the Selberg theorem via Malliavin

calculus

We here study the error bound corresponding to the weak convergences (3) and (4). The
error bound will be obtained in two steps: first we measure the distance between the series
(5) and the standard normal distribution and then we will use an old result in [12].

2.1 Rate of convergence for the Dirichlet series

Consider the family (XT )T>0 given by

XT =
∑

p≤T

[

cos(TU log p)√
p

−E
cos(TU log p)√

p

]

(7)

where the sum is taken over the primes p and U is U [0, 1] distributed. In the sequel, we will
assume

U = e−
1
2
(W (f)2+W (g)2) (8)

with f, g ∈ H, ‖f‖ = ‖g‖ = 1 and 〈f, g〉 = 0 (all the scalar products and norms in the paper
will be considered in H if no further precision is made). In (8), W stands for a Gaussian
isonormal process as described in the Appendix, Section 5.2. This implies that W (f) and
W (g) are independent standard normal random variables.
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The sequence XT corresponds to the real part of log ζ
(

1
2 + iTU

)

. A similar analysis
can be done for the imaginary part. We briefly describe the main steps.

We will measure the distance between the sequence

1
√

1
2 log log T

XT

and the standard normal distribution. For every p ≤ T , denote by

XT,p =
cos(TU log p)√

p
−E

cos(TU log p)√
p

(9)

so XT =
∑

p≤T XT,p.

We need to compute 〈DXT ,D(−L)−1XT 〉. This quantity is crucial when one uses
the Stein method combined with the Malliavin calculus (see [5], see also (31) in Theorem
1). Let us do this computation. We can write

〈DXT ,D(−L)−1XT 〉
=

∑

p1,p2≤T

〈DXT,p1 ,D(−L)−1XT,p2〉 =
∑

p1,p2≤T

〈DXT,p2 ,D(−L)−1XT,p1〉

=
1

2

∑

p1,p2≤T

(

〈DXT,p1 ,D(−L)−1XT,p2〉+ 〈DXT,p2 ,D(−L)−1XT,p1〉
)

. (10)

Using the series expansion of the cosinus function cosx =
∑

k≥0
(−1)k

(2k)! x
2k we get

XT,p =
1√
p

∑

k≥0

(−1)k

(2k)!
(T log p)2k(U2k −EU2k).

So

〈DXT,p1 ,D(−L)−1XT,p2〉+ 〈DXT,p2 ,D(−L)−1XT,p1〉

=
∑

k,l≥0

(−1)k+l

(2k)!(2l)!
T 2k+2l (log p1)

2k

√
p1

(log p2)
2l

√
p2

[

〈D(U2k −EU2k),D(−L)−1(U2l −EU2l)〉+ 〈D(U2l −EU2l),D(−L)−1(U2k −EU2k)〉
]

.

Let us use the notation, for every k > 0

Gk := Uk −EUk = e−
k
2
(W (f)2+W (g)2) −Ee−

k
2
(W (f)2+W (g)2). (11)

Relation (10) becomes
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〈DXT ,D(−L)−1XT 〉 =
∑

p1,p2≤T

∑

k,l≥0

(−1)k+l

(2k)!(2l)!
T 2k+2l (log p1)

2k

√
p1

(log p2)
2l

√
p2

〈DGk,D(−L)−1Gl〉

=
1

2

∑

p1,p2≤T

∑

k,l≥0

(−1)k+l

(2k)!(2l)!
T 2k+2l (log p1)

2k

√
p1

(log p2)
2l

√
p2

[

〈DG2k,D(−L)−1G2l〉+ 〈DG2l,D(−L)−1G2k〉
]

.

(12)

where we used the symmetry of the sums. Consequently, it is necessary to calculate
〈DG2k,D(−L)−1G2l〉 + 〈DG2l,D(−L)−1G2k〉. This will be done in the next lemma and
it will be used several times in the paper.

Lemma 1 Let Gk be given by (11). Then for every k, l > 0

〈DG2k,D(−L)−1G2l〉+〈DG2l,D(−L)−1G2k〉 = U2k 2k

2l + 1

(

1− U2l
)

+U2l 2l

2k + 1

(

1− U2k
)

(13)
with U given by (8).

Proof: For every two smooth centered random variables F,G we have

〈DF,D(−L)−1G〉+ 〈DG,D(−L)−1F 〉
=

(

〈D(F +G),D(−L)−1(F +G)〉 − 〈DF,D(−L)−1F 〉 − 〈DG,D(−L)−1G〉
)

. (14)

We use the following formula proved in [8]: if Y = f(N) − E[f(N)] where f ∈ C1
b (R

n;R)
with bounded derivatives and N = (N1, ..., Nn) is a Gaussian vector with zero mean and
covariance matrix K = (Ki,j)i,j=1,..,n then

〈D(−L)−1(Y −E[Y ]),DY 〉H =

∫ 1

0
daE′





n
∑

i,j=1

Ki,j

∂f

∂xi
(N)

∂f

∂xj
(aN +

√

1− a2N ′)



 . (15)

Here N ′ denotes an independent copy of N , the variables N and N ′ are defined on a product
probability space (Ω× Ω′,F ⊗F , P × P ′) and E′ denotes the expectation with respect to
the probability measure P ′.

In our case, for every k ≥ 1,

U2k −EU2k = G2k = h(W (f),W (g)) −Eh(W (f),W (g))

with h(x, y) = e−k(x2+y2). Denote by

Gk,a = e−k[(aW (f)+
√
1−a2W ′(f))2+(aW (g)+

√
1−a2W ′(g))2]. (16)

Then, by (15) we find
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〈DG2k,D(−L)−1G2k〉

=

∫ 1

0
da(2k)2E′

[

U2kGk,aW (f)(a(W (f) +
√

1− a2W ′(f))
]

+

∫ 1

0
da(2k)2E′

[

U2kGk,aW (g)(a(W (g) +
√

1− a2W ′(g))
]

=

∫ 1

0
da4k2aU2k

(

W (f)2 +W (g)2
)

E′(Gk,a)

+

∫ 1

0
da4k2

√

1− a2U2k
[

W (f)E′(W ′(f)Gk,a) +W (g)E′(W ′(g)Gk,a)
]

. (17)

Let us first calculate E′(Gk,a) with Gk,a given by (16). We have

E′(Gk,a) = g(aW (f))g(aW (g)) (18)

where g(c) = Ee−k(c+
√
1−a2Z)2 with Z a standard normal random variable. By standard

calculations

g(c) =
1√
2π

∫

R

e−k(c+
√
1−a2x)2e−

x2

2 dx =
1√
2π
e−kc2

∫

R

dxe−k(1−a2)x2
e−

x2

2 e−2kc
√
1−a2x

=
1√
2π
e−kc2e

2k2c2(1−a2)

1+2k(1−a2)

∫

R

e−
1
2
(1+2k(1−a2))y2dy =

1
√

1 + 2k(1 − a2)
e
− kc2

1+2k(1−a2) .

By (18), we obtain

E′(Gk,a) =
1

1 + 2k(1 − a2)
e
− ka2(W (f)2+W (g)2)

1+2k(1−a2) . (19)

We also need to compute E′(Gk,aW
′(f). We have

E′(Gk,aW
′(f)) = E′

[

W ′(f)e−k(aW (f)+
√
1−a2W ′(f))2

]

g(aW (g))

where g(c) has been computed just above. We will find that

E′
[

W ′(f)e−k(aW (f)+
√
1−a2W ′(f))2

]

= m(aW (f))

with m(c) = E′
[

Ze−k(c+
√
1−a2Z)2

]

. Moreover

m(c) =
1√
2π

∫

R

xe−k(c+
√
1−a2x)2e−

x2

2 dx

= e
− kc2

1+2k(1−a2)
1√
2π

∫

R

(y − 2kc
√
1− a2

1 + 2k(1− a2)
)e−

1
2
(1+2k(1−a2))y2dy

= −e−
kc2

1+2k(1−a2)
2kc

√
1− a2

(1 + 2k(1− a2))
3
2

.
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Hence

E′(Gk,aW
′(f)) = −e−

ka2(W (f)2+W (g)2)

1+2k(1−a2)
2kaW (f)

√
1− a2

(1 + 2k(1 − a2))2
(20)

and similarly,

E′(Gk,aW
′(g)) = −e−

ka2(W (f)2+W (g)2)

1+2k(1−a2)
2kaW (g)

√
1− a2

(1 + 2k(1− a2))2
. (21)

Now, formula (17) becomes

〈DG2k,D(−L)−1G2k〉

=

∫ 1

0
da4k2a

1

1 + 2k(1 − a2)
U2k(W (f)2 +W (g)2)e

− ka2(W (f)2+W (g)2)

1+2k(1−a2)

−
∫ 1

0
da4k2(1− a2)

2ka

(1 + 2k(1 − a2))2
U2k(W (f)2 +W (g)2)e

− ka2(W (f)2+W (g)2)

1+2k(1−a2) .

Let us denote by
S =W (f)2 +W (g)2. (22)

Since

a
1

1 + 2k(1 − a2)
− (1− a2)

2ka

(1 + 2k(1 − a2))2
=

a

(1 + 2k(1− a2))2
(23)

we can write

〈DG2k,D(−L)−1G2k〉 = 4k2U2kS

∫ 1

0
da

a

(1 + 2k(1− a2))2
e
− ka2S

1+2k(1−a2) .

Note that

(

a2

(1 + 2k(1− a2))2

)′
=

2a(1 + 2k)

(1 + 2k(1 − a2))2
. (24)

Thus, by the change of variables a2

(1+2k(1−a2))2 = z

〈DG2k,D(−L)−1G2k〉 = 4k2U2kS
1

2(2k + 1)

∫ 1

0
dze−kSz

= 4k2U2kS
1

2(2k + 1)

∫ 1

0
dze−kSz = 2kU2k 1

2k + 1

(

1− e−kS
)

.

We can compute
〈D(G2k +G2l),D(−L)−1(G2k +G2l)〉

8



by using again (15) with h(x, y) = e−k(x2+y2) + e−l(x2+y2). We will have

〈D(G2k +G2l),D(−L)−1(G2k +G2l)〉

=

∫ 1

0
daa(2kU2k + 2lU2l)(W (f)2 +W (g)2)E′(2kGk,a + 2lGl,a)

+

∫ 1

0
da

√

1− a2(2kU2k + 2lU2l)

[

W (f)E′W ′(f)(2kGk,a + 2lGl,a) +W (g)E′W ′(g)(2kGk,a + 2lGl,a)
]

and this implies

〈D(G2k +G2l),D(−L)−1(G2k +G2l)〉 − 〈DG2k,D(−L)−1G2k〉 − 〈DG2l,D(−L)−1G2l〉

=

∫ 1

0
daa4kl(W (f)2 +W (g)2)

[

U2kE′Gl,a + U2lE′(Gk,a

]

+

∫ 1

0
da

√

1− a24kl
[

U2kW (f)E′W ′(f)Gl,a + U2lW (f)E′W ′(f)Gk,a

+U2kW (g)E′W ′(g)Gl,a + U2lW (g)E′W ′(g)Gk,a

]

.

Consequently, from relations (19), (20), and (21), we obtain

〈D(Gk +Gl),D(−L)−1(Gk +Gl)〉 − 〈DGk,D(−L)−1Gk〉 − 〈DGl,D(−L)−1Gl〉

=

∫ 1

0
daa4kl(W (f)2 +W (g)2)

[

1

1 + k(1− a2)
Gle

− ka2(W (f)2+W (g)2)

1+2k(1−a2) +
1

1 + 2l(1− a2)
Gke

− la2(W (f)2+W (g)2)

1+2l(1−a2)

]

−
∫ 1

0
da

√

1− a24kl(W (f)2 +W (g)2)

[

Gle
− ka2(W (f)2+W (g)2)

1+2k(1−a2)
2ka

√
1− a2

(1 + 2k(1 − a2))2
+Gke

− la2(W (f)2+W (g)2)

1+2l(1−a2)
2la

√
1− a2

(1 + 2l(1 − a2))2

]

.

To conclude (13), it suffices to use (14), (23) and (24).

We obtain the explicit form of the terms needed in the Stein-Malliavin bound (31).

Proposition 1 For every T > 0, with XT given by (7), we have

〈DXT ,D(−L)−1XT 〉 =
∑

p1,p2≤T

1√
p1p2

log p2
log p1

× [sin(TU log p2) sin(TU log p1)− U sin(TU log p2) sin(T log p1)] . (25)
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Proof: By (12) and relation (13) in Lemma 1, we have

〈DXT ,D(−L)−1XT 〉 =
1

2

∑

p1,p2≤T

∑

k,l≥0

(−1)k+l

(2k)!(2l)!
T 2k+2l (log p1)

2k

√
p1

(log p2)
2l

√
p2

×
[

2kU2k 1

2l + 1

(

1− e−lS
)

+ 2lU2l 1

2k + 1

(

1− e−kS
)

]

=
∑

p1,p2≤T

∑

k≥0;l≥1

(−1)k+l

(2k + 1)!(2l − 1)!
T 2k+2l (log p1)

2k

√
p1

(log p2)
2l

√
p2

U2l
(

1− e−kS
)

.

So,

〈DXT ,D(−L)−1XT 〉 =
∑

p1,p2≤T

1√
p1p2

∑

l≥1

(−1)l

(2l − 1)!
(T log p2)

2lU2l

∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k(1− U2k). (26)

We first compute the sum over l. We have

∑

l≥1

(−1)l

(2l − 1)!
(T log p2)

2lGl =
∑

l≥0

(−1)l+1

(2l + 1)!
(T log p2)

2l+2U2l+2

= −TU log p2 sin(TU log p2). (27)

Concerning the sum over k

∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k(1− U2k) =
∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k(1− U2k)

=
1

T log p1





∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k+1 − U−1
∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k+1U2k+1





=
1

T log p1

(

sin(T log p1)− U−1 sin(TU log p1)
)

. (28)

By combining (26), (27) and (28), we get (25).

Using the same lines, we can treat the imaginary part of log ζ(12 + it), with t = TU .

Proposition 2 Denote by

YT =
∑

p≤T

(

sin(TU log p)√
p

− E sin(TU log p)√
p

)

. (29)
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Then

〈DYT ,D(−L)−1YT 〉 =
∑

p1,p2≤T

log p1
log p2

1√
p1p2

[(U − 1) cos(TU log p2)− U cos(TU log p2) cos(T log p1)

+ cos(TU log p1) cos(TU log p2)] .

Proof: As in the proof of Proposition 1,

〈DYT ,D(−L)−1YT 〉

=
1

2

∑

p1,p2≤T

1√
p1p2

∑

k,l≥0

(−1)k+1++1l

(2k + 1)!(2l + 1)!
T 2k+1+2l+1 (log p1)

2k+1

√
p1

(log p2)
2l+1

√
p2

[

〈DG2k+1,D(−L)−1G2l+1〉 − 〈DG2l+1,D(−L)−1G2k+1〉
]

(30)

with G2k+1 from (11) and by Lemma 1 (by replacing k, l by k + 1
2 , l +

1
2 respectively),

[

〈DG2k+1,D(−L)−1G2l+1〉 − 〈DG2l+1,D(−L)−1G2k+1〉
]

= (2k + 1)U2k+1 1

2l + 2

(

1− U2l+1
)

+ (2l + 1)U2l+1 1

2k + 2

(

1− U2k+1
)

.

Thus

〈DYT ,D(−L)−1YT 〉

=
∑

p1,p2≤T

1√
p1p2

∑

k≥0

(−1)k

(2k + 2)!
(T log p1)

2k+1(1− U2k+1)
∑

l≥0

(−1)l

(2l)!
(TU log p2)

2l+1.

To conclude, it remains to notice that

∑

l≥0

(−1)l

(2l)!
(TU log p2)

2l+1 = TU log p2 cos(TU log p2)

and

∑

k≥0

(−1)k

(2k + 2)!
(T log p1)

2k+1(1−U2k+1) =
1

T log p1

(

1− cos(T log p1) +
1

U
(cos(T log p1U)− 1)

)

.

Let us take a moment to introduce certain notion on the distance between probability
distributions and to recall some links between these topic and Malliavin calculus. Let X,Y
be two random variables. The distance between the law of X and the law of Y is usually
defined by (L(F ) denotes the law of F )

d(L(X),L(Y )) := sup
h∈H

|Eh(X) −Eh(Y )|

11



where H is a suitable class of functions. For example, if H is the set of indicator functions
1(−∞,z], z ∈ R we obtain the Kolmogorov distance (for simplicity, we will always write
d(X,Y ) instead of d(L(X),L(Y )))

dK(X,Y ) := dK(L(X),L(Y )) = sup
z∈R

|P (X ≤ z)− P (Y ≤ z)|.

If H is the set of 1B with B a Borel set, one has the total variation distance

dTV (L(X),L(Y )) = sup
B∈B(R)

|P (X ∈ B)− P (Y ∈ B)|

while for H = {h; ‖h‖L ≤ 1} (‖ · ‖L is the Lipschitz norm) one has the Wasserstein distance
denoted dW . We will focus in our work on these metrics. We will use the generic notation
d(X,Y ) when our claim concerns all the metrics introduced above.

Let us recall the Stein bound for the normal approximation in terms of the Malliavin
operators. See Section 5 in [5].

Theorem 1 If F is a random variable in D
1,4 with EF = 0 and N is a standard normal

random variable, then

d(F,N) ≤ CE
∣

∣1− 〈DF,D(−L)−1F 〉
∣

∣ . (31)

We have the following result.

Theorem 2 For every T > 0, let XT , YT be given by (7), (29) respectively. Denote by

FT =
1

√

1
2 log log T

XT , GT =
1

√

1
2 log log T

YT . (32)

Then for T large enough,

d(FT , N) ≤ C
1

log log T
and d(GT , N) ≤ C

1

log log T
. (33)

Proof: Clearly EFT = 0 and from relation (25) in Proposition 1

〈DXT ,D(−L)−1XT 〉

= −
∑

p1,p2≤T

1√
p1p2

log p2
log p1

U sin(TU log p2)
(

sin(T log p1)− U−1 sin(TU log p1)
)

= −
∑

p1,p2≤T

1√
p1p2

log p2
log p1

U sin(TU log p2) sin(T log p1)

+
∑

p1,p2≤T

1√
p1p2

log p2
log p1

sin(TU log p2) sin(TU log p1)

12



and by separating the diagonal and non-diagonal parts in the second sum above, and by
using sin2(x) = 1−cos(2x)

2 ,

〈DXT ,D(−L)−1XT 〉

=
∑

p≤T

sin2(TU log p)

p
+

∑

p1,p2≤T ;p1 6=p2

1√
p1p2

log p2
log p1

sin(TU log p2) sin(TU log p1)

−
∑

p1,p2≤T

1√
p1p2

log p2
log p1

U sin(TU log p2) sin(T log p1)

=
∑

p≤T

1

2p
−

∑

p≤T

cos(2TU log p)

2p
+

∑

p1,p2≤T ;p1 6=p2

1√
p1p2

log p2
log p1

sin(TU log p2) sin(TU log p1)

−
∑

p1,p2≤T

1√
p1p2

log p2
log p1

U sin(TU log p2) sin(T log p1).

Therefore,

E
∣

∣1− 〈DFT ,D(−L)−1FT 〉
∣

∣ ≤ A1,T +A2,T +A3,T +A4,T +A5,T

where

A1,T =

∣

∣

∣

∣

∣

∣

1− 1
1
2 log log T

∑

p≤T

1

2p

∣

∣

∣

∣

∣

∣

, A2,T =
1

1
2 log log T

∣

∣

∣

∣

∣

∣

E
∑

p≤T

2 cos(2TU log p)

2p

∣

∣

∣

∣

∣

∣

,

A3,T =
1

1
2 log log T

∣

∣

∣

∣

∣

∣

E
∑

p1,p2≤T ε;p1 6=p2

1√
p1p2

log p2
log p1

sin(TU log p2) sin(TU log p1)

∣

∣

∣

∣

∣

∣

and

A4,T =
1

1
2 log log T

∣

∣

∣

∣

∣

∣

E
∑

p1,p2≤T

1√
p1p2

log p2
log p1

U sin(TU log p2) sin(T log p1)

∣

∣

∣

∣

∣

∣

.

Since for every a ∈ R, one has E cos(aTU log p) = 1
aT log p sin(aT log p), we have

|E cos(aTU log p)| ≤ C
1

T log p
. (34)

The inequality (34) gives immediately, via (68)

|A2,T | ≤ C
1

T log log T

∑

p≤T

1

p log p
≤ C

1

T log log T

∑

p≤T

1

p
≤ C

1

T
.

13



To bound A3,T , we use sin(x) sin(y) = 1
2(cos(x− y)− cos(x− y)) and, if p1 6= p2,

|E cos(aTU(log p1 ± log p2)| ≤ C
1

T
(35)

to get

|A3,T | ≤ C
1

T log log T

∑

p1≤T

1√
p1 log p1

∑

p2≤T

log p2√
p2

≤ C
1

T log log T

∑

p1≤T

1√
p1

log T
∑

p2≤T

1√
p2

≤ C
1

log log T log T

1

log log T

where we used the estimate (67). Finally, to deal with the summand A4,T , we majorize
| sin(T log p1)| by 1, we use

|EU sin(TU log p2)| ≤ C
1

T log p2
(36)

and we will have, from (36) and (67)

|A4,T | ≤ C
1

T log log T

∑

p1≤T

1√
p1 log p1

∑

p2≤T

1√
p2

≤ C
1

log log T (log T )2
.

The speed of the convergence will be given by the dominant term A1,T . Actually, from (68),

|A1,T | ≤ C
1

log log T
.

Obviously, similar arguments apply to the sequence GT from (32).

Remark 1 Our inequalities (33) improve the bounds obtained in [13] (see also Appendix
A in [17]) where it was proved that for large T

dK(FT , N) ≤ C
1√

log log T
and dK(GT , N) ≤ C

1√
log log T

where dK is the Kolmogorov distance.

2.2 Rate of convergence in the Selberg theorem

The real part of log ζ(s) on the critical, where ζ is the Riemann zeta function (1) , can be
approximated by the family XT +EXT where XT is given by (7). More precisely, if t is a
random variable uniformly distributed on [0, T ], then log

∣

∣ζ(12 + it)
∣

∣ is ”close” (we explain

below what that means) to
∑

p≤T
cos(TU log p)√

p
with U ∼ U [0, 1]. Since we have estimated is

the previous paragraph the distance between XT and the standard normal law, we will be
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able to measure how far is log
∣

∣ζ(12 + it)
∣

∣ from the standard normal distribution. Actually,
we have (with t = TU ∼ U [0, T ])

log |ζ
(

1
2 + it

)

|
√

1
2 log log T

=
1

√

1
2 log log T

∑

p≤T

cos(TU log p)−E cos(TU log p)√
p

+
1

√

1
2 log log T



log |ζ
(

1

2
+ it

)

| −
∑

p≤T

cos(TU log p)√
p





+
1

√

1
2 log log T

∑

p≤T

E cos(TU log p)√
p

.

As mentioned above, the second summand in the right side above is known to be
”small”. The exact meaning is described in the following result which has been obtained in
[12]. The reader may also consult the survey [4] for the detailed steps of the proof.

Lemma 2 For every k, j ≥ 1 integers, it holds

E

∣

∣

∣

∣

∣

∣

log |ζ
(

1

2
+ iT (U + j)

)

| −
∑

p≤T

cos(T log p(U + j))√
p

∣

∣

∣

∣

∣

∣

2k

= O(1). (37)

We do not need to assume the Riemann hypothesis in order to have the result in
Lemma 2. We will use the Wasserstein distance (introduced in this section) to measure
how far is log

∣

∣ζ(12 + it)
∣

∣ from the standard normal distribution. From the definition of this
metric, one can see that

dW (F,G) ≤ E|F −G| ≤
(

E |F −G|2
)

1
2

(38)

if F,G are two random variables in L2(Ω). Using the triangular inequality for the Wasser-
stein distance, we write, with t = TU and U as in (8)
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dW





log |ζ
(

1
2 + it

)

|
√

1
2 log log T

,N(0, 1)





≤ dW





1
√

1
2 log log T

∑

p≤T

cos(TU log p)−E cos(TU log p)√
p

,N(0, 1)





+ dW





log |ζ
(

1
2 + it

)

|
√

1
2 log log T

,
1

√

1
2 log log T

∑

p≤T

cos(TU log p)−E cos(TU log p)√
p





≤ dW





1
√

1
2 log log T

∑

p≤T

cos(TU log p)−E cos(TU log p)√
p





+
1

√

1
2 log log T

E

∣

∣

∣

∣

∣

∣

log |ζ
(

1

2
+ it

)

| −
∑

p≤T

cos(TU log p)√
p

∣

∣

∣

∣

∣

∣

+
1

√

1
2 log log T

∑

p≤T

∣

∣

∣

∣

E cos(TU log p)√
p

∣

∣

∣

∣

:= I1,T + I2,T + I3,T (39)

where we used (38). We estimate the three summands. The bound for I1,T has been
obtained in Theorem 2. From this results, we have

I1,T ≤ C
1

log log T
.

The summand I2,T can be majorized by using Lemma 2 with k = 1 and j = 0. It holds that

I2,T ≤ C
1√

log log T
.

From (34), for T large enough, we clearly have

I3,T ≤ C
1

T
√
log log T

∑

p≤T

1√
p log p

≤ C
1√

T log T log log T

due to (67). These estimates (and similar estimates for the imaginary part) leads to the
following result.

Theorem 3 With ζ, U as in (1), (8) respectively, and with T large enough,

dW





log
∣

∣ζ
(

1
2 + iTU

)∣

∣

√

1
2 log log T

,N



 ≤ C
1√

log log T
, dW





arg log ζ
(

1
2 + iTU

)

√

1
2 log log T

,N



 ≤ C
1√

log log T

(40)
where N ∼ N(0, 1).
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Remark 2 Theorem 3 improves the error bound obtained in [13] or [17]. In these refer-
ences, the right-hand bound in (40) is C log log log T√

log log T
under the Kolmogorov metric.

3 Multidimensional Selberg theorem and the rate of conver-

gence

In this paragraph we give a multidimensional extension of the Selberg central limit theorem.
Concretely, we consider the d+ 1 dimensional random vector

VT :=





1
√

1
2 log log T

(

log ζ

(

1

2
+ iPi

))





i=0,..,d

(41)

and we analyze the asymptotic distribution of its real and imaginary part. As mentionned
in the introduction, it has been proved in [3] that for Pi = Ue(log T )λi , i = 0, .., d with
λ0 < . . . < λd, the vector VT (41) converges in law, as T → ∞, to a d + 1-dimensional
standard complex Gaussian vector. When the space between the points Pi is small then the
limit of VT is a Gaussian vector with correlated components. The result is due to [1].

We analyze the error bound in the multidimensional Selberg theorem in both cases:
when the distance between Pi and Pj is ” big” or ” small”. In fact, we first consider
the case Pi = T (U + i), i = 0, .., d. This is a natural multi-dimensional extension of the
celebrated Selberg’ s result and it seems that it has not yet proved in the literature. Here
Pi − Pj = (i − j)T is big enough to avoid the correlation between the components of the
limit. Then we treat the case considered in [1] when the evaluation points are less distant
one from each other.

The basic idea is the same: one approximates VT by a random vector whose com-
ponents are Dirichlet series of the form (5). Using the techniques of the Malliavin calculus,
we obtain the rate of convergence of this approximation to the Gaussian limit under the
Wasserstein metric. Then we deduce a bound for the Wasserstein distance between VT and
the Gaussian limit.

3.1 Big shifts: convergence to a standard Gaussian vector

Let us first treat the case of ”big shifts”, i.e. the distance between the evaluation points
is big enough and the limit distribution in the multidimensional Selbergh theorem is a
standard Gaussian vector.

3.1.1 Error bound for the Dirichlet series

Consider the d+ 1 dimensional random vector

XT = (X
(0)
T , ...,X

(d)
T )
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where for every i = 0, .., d,

X
(i)
T =

∑

p≤T

1√
p
(cos(T log pti)−E cos(T log pti)) (42)

where ti ∼ U [T i, T (i + 1)]. We analyze the asymptotic limit of XT as T → ∞. Since XT

is close to the real part of the random vector VT (41), we will then deduce the asymptotic
distribution and the error bound for VT . In order to use the techniques of the Malliavin
calculus, we will assume that

ti = T (U + i), for every i = 0, ..., d

where U is given by (8). Clearly ti ∼ U [T i, T (i+ 1)].
The exists a multidimensional version of the Stein-Malliavin inequality presented in

Theorem 1, see [5], [7]. This bound is given in terms of the Wasserstein distance. Namely, if
F = (F0, ..., Fd) is a random vector with components in D

1,4 and N(0,Λ) denotes the d+1
dimensional Gaussian distribution with covariance matrix Λ = (ci,j)i,j=0,..,d, then

dW (F,N(0,Λ)) ≤ C

d
∑

i=0

E
∣

∣2ci,j − 〈DFi,D(−L)−1Fj〉 − 〈DFj ,D(−L)−1Fi〉
∣

∣ . (43)

Actually, the bound presented in [5] or [7] is slightly different (and uses the L2-norm on the
right-hand side of the inequality (43) )but it is easy to obtain (43) by similar arguments.
Recall that the Wasserstein distance between the laws of two R

d - valued random variables
F,G is defined by

dW (F,G) = sup
h∈A

|Eh(F )−Eh(G)| (44)

where we denote by A the class of all functions h : Rd → R such that ‖h‖Lip ≤ 1, where

‖h‖Lip = supx,y∈Rd,x 6=y
|h(x)−h(y)|

‖x−y‖ , with the Euclidean norm ‖ · ‖ in R
d.

In order to apply (43), we need to calculate

〈DX(i)
T ,D(−L)−1X

(j)
T 〉+ 〈DX(j)

T ,D(−L)−1X
(i)
T 〉

for every i, j = 0, .., d. Using the series expansion of the cosinus function, we have

X
(i)
T =

∑

p≤T

1√
p

∑

k≥0

(−1)k

(2k)!
(T log p)2kG

(i)
2k

with the notation, for i = 0, .., d and for k > 0

G
(i)
2k = (U + i)2k −E(U + i)2k. (45)
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Then

〈DX(i)
T ,D(−L)−1X

(j)
T 〉+ 〈DX(j)

T ,D(−L)−1X
(i)
T 〉 =

∑

p1,p2≤T

1√
p1p2

∑

k,l≥0

(−1)k+l

(2k)!(2l)!

×(T log p1)
2k(T log p2)

2l
[

〈DG(i)
2k ,D(−L)−1G

(j)
2l 〉+ 〈DG(j)

2l ,D(−L)−1G
(i)
2k 〉

]

. (46)

The next step is to calculate 〈DG(i)
2k ,D(−L)−1G

(j)
2l 〉 + DG

(j)
2l ,D(−L)−1G

(i)
2k 〉. This will be

done in the following lemma, based on Lemma 1.

Lemma 3 For every k, l > 0 and i, j = 0, .., d we have

〈DG(i)
2k ,D(−L)−1G

(j)
2l 〉+ 〈DG(j)

2l ,D(−L)−1G
(i)
2k 〉

=
2k

2l + 1
(U + i)2k−1U

[

(j + 1)2l+1 − j2l+1 − (U + j)2l+1

U
+
j2l+1

U

]

+
2l

2k + 1
(U + j)2l−1U

[

(i+ 1)2k+1 − i2k+1 − (U + i)2k+1

U
+
i2k+1

U

]

(47)

where G
(i)
2k is given by (45).

Proof: Using the Newton formula G
(i)
2k =

∑2k
s=0C

s
2kGsi

2k−s and

〈DG(i)
2k ,D(−L)−1G

(j)
2l 〉+DG

(j)
2l ,D(−L)−1G

(i)
2k 〉

=

2k
∑

s=0

2l
∑

t=0

Cs
2kC

t
2li

2k−sj2l−t
[

〈DGs,D(−L)−1Gt〉+ 〈DGt,D(−L)−1Gs〉
]

with Gs from (11). By Lemma 1,

〈DGs,D(−L)−1Gt〉+ 〈DGt,D(−L)−1Gs〉 =
s

t+ 1
U s(1− U t) +

t

s+ 1
U t(1− U s).

Therefore,

〈DG(i)
2k ,D(−L)−1G

(j)
2l 〉+DG

(j)
2l ,D(−L)−1G

(i)
2k 〉

=

2k
∑

s=0

2l
∑

t=0

Cs
2kC

t
2li

2k−sj2l−t s

t+ 1
U s(1− U t) +

t

s+ 1
U t(1− U s)

=

2k
∑

s=0

Cs
2ki

2k−ssU s

2l
∑

t=0

Ct
2lj

2l−t 1− U t

t+ 1
+

2k
∑

s=0

Cs
2ki

2k−s 1− U s

s+ 1

2l
∑

t=0

Ct
2lj

2l−ttU t. (48)

Now we calculate the sums after s and t. Notice that

19



2k
∑

s=0

Cs
2ki

2k−ssU s = 2k(U + i)2k−1U

and
2l
∑

t=0

Ct
2lj

2l−t 1− U t

t+ 1
=

1

2l + 1

[

(j + 1)2l+1 − j2l+1 − (U + j)2l+1

U
+
j2l+1

U

]

.

From the above two identities and (48), we deduce the conclusion (47).

Remark 3 For i = j = 0, we retrieve the result in Lemma 1.

We are now in position to compute the terms involving Malliavin operators that
appear in the right-hand side of (43).

Lemma 4 For i, j = 0, .., d, let X
(i)
T be defined by (42). Then

〈DX(i)
T ,D(−L)−1X

(j)
T 〉+ 〈DX(j)

T ,D(−L)−1X
(i)
T 〉 =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[sin((U + i)T log p1) sin((U + j)T log p2) + sin((U + j)T log p1) sin((U + i)T log p2)] +R
(i,j)
T

with

R
(i,j)
T =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[

− U

i+ 1
sin((U + j)T log p2) sin((i+ 1)T log p1)−

U

j + 1
sin((U + i)T log p2) sin((j + 1)T log p1)

+
U

i
sin((U + j)T log p2) sin(iT log p1)1i 6=0 +

U

j
sin((U + i)T log p2) sin(jT log p1)1j 6=0

− sin((U + j)T log p2) sin(iT log p1)− sin((U + i)T log p2) sin(jT log p1)] .
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Proof: By Lemma 2 and (46),

〈DX(i)
T ,D(−L)−1X

(j)
T 〉+ 〈DX(j)

T ,D(−L)−1X
(i)
T 〉

=
∑

p1,p2≤T

1√
p1p2

∑

k,l≥0

(−1)k+l

(2k)!(2l)!
(T log p1)

2k(T log p2)
2l

(

2k

2l + 1
(U + i)2k−1U

[

(j + 1)2l+1 − j2l+1 − (U + j)2l+1

U
+
j2l+1

U

]

+
2l

2k + 1
(U + j)2l−1U

[

(i+ 1)2k+1 − i2k+1 − (U + i)2k+1

U
+
i2k+1

U

])

=
∑

p1,p2≤T

1√
p1p2

∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k

[

(i+ 1)2k+1 − i2k+1 − (U + i)2k+1

U
+
i2k+1

U

]

×U
∑

l≥1

(−1)l

(2l − 1)!
(U + j)2l−1(T log p2)

2l

+
∑

p1,p2≤T

1√
p1p2

∑

l≥0

(−1)l

(2l + 1)!
(T log p1)

2l

[

(j + 1)2l+1 − i2l+1 − (U + j)2l+1

U
+
j2l+1

U

]

×U
∑

k≥1

(−1)k

(2k − 1)!
(U + i)2k−1(T log p2)

2k. (49)

Next, we calculate the above sums over k and l. We have

∑

l≥1

(−1)l

(2l − 1)!
(U + j)2l−1(T log p2)

2l = −UT log p2 sin((U + j)T log p2) (50)

and

∑

k≥0

(−1)k

(2k + 1)!
(T log p1)

2k

[

(i+ 1)2k+1 − i2k+1 − (U + i)2k+1

U
+
i2k+1

U

]

=
1

T log p1

[

1

i+ 1
sin(T (i+ 1) log p1))

−1

i
sin(T i log p1)−

1

U
sin(T (U + i) log p1) +

1

U
sin(T i log p1)

]

. (51)

By plugging relations (50) and (51) into (49), we get the conclusion.

We measure now the Wasserstein distance between the (renormalized) sequence XT

and the standard d+1 dimensional Gaussian distribution (denoted N(0, Id+1) in the sequel).
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Proposition 3 Let X
(i)
T be given by (42) for i = 0, .., d and let Let

FT =

√

1
1
2 log log T

XT =

√

1
1
2 log log T

(X
(0)
T ,X

(1)
T , ...,X

(d)
T ).

Then, for large T

dW (FT , N(0, Id+1)) ≤ C
1

log log T
. (52)

Proof: Let F
(j)
T , j = 0, .., d be the components of the vector FT . Using the Stein-Malliavin

bound (43), we have

dW (FT , N(0, Id+1)) ≤ C

[

d+1
∑

i=0

E

∣

∣

∣
1− 〈DF (i)

T ,D(−L)−1F
(i)
T 〉

∣

∣

∣

+

d+1
∑

i=0

E

∣

∣

∣〈DF (i)
T ,D(−L)−1F

(j)
T 〉+ 〈DF (j)

T ,D(−L)−1F
(i)
T 〉

∣

∣

∣

]

.

The main contribution will come from the diagonal term. By Lemma 4 (with R(i,j)T as in
the statement of Lemma 4) ,

∣

∣

∣
〈DF (i)

T ,D(−L)−1F
(i)
T 〉 − 1

∣

∣

∣

=
1

1
2 log log T

∑

p≤T

1

p
sin2((U + i)T log p)

+
1

1
2 log log T

E
∑

p1,p2≤T ;p1 6=p2

1√
p1p2

log p2
log p1

sin((U + i)T log p1) sin((U + j)T log p2)

+
1

1
2 log log T

R
(i,i)
T − 1

=

[

1
1
2 log log T

∑

p

1

2p
− 1

]

− 1
1
2 log log T

∑

p

1

2p
cos(2(U + i)T log p)

+
1

1
2 log log T

∑

p1,p2≤T ;p1 6=p2

1√
p1p2

log p2
log p1

sin((U + i)T log p1) sin((U + j)T log p2)

+
1

1
2 log log T

R
(i,i)
T

:=

[

1
1
2 log log T

∑

p

1

2p
− 1

]

+RT

where we included in the rest term RT the summands − 1
1
2
log log T

∑

p
1
2p cos(2(U + i)T log p),

1
1
2
log log T

∑

p1 6=p2
1√
p1p2

log p2
log p1

sin((U + i)T log p1) sin((U + j)T log p2) and
1

1
2
log log T

R
(i,i)
T .
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The first term above is the one which gives the bound (52). Indeed, by (68),

∣

∣

∣

∣

∣

∣

1
1
2 log log T

∑

p≤T

1

2p
− 1

∣

∣

∣

∣

∣

∣

≤ C
1

log log T
.

On the other hand, using only the bounds (34), (35) and (36), we can easily proof that

E|RT | ≤ C
1

log log T
.

(actually, a better estimated is possible but not necessarily for our purpose). Again by (34),
(35) and (36),

E

∣

∣

∣
〈DF (i)

T ,D(−L)−1F
(j)
T 〉+ 〈DF (j)

T ,D(−L)−1F
(i)
T 〉

∣

∣

∣
≤ C

1

log log T

for every i 6= j. The two above estimates lead to (52).

3.1.2 Error bound for the multidimensional Selberg theorem

We regard now the asymptotic behavior of the vector

(

log

∣

∣

∣

∣

ζ(
1

2
+ iPi)

∣

∣

∣

∣

)

i=0,..,d

with the evaluation points Pi = T (U + i), i = 0, .., d. We show that, after normalization,
it also converges to a standard Gaussian vector. Recall that U denote a standard uniform
random variable defined by (8).

We have

Theorem 4 Let

XT =
1

√

1
2 log log T

(

log |ζ(1
2
+ iUT )|, log |ζ(1

2
+ i(U + 1)T )|, . . . , log |ζ(1

2
+ i(U + d)T )|

)

(53)
with U from (8). Then for large T ,

dW (XT , N(0, Id+1) ≤ C
1√

log log T
.

Proof: As in (39), using the triangle inequality for the Wasserstein distance and the fact
that for any R

d- valued random variables F,G we have

dW (F,G) ≤ E|F −G|1 ≤ (E|F −G|2)
1
2
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where |x|1 = |x1|+ ....|xd| and |x|22 = |x1|2 + ...+ |xd|2 if x = (x1, .., xd), we can write

dW (XT , N(0, Id+1) ≤ dW (FT , N(0, Id+1))

+ E|XT − FT |1 +
1

√

1
2 log log T

∑

p≤T

1√
p

∣

∣

∣(E(cos(T log p(U + i))))i=0,..,d

∣

∣

∣

1

and by Proposition 3

dW (FT , N(0, Id+1)) ≤ C
1

log log T

while the inequality (37) in Lemma 2 implies

E|XT − FT |1 ≤ C
1√

log log T
.

Finally, as in the proof of Theorem 2 (using (34) and (68))

1
√

1
2 log log T

∑

p≤T

1√
p

∣

∣

∣
(E(cos(T log p(U + i))))i=0,..,d

∣

∣

∣

1
≤ C

1√
log log T

.

Exactly the same analysis can be done for the imaginary part of log ζ on the critical
line. For T > 0, let us define

YT = (Y
(0)
T , ..., Y

(d)
T )

where, for every i = 0, .., d,

Y
(i)
T =

∑

p≤T

1√
p
[sin(T log p(U + i))−E sin(T log p(U + i))] .

As in the proof of Lemma 4, we can see that for every i, j = 0, .., d,

〈DY (i)
T ,D(−L)−1Y

(j)
T 〉+ 〈DY (j)

T ,D(−L)−1Y
(i)
T 〉 =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[cos((U + i)T log p1) cos((U + j)T log p2) + cos((U + i)T log p2) cos((U + j)T log p1)]

+R
(i,j)
T

with

R
(i,j)
T =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[− cos(T (U + j) log p2) cos(T i log p1)− cos(T (U + i) log p1) cos(Tj log p1)

−U cos(T (U + j) log p2) cos(T (i+ 1) log p1)− U cos(T (U + i) log p1) cos(T (j + 1) log p1)

+U cos(T (U + j) log p2) cos(T i log p1) + U cos(T (U + i) log p2) cos(Tj log p1)] .
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Using the proof of Proposition 3, with

GT :=
1

√

1
2 log log T

YT ,

we can show that

dW (GT , N(0, Id+1)) ≤ C
1

log log T.

We will then obtain a similar result to Theorem 4.

Theorem 5 With U from (8) and ζ from (1), let

YT =
1

√

1
2 log log T

(

arg log ζ(
1

2
+ iUT ), arg log ζ(

1

2
+ i(U + 1)T ), . . . , arg log ζ(

1

2
+ i(U + d)T )

)

.

(54)
Then for large T ,

dW (YT , N(0, Id+1) ≤ C
1√

log log T
.

3.2 Small shifts: Convergence to a Gaussian vector with correlated com-

ponents

The next step is to analyze the asymptotic behavior of the vectorVT (1) when the evaluation

points Pi are close one to each other. That is, we choose Pi = TU + f
(i)
T , i = 0, .., d, with U

a standard uniform random variable defined by (8) and f
(i)
T are small shifts, meaning that

the difference f
(i)
T − f

(j)
T is small enough for i 6= j. This will lead to the appearance of non

trivial correlations between the components of the limit of (41) as T → ∞.
We first look to the asymptotic behavior of the d + 1-dimensional Dirichlet series

that approximates VT . That is, we introduce

ZT =
(

Z
(0)
T , Z

(1)
T , . . . , Z

(d)
T

)

with

Z
(i)
T =

∑

p≤T

cos
(

(TU + f
(i)
T ) log p

)

, i = 0, .., d (55)

We will give the rate of convergence of ZT to the d + 1-dimensional Gaussian law with
suitable covariance matrix. As before, the proof will be based on the inequality (43) and it

means that we need to compute 〈DZ(i)
T ,D(−L)−1Z

(j)
T 〉 for every i, j = 0, .., d. We have
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Lemma 5 For i = 1, , , , d, let f
(i)
T be a deterministic function and let Z

(i)
T be given by (55).

Then

〈DZ(i)
T ,D(−L)−1Z

(j)
T 〉+ 〈DZ(j)

T ,D(−L)−1Z
(i)
T 〉

=
∑

p1,p2≤T

1√
p1p2

log p2
log p1

[

sin
(

log p1(TU + f
(i)
T )

)

sin
(

log p2(TU + f
(j)
T )

)

+ sin
(

log p1(TU + f
(j)
T )

)

sin
(

log p2(TU + f
(i)
T )

)]

+R
(i,j)
T

with

R
(i,j)
T =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[

(U − 1) sin
(

(TU + f
(j)
T ) log p1

)

sin
(

f
(i)
T log p2

)

+ (U − 1) sin
(

(TU + f
(i)
T ) log p1

)

sin
(

f
(j)
T log p2

)

−U sin
(

(TU + f
(j)
T ) log p1

)

sin
(

(T + f
(i)
T ) log p2

)

− U sin
(

(TU + f
(i)
T ) log p1

)

sin
(

(T + f
(j)
T ) log p2

)]

.

Proof: With arguments previously used, we can write

〈DZ(i)
T ,D(−L)−1Z

(j)
T 〉+ 〈DZ(j)

T ,D(−L)−1Z
(i)
T 〉 =

∑

p1,p2

1√
p1p2

∑

k,l≥0

(−1)k+l

(2k)!(2l)!
(log p1)

2k(log p2)
2l

×
[

DH
(i)
2k ,D(−L)−1H

(j)
2l 〉+ 〈DH(j)

2l ,D(−L)−1H
(i)
2k 〉

]

where we used the notation

H
(i)
2k = (TU + f

(i)
T )2k −E(TU + f

(i)
T )2k. (56)

The scalar product above will be computed as in the proof of Lemma 3. We get

〈DH(i)
2k ,D(−L)−1H

(j)
2l 〉+ 〈DH(j)

2l ,D(−L)−1H
(i)
2k 〉

=
2k

2l + 1
U(TU + f

(i)
T )2k−1

[

(T + f
(j)
T )2l+1 − (f

(j)
T )2l+1 − 1

U
(T + f

(j)
T )2l+1 +

1

U
(f

(j)
T )2l+1

]

+
2l

2k + 1
U(TU + f

(j)
T )2l−1

[

(T + f
(i)
T )2k+1 − (f

(i)
T )2k+1 − 1

U
(TU + f

(i)
T )2k+1 +

1

U
(f

(i)
T )2k+1

]

.

When we compute the above sums after k and l, we obtain

∑

l≥1

U
(−1)l

(2l − 1)!
(log p2)

2l(TU + f
(j)
T )2l−1 = −U log p2 sin

(

log p2(TU + f
(j)
T )

)
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∑

k≥0

(−1)k

(2k + 1)!
(log p1)

2k

[

(T + f
(i)
T )2k+1 − (f

(i)
T )2k+1 − 1

U
(TU + f

(i)
T )2k+1 +

1

U
(f

(i)
T )2k+1

]

=
1

log p1

[

sin
(

log p1(T + f
(i)
T )

)

− sin
(

log p1(f
(i)
T )

)

− 1

U
sin

(

log p1(TU + f
(i)
T )

)

+
1

U
sin

(

log p1(f
(i)
T )

)

]

.

The conclusion follows easily.

Before stating the main results of this section, let us recall the following technical
result due to [1], which plays a key role.

Lemma 6 Let (∆T )T be bounded and positive such that log∆T

log log T →T c ∈ [0,∞]. Then
1

log logT

∑

p≤T
cos(log p log∆T )

p
→T c ∧ 1 and

∣

∣

∣

∣

∣

∣

1

log log T

∑

p≤T

cos(log p log ∆T )

p
− c ∧ 1

∣

∣

∣

∣

∣

∣

≤ C
1

log log T
. (57)

The bound (57) is not explicitly stated in [1], but its proof is an easy consequence of the
proof of Lemma 3.4 in [1].

The main result of this paragraph states as follows.

Proposition 4 Assume 0 ≤ f
(0)
T < f

(1)
T < . . . f

(d)
T < C < ∞. For every i, j = 0, .., d with

i 6= j suppose that

log |f (i)T − f
(j)
T |

log log T
→ ai,j ∈ [0,∞]. (58)

Define

AT :=
1

√

1
2 log log T

ZT

where ZT is the vector with components (55). Then AT converges in distribution, as T →
∞, to a centered Gaussian vector with covariance matrix Λ = (ci,j)i,j=0,..,d with ci,j = ai,j∧1.
Moreover, for T large

dW (AT , N(0,Λ)) ≤ C
1

log log T
.

Proof: From (43)

dW (AT , N(0,Λ))

≤ C

d
∑

i=0

E

∣

∣

∣

∣

∣

1− 1
1
2 log log T

∑

p

1

p
sin2

(

log p(TU + f
(i)
T )

)

∣

∣

∣

∣

∣

+C
∑

i 6=j

E

∣

∣

∣

∣

∣

ci,j −
1

1
2 log log T

∑

p

1

p
sin

(

log p(TU + f
(i)
T )

)

sin
(

log p(TU + f
(j)
T )

)

∣

∣

∣

∣

∣

+rT
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with

rT =
1

log log T

∑

i,j

E|R(i,j)
T |

+
1

log log T

d
∑

i=0

∑

p1 6=p2

1√
p1p2

log p1
log p2

∣

∣

∣E sin
(

log p1(TU + f
(i)
T )

)

sin
(

log p2(TU + f
(i)
T )

)∣

∣

∣

+
1

log log T

d
∑

i,j=0;i 6=j

∑

p1 6=p2

1√
p1p2

log p1
log p2

∣

∣

∣
E sin

(

log p1(TU + f
(i)
T )

)

sin
(

log p2(TU + f
(j)
T )

)∣

∣

∣
.

Hence, with the trigonometric indentity sin2(x) = 1−cos(2x)
2

dW (AT , N(0,Λ)) ≤ C

∣

∣

∣

∣

∣

∣

1− 1

log log T

∑

p≤T

1

p

∣

∣

∣

∣

∣

∣

+C
d

∑

i,j=0;i 6=j

∣

∣

∣

∣

∣

∣

ci,j −
1

log log T

∑

p≤T

1

p
cos

(

log p(f
(i)
T − f

(j)
T )

)

∣

∣

∣

∣

∣

∣

+rT,2 + rT (59)

with

rT,2 = C
1

log log T

d
∑

i=0

∑

p≤T

1

p

∣

∣

∣E cos
(

2 log p(TU + f
(i)
T )

)∣

∣

∣

+C
1

log log T

d
∑

i,j=0;i 6=j

∑

p≤T

1

p

∣

∣

∣
E cos

(

log p(2TU + f
(i)
T + f

(j)
T )

)∣

∣

∣
.

By (68),
∣

∣

∣

∣

∣

∣

1− 1

log log T

∑

p≤T

1

p

∣

∣

∣

∣

∣

∣

≤ C
1

log log T
. (60)

Using

|E cos(C log p(TU + aT ))| ≤ C
1

T log p
, |E sin(C log p(TU + aT ))| ≤ C

1

T log p

|EU sin(C log p(TU + aT ))| ≤ C
1

T log p

we immediately get

E|rT | ≤ C
1

log log T
and E|r2,T | ≤ C

1

log log T
. (61)
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By applying Lemma 6 to ∆T = f
(j)
T − f

(i)
T we get

1

log log T

d
∑

i,j=0;i 6=j

∣

∣

∣

∣

∣

∣

ci,j −
∑

p≤T

1

p
cos

(

log p(f
(i)
T − f

(j)
T )

)

∣

∣

∣

∣

∣

∣

≤ C
1

log log T
. (62)

By inserting (60), (61) and (62) into (59), we obtain the desired conclusion.

Concerning the imaginary part of the vector VT (41), we let

BT =
1

√

1
2 log log T

(

W
(0)
T , . . . ,W

(d)
T

)

with
W

(i)
T =

∑

p

[

sin
(

log p(TU + f
(i)
T )

)

−E sin
(

log p(TU + f
(i)
T )

)

]

Then we will get for every i, j = 0, .., d

〈DW (i)
T ,D(−L)−1W

(j)
T 〉

=
∑

p1,p2≤T

1√
p1p2

log p2
log p1

[

cos
(

log p2(TU + f
(j)
T )

)

cos
(

log p1(TU + f
(i)
T )

)

+ cos
(

log p2(TU + f
(i)
T )

)

cos
(

log p1(TU + f
(j)
T )

)]

+R
(i,j)
T

where

R
(i,j)
T =

∑

p1,p2≤T

1√
p1p2

log p2
log p1

[

−U cos
(

log p2(TU + f
(j)
T )

)

cos
(

log p1(T + f
(i)
T )

)

− U cos
(

log p2(TU + f
(i)
T )

)

cos
(

log p1(T + f
(j)
T )

)

+U cos
(

log p2(TU + f
(j)
T )

)

cos
(

log p1f
(i)
T

)

+ U cos
(

log p2(TU + f
(i)
T )

)

cos
(

log p1f
(j)
T

)]

.

This will lead to the following result:

Proposition 5 Let the assumptions in Proposition 4 prevail and let BT be as above. Then

dW (BT , N(0,Λ)) ≤ C
1

log log T
.

Theorem 6 Let the assumption in Proposition 4 prevail. Define

AT =
1

√

1
2 log log T

(

log

∣

∣

∣

∣

ζ

(

1

2
+ i(TU + f

(i)
T )

)∣

∣

∣

∣

)

i=0,..,d
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and

BT =
1

√

1
2 log log T

(

arg log ζ

(

1

2
+ i(TU + f

(i)
T )

))

i=0,..,d

.

Then

dW (AT ;N(0,Λ)) ≤ C
1√

log log T
and dW (BT ;N(0,Λ)) ≤ C

1√
log log T

.

Proof: The conclusion follows from Propositions 4 and 5 and from the fact that the

conclusion of Lemma 2 is true if we replace T (U + i) by TU + f
(i)
T (see Section 3.1 in [1]).

4 Fluctuations of the zeta zeros on the critical line

An application of the multidimensional Selberg theorem is to counting zeros of the Riemann
zeta functions. Denote by N(t) the number of non-trivial zeros of ζ(s) on the critical line
Re s = 1

2 with the imaginary part contained in the interval [0, t]. Then there is known (see
e.g. [15]) that

N(t) =
t

2π
log

t

2πe
+

1

π
arg log ζ

(

1

2
+ it

)

+O(
1

t
). (63)

If t1 < t2, let

∆(t1, t2) = (N(t2)−N(t1)−
(

t2

2π
log

t

2πe
− t1

2π
log

t1

2πe

)

. (64)

The quantity ∆(t1, t2) is usually interpreted as the fluctuation of the number of zeta zeros
on the critical line between the heights Im s = t1 and Im s = t2 minus its expected value.

From the results in the previous section, we can deduce the asymptotic behavior of
the fluctuations of zeta zeros between random points.

Proposition 6 Let ∆ be given by (64) and U by (8). Then for every 0 < i1 < i2

1

π
√
log log T

∆(UT + i1T,UT + i2T ) →(d)
T→∞ N(0, 1)

and

dW

(

1

π
√
log log T

∆(UT + i1T,UT + i2T ) , N(0, 1)

)

≤ C
1√

log log T
.

Proof: We proved in Theorem 6 that the random vector





1
√

1
2 log log T

(arg log ζ

(

1

2
+ iT (U + i)

)





i=0,...,d
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converges in distribution to N(0, Id+1) with speed less than C 1√
log log T

. This implies the

conclusion.

In particular, by choosing i1 = 0 and i2 = 1, we will have

dW

(

1

π
√
log log T

∆(UT,UT + T ), N(0, 1)

)

≤ C
1√

log log T
. (65)

We also have seen that in Theorem 6 that, if f
(i)
T are as in the statement of Propo-

sition 4, then the random vector





1
√

1
2 log log T

(arg log ζ

(

1

2
+ i(UT + f

(i)
T

)





i=0,...,d

converges in distribution to N(0,Λ) (the matrix Λ has been introduced in Proposition 4)
at rate C 1√

log log T
. Consequently, we have the following result.

Proposition 7 For 0 < i1 < i2 (so f
(i1)
T < f

(i2)
T ) with f

(i)
T , i = 0, .., d satisfying the

assumptions in Proposition 4,

1

π
√
log log T

∆
(

UT + f
(i1)
T , UT + f

(i2)
T

)

→ N(0, 1 − ci1,i2).

and

dW

(

1

π
√
log log T

∆
(

UT + f
(i1)
T , UT + f

(i2)
T

)

, N(0, 1 − ci1,i2)

)

≤ C
1√

log log T
.

If we choose d = 1, f
(0)
T = 0 and f

(1)
T = 1

(log T )δ
with 0 < δ < 1, then

log |f (1)T − f
(0)
T |

− log log T
→T c1,0 := δ

so

∆
(

(UT,UT + 1
(log T )δ

)
)

π
√
log log T

→
√
1− δN

and

dW





∆
(

(UT,UT + 1
(log T )δ

)
)

π
√
log log T

;
√
1− δN



 ≤ C
1√

log log T
. (66)

Relations (65) and (66) can be interpreted as follows. The number of zeta zeros on the
critical line between the heights UT is UT + T is ” close” to

√
log log T . With the same
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approximation error, the number of zeta zeros between the horizontal lines UT and UT +
1

(log T )δ
is approximately

√
1− δ

√
log log T with δ ∈ (0, 1).

A last consequence concerns the so-called mesoscopic flutuations of the zeta zeros.

Corollary 1 If KT is a deterministic sequence such that KT > ε > 0 for every T > 0 and

logKT

log log T
→T∈∞ δ ∈ [0, 1)

then the process




∆(UT + α
KT

),∆(UT + β
KT

)

1
π

√

1
2(1− δ) log log T

, 0 ≤ α < β <∞





converges in the sense of finite dimensional distributions to the centered Gaussian process
(G(α, β), 0 ≤ α < β <∞) with covariance

EG(α, β)G(α′, β′) = 1((α=α′) and (β=β′))+
1

2
1((α=α′) and (β 6=β′))+

1

2
1((α6=α′) and (β=β′))−

1

2
1(β=α′).

The Wassestein distance associated to this convergence is of order less than C 1√
log log T

.

This is interpreted in [1] or [2] as a mesoscopic repulsion of zeros. (Recall that
mesoscopic means at a scale between microscopic and macroscopic.) The result shows that
the zeta zeros do not affect too much the behavior of ζ on the critical line.

5 Appendix

5.1 Elements of number theory

Let π(x) be the prime-counting function that gives the number of primes less than or equal
to x, for any real number x. The prime number theorem then states that π(x) behaves,
when x is large, as x

log x . As a consequence of this result, certain partial sums of primes can
be estimated. We list below some estimates that are needed in our work.

For every s with Re s < 1 we have

∑

p≤x

p−s ∼ x1−s

(1− s) log s
(67)

while if s = 1, the sum of the reciprocals of primes diverges as

∑

p≤x

1

p
= log log x+ C +O

(

1

log x

)

. (68)

We will also use (see e.g. [16])
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∑

p≤x

log p

p
∼ log x (69)

and

∑

p≤x

log p ∼ x. (70)

5.2 Basics of the Malliavin calculus

We present the elements from the Malliavin calculus that we need in the paper. Consider
H a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a
probability space (Ω,A, P ), which is a centered Gaussian family of random variables such
that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H.

We denote by D the Malliavin derivative operator that acts on smooth functions
of the form F = g(B(ϕ1), . . . , B(ϕn)) (g is a smooth function with compact support and
ϕi ∈ H, i = 1, ..., n)

DF =

n
∑

i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

It can be checked that the operator D is closable from S (the space of smooth functionals
as above) into L2(Ω;H) and it can be extended to the space D

1,p which is the closure of S
with respect to the norm

‖F‖p1,p = EF p +E‖DF‖pH.
By L we will denote the infinitesimal genetaror of the ornstein-Uhlenbeck semigroup and by
L−1 its pseudo-inverse. The reader may consult the monographs [9] or [5] for the definition
and the properties of this operators. What is need in this paper concerning L and L−1 is
only the formula (15).
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