
HAL Id: hal-01253130
https://hal.science/hal-01253130v1

Submitted on 8 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gevrey Smoothing for Weak Solutions of the Fully
Nonlinear Homogeneous Boltzmann and Kac Equations

Without Cutoff for Maxwellian Molecules
Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter

To cite this version:
Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Gevrey Smoothing for
Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff
for Maxwellian Molecules. Archive for Rational Mechanics and Analysis, 2017, 225 (2), pp. 601-661.
�10.1007/s00205-017-1101-8�. �hal-01253130�

https://hal.science/hal-01253130v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
9.

01
44

4v
2 

 [m
at

h.
A

P
]  

22
 S

ep
 2

01
5

GEVREY SMOOTHING FOR WEAK SOLUTIONS OF THE FULLY NONLINEAR
HOMOGENEOUS BOLTZMANN AND KAC EQUATIONS WITHOUT CUTOFF FOR

MAXWELLIAN MOLECULES

JEAN-MARIE BARBAROUX, DIRK HUNDERTMARK, TOBIAS RIED, AND SEMJON VUGALTER

Abstract. It has long been suspected that the non-cutoff Boltzmann operator has similar coerciv-
ity properties as a fractional Laplacian. This has led to thehope that the homogenous Boltzmann
equation enjoys similar regularity properties as the heat equation with a fractional Laplacian. In par-
ticular, the weak solution of the fully nonlinear non-cutoff homogenous Boltzmann equation with
initial datum inL1

2(R
d) ∩ L log L(Rd), i.e., finite mass, energy and entropy, should immediatelybe-

come Gevrey regular for strictly positive times. We prove this conjecture for Maxwellian molecules.
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1. Introduction

It has long been suspected that the non-cutoff Boltzmann operator with a singular cross section
kernel has similar coercivity properties as a fractional Laplacian (−∆)ν, for suitable 0< ν < 1.
This has been made precise by Alexandre, Desvillettes, Villani, and Wennberg [3], see also the
reviews by Alexandre [2] and by Villani [40] for its history, and has led to the hope that the fully
nonlinear homogenous Boltzmann equation enjoys similar regularity properties as the heat equation
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with a fractional Laplacian given by
{
∂tu+ (−∆)νu = 0

u|t=0 = u0 ∈ L1(Rd).

Using the Fourier transform one immediately sees that

û(t, ξ) = e−t(2π|ξ|)2ν
û0(ξ) with û0 ∈ L∞(Rd),

so

sup
t>0

sup
ξ∈Rd

et|ξ|2ν |̂u(t, ξ)| ≤ ‖u0‖L1(Rd) < ∞,

that is, the Fourier transform of the solution is extremely fast decaying for strictly positive times.
Introducing the Gevrey spaces as in Definition1.5, it is natural to expect, see, for example,

Desvillettes and Wennberg [16]:

Conjecture (Gevrey smoothing). Any weak solution of the non-cutoff homogenous Boltzmann equa-
tion with a singular cross section kernel of orderν and with initial datum in L12(Rd) ∩ L logL(Rd),

i.e., finite mass, energy and entropy, belongs to the Gevrey class G
1
2ν (Rd) for strictly positive times.

The central results of our work is a proof of this conjecture for Maxwellian molecules. In partic-
ular, we prove

Theorem. Assume that the non-cutoff Boltzman cross section has a singularity1+2νwith 0 < ν < 1
and obeys some further technical conditions, which are truein all physically relevant cases, for
details see(3) and (16). Then, for initial conditions f0 ∈ L logL ∩ L1

m with an integer

m≥ max

(
2,

2ν − 1
2(2− 2ν)

)

any weak solution of the fully non-linear homogenous Boltzmann equation for Maxwellian mo-
lecules belongs to the Gevrey class G

1
2ν for strictly positive times.

In particular, for ν ≤ log(9/5)/ log(2) ≃ 0, 847996we have m= 2 and the theorem does not
require anything except the physically reasonable assumptions of finite mass, energy, and entropy.
If log(9/5)/ log(2) < ν < 1 and we assume only that f0 ∈ L log L ∩ L1

2, then we prove that the

solution is in G
log 2

2 log(9/5) , in particular, it is ultra-analytic.

(1) For a more precise formulation of our results, see Theorems 1.6, 1.8, and1.9 for the case
m= 2 and Theorems3.1, 3.2, and3.3below.

(2) We would like to stress that our results cover both the weak and strong singularity regimes,
where 0< ν < 1/2, respectively 1/2 ≤ ν < 1.

(3) The theorem above applies to all dimensionsd ≥ 1. The physical case for Maxwellian
molecules in dimensiond = 3 is ν = 1/4.

The main problem for establishing Gevrey regularity is that, in order to use the coercivity results
of Alexandre, Desvillettes, Villani and Wennberg [3], one has to bound a non-linear and non-
local commutator of the Boltzmann kernel with certain sub-Gaussian Fourier multipliers. The main
ingredient in our proof is a new way of estimating this non-local and nonlinear commutator.

1.1. The non-cutoff Boltzmann and Kac models. We study the regularity of weak solutions of
the Cauchy problem


∂t f = Q( f , f )

f |t=0 = f0
(1)

for the fully nonlinear homogeneous Boltzmann and Kac equation in d ≥ 1 dimensions [10, 21].
Ford ≥ 2 the bilinear operatorQ is given by

Q(g, f ) =
∫

Rd

∫

Sd−1
b(cosθ)

(
g(v′∗) f (v′) − g(v∗) f (v)

)
dσdv∗, (2)
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that is, the Boltzmann collision operator for Maxwellian molecules with angular collision kernel
b depending only on the deviation angle cosθ = σ · v−v∗

|v−v∗ | for σ ∈ Sd−1. Here we use theσ-
representation of the collision process, in which

v′ =
v+ v∗

2
+
|v− v∗|

2
σ, v′∗ =

v+ v∗
2
− |v− v∗|

2
σ, for σ ∈ Sd−1.

By symmetry properties of the Boltzmann collision operatorQ( f , f ), the functionb can be as-
sumed to be supported on anglesθ ∈ [0, π2], for otherwise, see [40], it can be replaced by

b̃(cosθ) = (b(cosθ) + b(cos(π − θ))1{0≤θ≤ π2 }.

We will assume that the angular collision kernelb has the non-integrable singularity

sind−2 θ b(cosθ) ∼ κ

θ1+2ν
, asθ→ 0+ (3)

for someκ > 0 and 0< ν < 1, and satisfies
∫ π/2

0
sind θ b(cosθ) dθ < ∞. (4)

For inverses-power forces (in three spatial dimensions), described by the potentialU(r) = r1−s,
s> 2, the collision kernel is of the more general form

B(|v− v∗|, cosθ) = b(cosθ)|v− v∗|γ, γ =
s− 5
s− 1

,

where the angular collision kernelb is locally smooth with a non-integrable singularity

sinθ b(cosθ) ∼ Kθ−1−2ν, ν =
1

s− 1
.

The case of(physical) Maxwellian moleculescorresponds to the valuesγ = 0, s= 5, ν = 1
4.

Ford = 1 we set

Q(g, f ) = K(g, f ) =
∫

R

∫ π
2

−π2
b1(θ)

(
f (w′∗)g(w′) − f (w∗)g(w)

)
dθdw∗, (5)

which is the Kac operator for Maxwellian molecules, and angular collision kernelb1 ≥ 0. The pre-
and post-collisional velocities are related by

(
w′

w′∗

)
=

(
cosθ − sinθ
sinθ cosθ

) (
w
w∗

)
, for θ ∈ [−π2,

π
2].

In the original Kac modelb1 was chosen to be constant, whereas we will assume, as in [14], that
b1 is an even function and has the non-integrable singularity

b1(θ) ∼ κ

|θ|1+2ν
, for θ → 0, (6)

with 0 < ν < 1 and someκ > 0, and further satisfies
∫ π

2

−π2
b1(θ) sin2 θ dθ < ∞. (7)

Making use of symmetry properties of the collision operatorK( f , f ), we can assumeb1 to be
supported on anglesθ ∈ [−π4 ,

π
4], for otherwise it can be replaced by its symmetrised version

b̃1(θ) =
(
b1(θ) + b1(π2 − θ)

)
1{0≤θ≤ π4 } +

(
b1(θ) + b1(−π2 − θ)

)
1{− π4≤θ≤0}.

This simple observation will be very convenient for our analysis.
We will mainly work with the weightedLp spaces, defined as

Lp
α(Rd) :=

{
f ∈ Lp(Rd) : 〈·〉α f ∈ Lp(Rd)

}
,
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p ≥ 1,α ∈ R, with norm

‖ f ‖Lp
α(Rd) =

(∫

Rd
| f (v)|p〈v〉αp dv

)1/p

, 〈v〉 := (1+ |v|2)1/2.

We will also use the weighted (L2 based) Sobolev spaces

Hk
ℓ (R

d) =
{
f ∈ S′(Rd) : 〈·〉ℓ f ∈ Hk(Rd)

}
, k, ℓ ∈ R,

whereHk(Rd) are the usual Sobolev spaces given byHk(Rd) =
{
f ∈ S′(Rd) : 〈·〉k f̂ ∈ L2(Rd)

}
, for

k ∈ R. The inner product onL2(Rd) is given by〈 f , g〉 =
∫
Rd f (v)g(v) dv.

It will be assumed that the initial datumf0 . 0 is a non-negative density with finite mass, energy
and entropy, which is equivalent to

f0 ≥ 0, f0 ∈ L1
2(Rd) ∩ L log L(Rd), (8)

where

L log L(Rd) =

{
f : Rd → Rmeasurable :‖ f ‖L log L =

∫

Rd
| f (v)| log (1+ | f (v)|) dv < ∞

}
,

and the negative of the entropy is given byH( f ) :=
∫
Rd f log f dv.

The spaceL1
2(Rd) ∩ L log L(Rd) is very natural, since

Lemma 1.1. Let f ≥ 0. Then

f ∈ L1
2(Rd) ∩ L log L(Rd) ⇔ f ∈ L1

2(Rd) and H( f ) is finite.

We suspect that this lemma is well-known, at least to the experts, but we could not find a reference
in the literature. For the reader’s convenience we will givethe proof in appendixD. Following is
the precise definition of weak solutions which we use.

Definition 1.2 (Weak Solutions of the Cauchy Problem (1) [8, 39, 11]). Assume that the initial
datum f0 is in L1

2(Rd) ∩ L logL(Rd). f : R+ × Rd → R is called a weak solution to the Cauchy
problem (1), if it satisfies the following conditions1:

(i) f ≥ 0, f ∈ C(R+; D′(Rd)) ∩ L∞(R+; L1
2(Rd) ∩ L log L(Rd))

(ii) f (0, ·) = f0
(iii) For all t ≥ 0, mass is conserved,

∫
Rd f (t, v) dv =

∫
Rd f0(v) dv, kinetic energy is decreasing,∫

Rd f (t, v) v2 dv ≤
∫
Rd f0(v) v2 dv, and the entropy is increasing,H( f (t, ·)) ≤ H( f0).

(iv) For all ϕ ∈ C1(R+; C∞0 (Rd)) one has

〈 f (t, ·), ϕ(t, v)〉 − 〈 f0, ϕ(0, ·)〉 −
∫ t

0
〈 f (τ, ·)∂τϕ(τ, ·)〉dτ

=

∫ t

0
〈Q( f , f )(τ, ·), ϕ(τ, ·)〉dτ, for all t ≥ 0,

(9)

where the latter expression involvingQ is defined by

〈Q( f , f ), ϕ〉

=
1
2

∫

R2d

∫

Sd−1
b

(
v− v∗
|v− v∗|

· σ
)

f (v∗) f (v)
(
ϕ(v′) + ϕ(v′∗) − ϕ(v) − ϕ(v∗)

)
dσdvdv∗,

for test functionsϕ ∈W2,∞(Rd) in dimensiond ≥ 2, and in one dimension

〈Q( f , f ), ϕ〉 = 〈K( f , f ), ϕ〉 =
∫

R2

∫ π
4

−π4
b1(θ) g(w∗)g(w)

(
φ(w′) − φ(w)

)
dθdwdw∗

1Throughout the text, whenever not explicitly mentioned, wewill drop the dependence ont of a function, i.e.f (v) :=
f (t, v) etc
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for test functionsϕ ∈ W2,∞(R), making use of symmetry properties of the Boltzmann and
Kac collision operators and cancellation effects.

Collecting results from the literature, the following is known regarding the existence, uniqueness
and further properties of weak solutions.

Theorem 1.3(Arkeryd, Desvillettes, Mischler, Goudon, Villani, Wennberg). There exists a weak
solution of the Cauchy problem(1) in the sense of Definition1.2. For d ≥ 2 momentum and energy
are conserved,∫

Rd
f (t, v) vdv =

∫

Rd
f0(v) vdv,

∫

Rd
f (t, v) v2 dv =

∫

Rd
f0(v) v2 dv. (10)

In the one dimensional case (Kac equation), momentum is not conserved and energy can only
decrease and is conserved under the additional moment assumption f0 ∈ L1

2p for some p≥ 2.

Remark 1.4. d ≥ 2: The existence of weak solutions of the Cauchy problem (1) with initial
conditions satisfying (8) for the homogeneous Boltzmann equation was first proved by Arkeryd

[7, 8] (see also the articles by Goudon [20], V illani [39], and Desvillettes [13, 14]). Uniqueness
in this case was shown by Toscani and Villani [36], see also the review articles by Mischler and
Wennberg [28] (for the cut-off case) and Desvillettes [13].

d = 1: For the homogeneous non-cutoff Kac equation for Maxwellian molecules existence of
weak solutions was established by Desvillettes [11].

1.2. Higher regularity of weak solutions. It has been pointed out by several authors [2, 16, 40]
that, for singular cross-sections, the Boltzmann operatoressentially behaves like a singular integral
operator with a leading term similar to a fractional Laplaceoperator (−∆)ν. In terms of compactness
properties this has been noticed for the linearised Boltzmann kernel as early as in [33] and for the
nonlinear Boltzmann kernel in [27]. Since the solutions of the heat equation with a fractional
Laplacian gain a high amount of regularity for arbitrary positive times, it is natural to believe, as
conjectured in [16], that weak solutions to the non-cutoff Boltzmann equation gain a certain amount
of smoothness, and even analyticity, for anyt > 0. This is in sharp contrast to the fact that in the
Grad’s cutoff case there cannot be any smoothing effect. Instead, regularity and singularities of the
initial datum get propagated in this case, see, for example,[32].

The discussion about solution of the heat equation with a fractional Laplacian motivates the fol-
lowing definition of Gevrey spaces, which give a convenient framework to describe this smoothing
by interpolating between smooth and (ultra-)analytic functions.

Definition 1.5. Let s> 0. A function f belongs to the Gevrey classGs(Rd), if there exists anǫ0 > 0
such that

eǫ0〈Dv〉1/s f ∈ L2(Rd) , where 〈Dv〉 =
(
1+ |Dv|2

)1/2
.

and we use the notationDv = − i
2π∇v. Thus,G1(Rd) is the space of real analytic functions, and

Gs(Rd) for s∈ (0, 1) the space of ultra-analytic functions.
Equivalently2, f ∈ Gs(Rd) if f ∈ C∞(Rd) and there exists a constantC > 0 such that for all

k ∈ N0 one has

‖Dk f ‖L2(Rd) ≤ Ck+1(k!)s,

where‖Dk f ‖2
L2 = sup|β|=k ‖∂β f ‖2

L2.

The first regularisation results in this direction were due to Desvillettes for the spatially homo-
geneous non-cutoff Kac equation [11] and the homogeneous non-cutoff Boltzmann equation for
Maxwellian molecules in two dimensions [12], whereC∞ regularisation is proved. Later, Desvil-
lettes and Wennberg [16] proved, under rather general assumptions on the collisioncross-section
(excluding Maxwellian molecules, though), regularity in Schwartz space of weak solutions to the

2see, for example, Theorem 4 in [25].
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non-cutoff homogeneous Boltzmann equation. By quite different methods, using Littlewood-Paley
decompositions, Alexandre and El Safadi [4] showed that the assumptions on the cross-section (3)-
(4) imply that the solutions are inH∞ for any positive timet > 0. By moment propagation results
for Maxwellian molecules (see Truesdell [37]) this cannot be improved to regularity in Schwartz
space.

For collision cross-sections corresponding to Debye-Yukawa-type interaction potentials,

sinθ b(cosθ) ∼ Kθ−1(logθ−1)ℓ for θ → 0 (with someK > 0, ℓ > 0),

Morimoto, Ukai, Xu and Yang [30] proved the sameH∞ regularising effect using suitable test
functions in the weak formulation of the problem.

The question of the local existence of solutions in Gevrey spaces for Gevrey regular initial data
with additional strong decay at infinity was first addressed in 1984 by Ukai [38], both in the spatially
homogeneous and inhomogeneous setting.

We are interested in the Gevreysmoothing effect, namely that under the (physical) assumptions
of finite mass, energy and entropy of the initial data, weak solutions of the homogeneous Boltzmann
equation without cutoff are Gevrey functions for any strictly positive time. This question was treated
in the case of thelinearisedBoltzmann equation in the homogeneous setting by Morimoto et al.
[30], where they proved that, given 0< ν < 1, weak solutions of the linearized Boltzmann equation
belong to the spaceG

1
ν (R3) for any positive times. Still in a linearised setting, Lerner, Morimoto,

Pravda-Starov and Xu [24] proved a Gelfand-Shilov smoothing effect, which includes Gevrey reg-
ularity, on radially symmetric solutions of the homogeneous non-cutoff Boltzmann equation for
Maxwellian molecules. For the non-Maxwellian Boltzmann operator, Gevrey regularity was proved
under very strong unphysical decay assumptions on the initial datum in [26].

For radially symmetric solutions, the homogeneous non-cutoff Boltzmann equation for Max-
wellian molecules is related to the homogeneous non-cutoff Kac equation. The non-cutoff Kac
equation was introduced by Desvillettes in [11], where first regularity results were established, see
also Desvillettes’ review [14]. For this equation, the best available results so far are due to Lekrine
and Xu [23] and Glangetas and Najeme [19]: Lekrine and Xu [23] proved Gevrey regularisation
of order 1

2α for mild singularities 0< ν < 1
2 and all 0< α < ν. Strong singularities12 ≤ ν < 1

were treated by Glangetas and Najeme [19], where they prove that forν = 1
2 the solution becomes

Gevrey regular of order12α for any 0< α < 1
2 and Gevrey regular of order 1, that is, analytic, when

1
2 < ν < 1. Thus, in the critical caseν = 1

2, the result of [19] misses analyticity of weak solutions
and they do not prove ultra-analyticity in the range 0< ν < 1. Moreover, both results are obtained
under theadditionalmoment assumptionf0 ∈ L1

2+2ν(R).
Ultra-analyticity results have previously been obtained by Morimoto and Xu [31] for the ho-

mogeneous Landau equation in the Maxwellian molecules caseand related simplified models in
kinetic theory. The analysis of smoothing properties of Landau equation is quite different from the
Boltzmann and Kac equations. The Landau equation explicitly contains a second order elliptic term,
which yields coercivity, and, more importantly, certain commutators with weights in Fourier space
are identically zero, which simplifies the analysis tremendously, see Proposition 2.2 in [31].

For the nonlinear non-cutoff homogeneous Boltzmann equation some partial results regarding
Gevrey regularisation were obtained by Morimoto and Ukai [29] including the non-Maxwellian
molecules case, but under the strong additional assumptions of Maxwellian decay and smoothness
of the solution. Still with these strong decay assumptions,Yin and Zhang [42, 41] extended this
result to a larger class of kinetic cross-sections.

We stress that for the main result of our paper the initial datum is only assumed to obey the
natural assumptions coming from physics, i.e., finiteness of mass, energy and entropy.

Givenβ > 0 andα ∈ (0, 1) we define the Gevrey multiplierG : R+ × Rd → R by

G(t, η) := eβt〈η〉2α
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and forΛ > 0 the cut-off Gevrey multiplierGΛ : R+ × Rd → R by

GΛ(t, η) := G(t, η)1Λ(|η|),
where1Λ is the characteristic function of the interval [0,Λ]. The associated Fourier multiplication
operator is denoted byGΛ(t,Dv),

(GΛ(t,Dv) f )(t, v) :=
∫

Rd
GΛ(t, η) f̂ (t, η) e2πiη·v dη = F

−1
[
GΛ(t, ·) f̂ (t, ·)

]
.

We use the following convention regarding the Fourier transform of a function f in this article,

(Ff )(η) = f̂ (η) =
∫

Rd
f (v) e−2πiv·η dv.

The Fourier transform of the Boltzmann operator for Maxwellian molecules has the form (Bobylev
identity, [9])

Q̂(g, f )(η) =
∫

Sd−1
b

(
η

|η|
· σ

) [
ĝ(η−) f̂ (η+) − ĝ(0) f̂ (η)

]
dσ, η± =

η ± |η|σ
2

, (11)

for d ≥ 2. There is a similar Bobylev identity for the Kac operator [11],

K̂(g, f )(η) =
∫ π

4

− π4
b1(θ)

[
ĝ(η−) f̂ (η+) − ĝ(0) f̂ (η)

]
dθ, η+ = η cosθ, η− = η sinθ. (12)

A simple, but in a sense important, consequence of Bobylev’sidentity is that, for alld ≥ 1,

PΛQ(g, f ) = PΛQ(PΛg,PΛ f ) (13)

where, for convenience, we putPΛ := 1Λ(Dv) for the orthogonal projection onto Fourier ’modes’
|η| ≤ Λ.

Note also that, sinceGΛ(t, ·) has compact support inRd
η for any t > 0, one has

GΛ f ,G2
Λ f ∈ L∞([0,T0]; H∞(Rd))

for any finiteT0 > 0 andΛ > 0, if f ∈ L∞([0,T0]; L1(Rd)). This holds, since

‖GΛ f ‖2
Hs(Rd

v)
≤ ‖ f̂ ‖2

L∞(Rd
η)
‖〈·〉sGΛ(t, ·)‖2

L2(Rd
η)
≤ ‖ f ‖2

L1(Rd
v)
‖〈·〉sGΛ(T0, ·)‖2L2(Rd

η)
, for all s≥ 0.

These functions, due to the cut-off in Fourier space, are even analytic in a strip containingRd
v.

Theorem 1.6(Gevrey smoothing I). Assume that the cross-section b satisfies thesingularity con-
dition (3) and theintegrability condition (4) for d ≥ 2, and for d= 1, b1 satisfies thesingularity
condition (6) and theintegrability condition (7) for some0 < ν < 1. Let f be a weak solution of the
Cauchy problem(1) with initial datum satisfying conditions(8). Then, for all0 < α ≤ min

{
α2,d, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (14)

for all t > 0, whereα2,d =
log[(8+d)/(4+d)]

log 2 .

Remarks 1.7. (i) In numbers,α2,1 ≃ 0.847997,α2,2 ≃ 0.736966, andα2,3 ≃ 0.652077. This
means, that underonly physically reasonable assumptions of finite mass, energy, and en-
tropy, weak solutions are analytic forν ≥ 1

2 and even ultra-analytic ifν > 1
2. It is easy to

see thatα2,d is decreasing ind and ford = 6,α2,6 ≃ 0.485427, hence, ford ≥ 6, analyticity
(respectively ultra-analyticity) does not follow from this theorem.

(ii) For the proof of Theorem1.6 (and also1.8 and1.9 below) it is important that the energy
of f is bounded, which enters in the technical Lemma2.14 and its Corollary2.15. A
considerably simpler proof could be given using only thatf ∈ L1

1(Rd). In this case,α2,d is

replaced byα1,d =
log[(4+d)/(2+d)]

log 2 (see also Remark1.10below). However,α1,3 < 0.4855
in three dimensions, thus we would not be able to conclude (ultra-)analytic smoothing of
weak solutions for strong singularities1

2 ≤ ν < 1.



8 JEAN-MARIE BARBAROUX, DIRK HUNDERTMARK, TOBIAS RIED, ANDSEMJON VUGALTER

(iii) As our theorem above shows, weak solutions of the homogenous Kac equation become
Gevrey regular for strictly positive times for moderately singular collision kernels with
singularityν ∈ (0, 1

2), see (6) for the precise description of the singularity, forν = 1
2 they

become analytic, which improves the result of Glangetas and Najeme [19] in this critical
case, and even ultra-anaytic forν ∈ (1

2 , 1).
(iv) Rotationally symmetric solutionsf corresponding to rotationally symmetric initial condi-

tions f0 are Gevrey regular for strictly positive times under the same conditions as in the
one-dimensional cased = 1. The proof is exactly as the proof of Theorem3.1 with some
small changes in the proof of Lemma2.27where the independence of the solutionf on the
angular coordinates can be explicitly used with then = 1 version of Corollary2.15.

As already remarked, the result of Theorem1.6 deteriorate in the dimension. Under the same
assumptions, but using quite a bit more structure of the Boltzmann operator, we can prove a di-
mension independent version. Its proof is considerably more involved than the proof of Theorem
1.6.

Theorem 1.8 (Gevrey smoothing II). Let d ≥ 2. Assume that the cross-section b satisfies the
conditions of Theorem1.6. Let f be a weak solution of the Cauchy problem(1) with initial datum
satisfying conditions(8). Then, for all0 < α ≤ min

{
α2,2, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (15)

for all t > 0, whereα2,2 =
log(5/3)

log 2 ≃ 0.736966. In particular, in contrast to Theorem1.6, the weak

solution is real analytic ifν = 1
2 and ultra-analytic ifν > 1

2 in any dimension.

If the integrability conditions (4) is replaced by the slightly stronger condition thatb(cosθ) is
bounded away fromθ = 0, that is,

for any 0< θ0 <
π
2 there existsCθ0 < ∞ such that 0≤ b(cosθ) ≤ Cθ0 for all θ0 ≤ θ ≤ π

2 , (16)

which is true in all physically relevant cases, we can prove an even stronger result.

Theorem 1.9 (Gevrey smoothing III). Let d ≥ 2. Assume that the cross-section b satisfies the
conditions of Theorem1.6 and the condition(16), that is, it is bounded away from the singularity.
Let f be a weak solution of the Cauchy problem(1) with initial datum satisfying conditions(8).
Then, for all0 < α ≤ min

{
α2,1, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (17)

for all t > 0, whereα2,1 =
log(9/5)

log 2 ≃ 0.847997.

Remark 1.10. (i) Since we do not rely on interpolation inequalities between Sobolev spaces,
our results also include thelimiting caseα = ν, at least ifν ≤ α2,n (n = d, 2, 1). This
is in contrast to all previous results on smoothing properties of the Boltzmann and Kac
equations.

(ii) If higher moments of the initial datum are bounded (and thus stay bounded eternally due to
moment propagation results, see, for instance, Villani’s review [40]), the results in Theorem
1.8 and Theorem1.9 can be improved in the high singularity case, whereν is close to one.
Namely, let f0 ∈ L logL ∩ L1

m(Rd) for some integerm > 2, then the constantsα2,d, α2,2,
respectivelyα2,1 are replaced byαm,n =

log[(4m+n)/(2m+n)]
log 2 (n = d, 2, 1), which are strictly

increasing towards the limitα∞,n = 1 asm becomes large. See Theorems3.1, 3.2 and3.3
below.

Moreover, we prove that for very strong singularitiesν, we can prescribe precise conditions on
the initial datum such that we havef ∈ G

1
2ν (Rd).
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Theorem 1.11. Given 0 < ν < 1, there is m(ν) such that, if m∈ N and m ≥ m(ν) and f0 ∈
L log L ∩ L1

m, the weak solution is in G
1
2ν (Rd) for all t > 0.

More precisely, under the conditions of Theorem1.6 having m≥ max
(
2, 2ν−1

2−2ν

)
yields Gevrey

smoothing of order1
2ν and under the slightly stronger conditions of Theorem1.9 having m ≥

max
(
2, 2ν−1

2(2−2ν)

)
is enough.

Remark 1.12. The proof of this Theorem follows directly from the results of Theorems3.1, 3.2,
and3.3 in Section3, which extend Theorems1.6, 1.8, and1.9 to the case of finite momentsm≥ 2.

The strategy of the proofs of our main results Theorems1.6, 1.8, and1.9 is as follows: We start
with the additional assumptionf0 ∈ L2 on the initial datum. We use the knownH∞ smoothing of
the non-cutoff Boltzmann and Kac equation to allow this. This yields anL2 reformulation of the
weak formulation of the Boltzmann and Kac equations which includes suitable growing Fourier
multipliers.

The inclusion of sub-Gaussian Fourier multipliers leads toa nonlocal and nonlinear commutator
of the Boltzmann and Kac kernels, which turns out to be a three-linear expression in the weighted
solution f̂ on the Fourier side. In order to bound this expression withL2 norms, one of the three
terms has to be controlled pointwise,includinga sub-Gaussian growing factor, see Proposition2.9.
The problem is that one has to control the pointwise bound with anL2 norm, which is in general
impossible. To overcome this obstacle there are several important technical steps:

(1) When working on a ball of radiusΛ, we need this uniform control only on a a ball of radius
Λ/
√

2, which enables an inductive procedure.
(2) Using the additional a priori information that the kinetic energy is finite, or, depending on

the initial condition, even higher moments are finite, we transform weightedL2 bounds into
pointwise bounds on slightly smaller balls with an additional loss of power in the weights
in Fourier space. Here we rely on Kolmogorov-Landau type inequalities, see Lemma2.18
and appendixC.

(3) Use of strict concavity of the Fourier multipliers, see Lemma2.6, in order to compensate
for this loss of power.

(4) Averaging over a codimension 2 sphere, in the proof of Theorem1.8, which allows us to
get, in any dimension, the same results as for the two dimensional Boltzmann equation.

(5) Averaging over a codimension 1 set constructed from a codimension 2 sphere and the colli-
sion anglesθ away from the singularity, and using the fact that near the singularity, one of
the three Fourier weights is not big due to Lemma2.6, enables us to get, in any dimension,
the same results as for the one-dimensional Kac equation under the conditions of Theorems
1.9and3.3.

2. Gevrey regularity and (ultra-)analyticity of weak solutions with L2
initial data

In this section, we will prove the Gevrey smoothing of weak solutions with initial datum f0
satisfying (8) and,additionally, f0 ∈ L2(Rd).

2.1. L2-Reformulation of the homogeneous Boltzmann equation for weak solutions and coer-
civity. The following is our starting point for the proof of the regularizing properties of the homo-
genous Boltzmann equation.

Proposition 2.1. Let f be a weak solution of the Cauchy problem(1) with initial datum f0 satisfying
(8), and let T0 > 0. Then for all t ∈ (0,T0], β > 0, α ∈ (0, 1), andΛ > 0 we have GΛ f ∈
C

(
[0,T0]; L2(Rd)

)
and

1
2
‖GΛ(t,Dv) f (t, ·)‖2L2 −

1
2

∫ t

0

〈
f (τ, ·),

(
∂τG

2
Λ(τ,Dv)

)
f (τ, ·)

〉
dτ

=
1
2
‖1Λ(Dv) f0‖2L2 +

∫ t

0

〈
Q( f , f )(τ, ·),G2

Λ(τ,Dv) f (τ, ·)
〉

dτ.

(18)
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Informally, equation (18) follows from usingϕ(t, ·) := G2
Λ

(t,Dv) f (t, ·) in the weak formulation
of the homogenous Boltzmann equation. Recall thatG2

Λ
f ∈ L∞([0,T0]; H∞(Rd)) for any finite

T0 > 0, so it misses the required regularity in time needed to be used as a test function. The
proof of Proposition2.1 is analogous to Morimoto et al. [30], for the sake of completeness and the
convenience of the reader, we prove it in appendixA.

The coercive properties of the non-cutoff Boltzmann bilinear operator which play the crucial role
in the smoothing of solutions are made precise in the following sub-elliptic estimate by Alexandre,
Desvillettes, Villani and Wennberg [3]. We remark that, while the proof there is given for the
Boltzmann equation, it equally applies to the Kac equation.

Lemma 2.2(Sub-elliptic Estimate, [3]). Let g∈ L1
2(Rd) ∩ L logL(Rd), g ≥ 0 (g . 0). Assume that

the collision cross-section b satisfies(3)-(4) or (6)-(7) respectively, with0 < ν < 1. Then there
exists a constant Cg > 0 (depending only on the dimension d, the collision kernel b,‖g‖L1

2
and

‖g‖L log L) and a constant C> 0 (depending only on d and b), such that for any f∈ H1(Rd) one has

−〈Q(g, f ), f 〉 ≥ Cg‖ f ‖2Hν −C‖g‖L1
2
‖ f ‖2L2.

Remark 2.3. As explained for instance in [6], the constantCg is an increasing function of‖g‖L1,
‖g‖−1

L1
2

and‖g‖−1
L log L. In particular, ifg is a weak solution of the Cauchy problem (1) with initial datum

g0 ∈ L1
2(Rd) ∩ L logL(Rd), we have‖g‖L1 = ‖g0‖L1, ‖g‖L1

2
≤ ‖g0‖L1

2
and‖g‖L log L ≤ log 2‖g0‖L1 +

H(g0) +Cδ,d‖g0‖1−δL1
2

, for small enoughδ > 0 (see (86)). This impliesCg ≥ Cg0 and thus

−〈Q(g, f ), f 〉 ≥ Cg‖ f ‖2Hν −C‖g‖L1
2
‖ f ‖2L2 ≥ Cg0‖ f ‖2Hν −C‖g0‖L1

2
‖ f ‖2L2.

uniformly in t ≥ 0.

Together with Proposition2.1the coercivity estimate Lemma2.2implies

Corollary 2.4 (A priori bound for weak solutions). Let f be a weak solution of the Cauchy problem
(1) with initial datum f0 satisfying(8), and let T0 > 0. Then there exist constants̃C f0,C f0 > 0
(depending only on the dimension d, the collision kernel b,‖ f0‖L1

2
and ‖ f0‖L log L) such that for all

t ∈ (0,T0], β > 0, α ∈ (0, 1), andΛ > 0 we have

‖GΛ f ‖2L2 ≤ ‖1Λ(Dv) f0‖2L2 +

∫ t

0
2
(
−C̃ f0‖GΛ f ‖2Hν +C f0‖GΛ f ‖2L2

)
dτ

+

∫ t

0
2 |〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉| dτ

+

∫ t

0
2β‖GΛ f ‖2Hα dτ.

(19)

Proof. We want to apply the coercivity result from Lemma2.2 to the second integral on the right
hand side of Proposition2.1. Therefore, we write

〈Q( f , f ),G2
Λ f 〉 = 〈GΛQ( f , f ),GΛ f 〉 = 〈Q( f ,GΛ f ),GΛ f 〉 + 〈GΛQ( f , f ) − Q( f ,GΛ f ),GΛ f 〉

≤ −C̃ f0‖GΛ f ‖2Hν +C‖ f0‖L1
2︸  ︷︷  ︸

=:C f0

‖GΛ f ‖2L2 + 〈GΛQ( f , f ) − Q( f ,GΛ f ),GΛ f 〉.

Moreover,

∂τG
2
Λ(τ, η) = 2β〈η〉2αGΛ(t, η).

Inserting those two results into (18), we obtain

‖GΛ f ‖2L2 ≤ ‖1Λ(Dv) f0‖2L2 + 2β
∫ t

0
‖GΛ f (τ, ·)‖2Hα dτ + 2

∫ t

0

(
−C̃ f0‖GΛ f ‖2Hν +C f0‖GΛ f ‖2L2

)
dτ

+ 2
∫ t

0
〈GΛQ( f , f ) − Q( f ,GΛ f ),GΛ f 〉dτ. �
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Remark 2.5. It is natural to call the term〈GΛQ( f , f ) − Q( f ,GΛ f ),GΛ f 〉 thecommutation error.

2.2. Bound on the commutation error. Next, we prove a new bound on the commutation error.
An important ingredient is the following elementary observation:

Lemma 2.6 (Strict concavity bound). Let α ∈ (0, 1] be fixed. The map0 ≤ u 7→ ǫ(α, u) :=
(1+ u)α − uα has the following properties:

(i) If α ∈ (0, 1), thenǫ(α, ·) is strictly decreasing on[0,∞) with limu→∞ ǫ(α, u) = 0.
In particular, for anyγ ≥ 1 and0 ≤ γs− ≤ s+ one has

ǫ
(
α, s+

s−

)
≤ ǫ (α, γ) ≤ ǫ(α, 1) = 2α − 1 < 1. (20)

Moreover, for allα ∈ (0, 1) and all u> 0

ǫ (α, u) ≤ uα−1.

(ii) If u > 0, thenǫ(·, u) is strictly increasing on[0, 1].
(iii) For all s−, s+ ≥ 0

(1+ s− + s+)α ≤ ǫ
(
α, s+

s−

)
(1+ s−)α + (1+ s+)α.

Proof. Since

∂

∂u
ǫ(α, u) = α

(
(1+ u)α−1 − uα−1

)
< 0 for α ∈ (0, 1)

ǫ(α, ·) is strictly decreasing. Furthermore, for fixedu > 0 we have

∂

∂α
ǫ(α, u) = log(1+ u) (1+ u)α − logu uα > 0,

which shows thatǫ(·, u) is strictly increasing.
Forα ∈ (0, 1) andu ≥ 0 we estimate

ǫ(u, α) = α
∫ 1+u

u
rα−1 dr ≤ αuα−1 ≤ uα−1.

In particular, limu→∞ ǫ(α, u) = 0. By monotonicity, the chain of inequalities (20) follows.
Let s−, s+ ≥ 0. Then

(1+ s− + s+)α = (s−)α
[(

1+ 1+s+

s−

)α
−

(
1+s+

s−

)α]
+ (1+ s+)α

≤ ǫ
(
α, 1+s+

s−

)
(1+ s−)α + (1+ s+)α ≤ ǫ

(
α, s+

s−

)
(1+ s−)α + (1+ s+)α

where we made use of the monotonicity ofǫ(α, ·) in the last inequality. �

Remark 2.7. The proof of Lemma2.6 is so simple that one might wonder whether it could be of
any use. In fact, it is crucial. It’s usefulness is hidden in the fact that it enables us to gain a small
exponent in the commutator estimates, see Proposition2.9 and Lemma2.11below. Furthermore,
ǫ(α, γ) can be made as small as we like ifγ can be chosen large enough, which will be important in
the proof of Theorem1.9.

Corollary 2.8. LetG̃(s) := eβt(1+s)α for s≥ 0, α ∈ (0, 1]. Then, for all s− + s+ = s with0 ≤ s− ≤ s+,

|G̃(s) − G̃(s+)| ≤ 2αβt(1+ s+)α
(
1− s+

s

)
G̃(s−)ǫ

(
α,

s+

s−
)
G̃(s+)

with ǫ(α, u) from Lemma2.6.

Proof. Sinces+ ≤ sandα ∈ (0, 1],

|G̃(s) − G̃(s+)| ≤
∫ s

s+

∣∣∣∣∣
d
dr

G̃(r)
∣∣∣∣∣ dr = αβt

∫ s

s+
(1+ r)α−1G̃(r) dr ≤ αβt(1+ s+)α−1(s− s+)G̃(s).

In addition, sinces≤ 2s+,

s− s+

1+ s+
=

(
1− s+

s

)
s

1+ s+
≤ 2

(
1− s+

s

)
.
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Moreover, sinces= s+ + s−, the strict concavity Lemma2.6gives

G̃(s) ≤ G̃(s−)ǫ
(
α,

s+

s−
)
G̃(s+),

which completes the proof. �

Proposition 2.9(Bound on Commutation Error). Let f be a weak solution of the Cauchy problem
(1) with initial datum f0 satisfying(8). Recallǫ(α, u) = (1+ u)α − uα. Then for all t∈ (0,T0], β > 0,
α ∈ (0, 1), andΛ > 0 we have

|〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉|

≤ 2αβt
∫

Rd

∫

Sd−1
b

(
η

|η|
· σ

) (
1− |η

+|2

|η|2

)
G(η−)ǫ(α,|η

+ |2/|η− |2)| f̂ (η−)|

×GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dσdη,

(21)

for d ≥ 2, and

|〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉|

≤ 2αβt
∫

R

∫ π
4

− π4
b1 (θ) sin2 θG(η−)ǫ(α,|η

+ |2/|η− |2)| f̂ (η−)|

×GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dθdη,

(22)

in the one-dimensional case.

Remark 2.10. If the weight G was growingpolynomially, the termG(η−) in the integral (21),
respectively (22), would be replaced by 1. In this case, the “bad terms" which contain η− can
simply be bounded by‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 and the rest can be bounded nicely in terms of
‖GΛ f̂ ‖L2 and‖GΛ f̂ ‖Hα , see the discussion in appendixB.

If the weightG is exponential, the estimate of the terms containingη− in (21), respectively (22), is
an additional challenge and the methods we devised in order to control this term in the commutation
error is probably the most important new contribution of this work.

Proof of Proposition2.9. We start withd ≥ 2. By Bobylev’s identity, one has

|〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉| =
∣∣∣〈F[

Q( f ,GΛ f ) −GΛQ( f , f )
]
,F

[
GΛ f

]〉
L2

∣∣∣

≤
∫

Rd

∫

Sd−1
b

(
η

|η|
· σ

)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)||GΛ(η+) −GΛ(η)|dσ dη

=

∫

Rd

∫

Sd−1
b

(
η

|η| · σ
)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)||G(η+) −G(η)|dσ dη,

where the latter equality follows from the fact thatGΛ is supported on the ball{|η| ≤ Λ} and
|η+| ≤ |η|.

To estimate|G(η+) − G(η)|, we use Corollary2.8 with s := |η|2 and, accordingly,s± = |η±|2.
Notice that

|η±|2 = |η|
2

2

(
1± η

|η| · σ
)
, |η|2 = |η+|2 + |η−|2,

and, writing cosθ = η·σ
|η| , we also have

|η+|2 = |η|2 cos2 θ
2, |η−|2 = |η|2 sin2 θ

2.

Sinceb is supported on angles in [0, π/2], one sees 0≤ |η−|2 ≤ 1
2 |η|

2 and 1
2 |η|

2 ≤ |η+|2 ≤ |η|2.
Therefore,s− ≤ s

2 ≤ s+ ≤ sands= s+ + s−.
It follows that for allη ∈ Rd with |η| ≤ Λ, noting that|η+| ≤ |η| ≤ Λ,

|G(η) −G(η+)| ≤ 2αβt〈η+〉2α
(
1− |η

+ |2
|η|2

)
G(η−)ǫ(α,|η

+ |2/|η− |2)GΛ(η+), (23)

which finishes the proof in dimensiond ≥ 2.
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For the Kac model we remark that the above proof depends only on |η−| ≤ |η+| ≤ |η| and|η−|2 +
|η+|2 = |η|2, hence|η−|2 ≤ |η|2/2, and the strict concavity Lemma2.6and the Corollary2.8. Since,
by symmetry, we assume thatb1 is supported in [−π/4, π/4], the same bounds forη− andη+ hold
in dimension one and the above proof can be literally translated, with obvious changes in notation,
to the Kac equation. �

The bound on the commutation error in Proposition2.9 is a trilinear expression in the weak
solution f . In order to close the a priori bound from Corollary2.4 in L2, one of the terms has to
be controlleduniformly in η. Seemingly impossible with the growing weights, it is exactly at this
place where the gain of the small exponentǫ(α, |η+|2/|η−|2) ≤ ǫ(α, 1) < 1 in theG(η−) term in (21)
and (22) allows us to proceed with this strategy. This gain of the small exponent is new and enabled
by the strict concavity bound of Lemma2.6and its Corollary2.8and it is crucial for our inductive
approach for controlling the commutation error.

Lemma 2.11. The inequality

|〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉| ≤ Id,Λ + I+d,Λ

holds, where, for d≥ 2

Id,Λ = αβt
∫

Rd

∫ π
2

0

∫

Sd−2(η)
sind θ b(cosθ) G(η−)

ǫ

(
α,cot2 θ2

)

| f̂ (η−)|1 Λ√
2

(|η−|) dω dθ

× |GΛ(η) f̂ (η)|2 〈η〉2α dη.

(24)

Here the vectorη− is expressed as a function ofη andσ, that is,

η− = η−(η, σ) =
1
2

(η − |η|σ) = |η| sin2( θ2)
η

|η|
− |η| sin(θ2) cos(θ2)ω (25)

andσ is is a vector on the unit sphere given by

σ = σ(θ, ω) = cos(θ)
η

|η| + sin(θ)ω (26)

with polar angleθ ∈ [0, π/2] with respect to the north pole in theη direction,ω ∈ Sd−2(η) := {ω̃ ∈
R

d : ω̃ ⊥ η, |ω̃| = 1}, the d− 2 sphere inRd orthogonal to theη direction, anddω the canonical
measure onSd−2.

I+d,Λ = 2dαβt
∫

Rd

∫ π
4

0

∫

Sd−2(η+)
sind ϑb (cos 2ϑ) G(η−)ǫ(α,cot2 ϑ)| f̂ (η−)|1 Λ√

2

(|η−|)

× |GΛ(η+) f̂ (η+)|2〈η+〉2α dϑdω dη+
(27)

where now the vectorη− is expressed as a function ofη+ andσ, that is,

η− = η−(η+, σ) = η+ − |η+|
(
η+ · σ
|η+|

)−1

σ = −|η+| tan(ϑ)ω (28)

where nowσ is is a vector on the unit sphere with north pole in theη+ direction given by

σ = σ(ϑ, ω) = cos(ϑ)
η+

|η+ | + sin(ϑ)ω (29)

with polar angleϑ ∈ [0, π/4] andω ∈ Sd−2(η+), the (d − 2)-sphere inRd orthogonal to theη+

direction. If d= 2 we setS0 := ∅ in this context.
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For d = 1 we have

I1,Λ = αβt
∫

R

∫ π
4

−π4
sin2 θb1(θ) G(η−)

ǫ

(
α,cot2 θ2

)

| f̂ (η−)|1 Λ√
2

(|η−|) dθ

× |GΛ(η) f̂ (η)|2 〈η〉2α dη,

I+1,Λ =
√

2αβt
∫

R

∫ π
4

−π4
sin2 θb1(θ) G(η−)

ǫ

(
α,cot2 θ2

)

| f̂ (η−)|1 Λ√
2

(|η−|) dω dθ

× |GΛ(η+) f̂ (η+)|2 〈η+〉2α dη+,

where in the first caseη− = η−(η, θ) = η sinθ and in the second caseη− = η−(η+, θ) = η+ tanθ and
there is no need to distinguish between theθ andϑ parametrization.

Remark 2.12. In the η, respectivelyη+, integrals aboveη− andσ are always the same vectors
expressed in different parametrizations. We therefore have the relationϑ = θ/2, see Figure1 for the
geometry of the collision process in Fourier space.

η

η+

η−

θ

θ/2
θ/2

σ

ϑ

Figure 1. Geometry of the collision process in Fourier space.

Remark 2.13. From the bounds given in Lemma2.11one might already see that, in order to bound
the commutation error by some multiple of‖GΛ f ‖2

Hα(Rd)
, one has to control integrals of the form

sup
|η|≤Λ

∫ π
2

0

∫

Sd−2(η)
sind θb(cosθ) G

ǫ

(
α,cot2 θ2

)

(η−) | f̂ (η−)|1 Λ√
2

(|η−|) dω dθ,

with the parametrisation (25) for η−, and similarly for (27) and the corresponding integrals in the
one dimensional case. Due to characteristic function inη−, this uniform control is not needed on the
full ball of radiusΛ, but only on a strictly smaller one, giving rise to aninduction-over-length-scales
type of argument.

Proof of Lemma2.11. Let d ≥ 2. Using the elementary estimate

|GΛ(η) f̂ (η)| |GΛ(η+) f̂ (η+)| ≤ 1
2

(
|GΛ(η) f̂ (η)|2 + |GΛ(η+) f̂ (η+)|2

)

in the bound (21) gives

|〈Q( f ,GΛ f ) −GΛQ( f , f ),GΛ f 〉| ≤ Ĩd,Λ + Ĩ+d,Λ
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with

Ĩd,Λ = αβt
∫

Rd

∫

Sd−1
b

(
η

|η| · σ
) (

1− |η
+|2

|η|2

)
G(η−)ǫ(α,|η

+ |2/|η− |2)| f̂ (η−)|1 Λ√
2
(|η−|)

× |GΛ(η) f̂ (η)|2 〈η+〉2α dσdη,

and

Ĩ+d,Λ = αβt
∫

Rd

∫

Sd−1
b

(
η

|η|
· σ

) (
1− |η

+|2

|η|2

)
G(η−)ǫ(α,|η

+ |2/|η− |2)| f̂ (η−)|1 Λ√
2
(|η−|)

× |GΛ(η+) f̂ (η+)|2 〈η+〉2α dσdη

First we consider̃Id,Λ: Writing σ in a parametrization where the north pole is in theη direction, one
has

σ = cosθ
η

|η| + sinθ ω

where cosθ = η·σ
|η| ≥ 0 andω is a unit vector orthogonal toη, that is,ω ∈ Sd−2(η). Due to the support

condition onb one has cosθ ≥ 0, that is,σ is restricted to the northern hemisphereθ ∈ [0, π/2]. In
this parametization one has dσ = sind−2 θ dθdω. From the definition ofη± one sees

η± =
1
2

(η ± |η|σ) =
|η|
2

(1± cosθ)
η

|η| ±
|η|
2

sin(θ)ω

so

η+ = |η| cos2( θ2)
η

|η| + |η| sin(θ2) cos(θ2)ω.

In particular,

|η+| = |η| cos
θ

2
, and 1− |η

+|2

|η|2
= 1− cos2

θ

2
= sin2 θ

2
.

Moreover,

η− = |η| sin2 θ

2
η

|η|
− |η| sin

θ

2
cos

θ

2
ω, and |η−| = |η| sin

θ

2
,

so

|η+|2

|η−|2
=

cos2 θ
2

sin2 θ
2

= cot2
θ

2
.

After this preparation, using also〈η+〉2α ≤ 〈η〉2α and sinθ2 ≤ sinθ for θ ∈ [0, π2], the inequality
Ĩd,Λ ≤ Id,Λ is immediate. The inclusion of the additional factor1Λ(|η|) = 1sin θ

2Λ
(|η−|) ≤ 1

Λ/
√

2(|η−|)
seems artificial for the moment, but will be convenient to keep track of the fact thatη− is always
restricted to a ball of radiusΛ√

2
.

Concerning̃Id,Λ, we want to implement a change of variables fromη to η+. As a function ofη
andσ, η+ = 1

2(η − |η|σ). Thus
∣∣∣∣∣
∂η+

∂η

∣∣∣∣∣ =
∣∣∣∣∣∣
1
2

(
1 +

η

|η|
⊗ σ

)∣∣∣∣∣∣ =
1

2d

(
1+

η

|η|
· σ

)
≥ 1

2d
,

sinceη ·σ ≥ 0 and the second equality is an application of Sylvester’s determinant theorem. There-
fore, the Jacobian of the transformation fromη to η+ can be bounded by

∣∣∣∣∣
∂η

∂η+

∣∣∣∣∣ =
∣∣∣∣∣
∂η+

∂η

∣∣∣∣∣
−1

≤ 2d.

In addition,

|η+|2 = |η|
2

2

(
1+

η · σ
|η|

)
and η+ · σ = |η|

2

(
1+

η · σ
|η|

)
=
|η+|2
|η| ,
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which implies

η+ · σ
|η+| =

|η+|
|η| and

η · σ
|η| = 2

|η+|2

|η|2
− 1 = 2

(
η+ · σ
|η+|

)2

− 1.

Moreover, from the definition ofη± one sees

η = 2η+ − |η|σ
so

η− = η+ − |η|σ = η+ − |η+|
(
η+ · σ
|η+|

)−1

σ.

Therefore, taking care of the domain of integration,

Ĩ+d ≤ 2d
∫

Rd

∫

Sd−1
b

2
(
η+ · σ
|η+|

)2

− 1


1−

(
η+ · σ
|η+|

)2 1 η+·σ
|η+ | Λ

(|η+|)

×Gǫ(α,|η+ |2/|η− |2)(η−)| f̂ (η−)| |GΛ(η+) f̂ (η+)|2〈η+〉2α dσ dη+.

Introducing spherical coordinates with north pole in theη+ direction, one has

σ = σ(ϑ, ω) = cos(ϑ)
η+

|η+ | + sin(ϑ)ω

where now cosϑ = η+·σ
|η+ | . From figure1 one seesϑ = θ

2 ∈ [0, π/4]. In this parametrization one has

η− = η+ − |η
+|

cosϑ
σ = −|η+| tan(ϑ)ω

and again dσ = sind−2 ϑdϑdω. Thus

Ĩ+d ≤ 2d
∫

Rd

∫

Sd−2

∫ π
4

0
b (cos 2ϑ) sind ϑGǫ(α,cot2 ϑ)(η−)| f̂ (η−)|1(cosϑ)Λ(|η+|)

× |G(η+) f̂ (η+)|2〈η+〉2α dϑdω dη+.

Since|η−| = |η+| tanϑ we obtain1(cosϑ)Λ(|η+|) = 1(sinϑ)Λ(|η−|) ≤ 1
Λ/
√

2(|η−|) sinceϑ ∈ [0, π/4].

HencẽI+d,Λ ≤ I+d,Λ.
The proof in thed = 1 case is completely analogous. �

2.3. Extracting pointwise information from local L2 bounds.

Lemma 2.14. Let m ≥ 2 and h ∈ Wm,∞(R) and q ≥ 1
m. Then there exists a constant Lm < ∞

depending only on q,m, ‖h‖L∞(R) and‖h(m)‖L∞(R) such that

|h(r)|q ≤ Lm

∫

Ωr

|h(ξ)|q−
1
m dξ for all r ∈ R,

whereΩr = [r, r + 2] if r ≥ 0 andΩr = [r − 2, r] if r < 0.

Looking into the proof of Lemma2.14, it is clear that itsm = 1 version also holds, even with
a much simpler proof. Before actually going into the proof, we state an important consequence of
it, which will enable us to get pointwise decay estimates on afunction once suitableL2 norms are
bounded.

For m ∈ N define‖Dm f ‖L∞(Rd) := supω∈Sd−1 ‖(ω · ∇)m f ‖L∞(Rd). Notice that this norm is invariant
under rotations of the functionf .

Corollary 2.15. Let H ∈ Cm(Rn). Then there exists a constant Lm,n < ∞ (depending only on
m, n, ‖H‖L∞(Rn) and,‖DmH‖L∞(Rn)) such that

|H(x)| ≤ Lm,n

(∫

Qx

|H(ξ)|2 dξ

) m
2m+n

,
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where Qx is a cube inRn of side length2, with x being one of the corners, such that it is oriented
away from x in the sense that x· (ξ − x) ≥ 0 for all ξ ∈ Qx.

Remark 2.16. The constantLm,n in Corollary 2.15 is invariant under rotations of the functionH.
This will be convenient for its application in Sections2.5and2.6.

Proof. We apply Lemma2.14iteratively in each coordinate direction to obtain

|H(x1, x2, . . . , xn)|2+
n
m ≤ L(1)

m

∫

Ωx1

|H(ξ1, x2, . . . , xd)|2+
n−1
m dξ1

≤ L(1)
m L(2)

m

∫

Ωx1

∫

Ωx2

|H(ξ1, ξ2, x3 . . . , xd)|2+
n−2
m dξ1 dξ2

≤ L(1)
m · · · L(n)

m

∫

Ωx1

· · ·
∫

Ωxd

|H(ξ1, . . . , ξd)|2 dξ1 · · · dξn.

The constantsL(i)
m , i = 1, . . . , n, only depend onm,

‖H(x1, . . . , xi−1, · , xi+1, . . . , xn)‖L∞(R) ≤ ‖H‖L∞(Rn)

and

‖∂m
i H(x1, . . . , xi−1, · , xi+1, . . . , xn)‖L∞(R) ≤ ‖DmH‖L∞(Rn).

SettingLm,n =
∏n

i=1 L(i)
m yields the stated inequality withQx = Ωx1 × · · · ×Ωxn. �

Remark 2.17. It is worth noticing that the exponent in Corollary2.15is decreasing in the dimension
and increasing inm.

For the proof of Lemma2.14we need the following interpolation result betweenL∞ norms of
derivatives of a function.

Lemma 2.18(Kolmogorov-Landau inequality on the unit interval). Let m≥ 2 be an integer. There
exists a constant Cm > 0 such that for all w∈Wm,∞([0, 1]),

‖w(k)‖L∞([0,1]) ≤ Cm

(‖w‖L∞([0,1])

uk
+ um−k‖w(m)‖L∞([0,1])

)
, k = 1, . . . ,m− 1,

for all 0 < u ≤ 1.

Proof. The result dates back to E. Landau and A. N. Kolmogorov who proved it onR andR+. A
proof of the inequality on a finite interval can be found in thebook by R. A. DeVore and G. G.
Lorentz [17] (pp.37–39), but for the reader’s convenience we also give ashort proof in Appendix
C. �

For us, the important consequence we are going to make use of is

Corollary 2.19. Let Cm > 0 be the constant from Lemma2.18. Then for all w∈Wm,∞([0, 1]),

‖w(k)‖L∞([0,1]) ≤ 2Cm‖w‖1−k/m
L∞([0,1]) max

{
‖w‖k/mL∞([0,1]), ‖w

(m)‖k/mL∞([0,1])

}
, k = 1, . . . ,m− 1. (30)

Proof. If ‖w(m)‖L∞([0,1]) ≤ ‖w‖L∞([0,1]), we chooseu = 1 in the bound from Lemma2.18, which gives

‖w(k)‖L∞([0,1]) ≤ 2Cm‖w‖L∞([0,1])

in this case, and if‖w(m)‖L∞([0,1]) ≥ ‖w‖L∞([0,1]), we can chooseu = ‖w‖1/mL∞([0,1])‖w
(m)‖−1/m

L∞([0,1]) ≤ 1 to
obtain

‖w(k)‖L∞([0,1]) ≤ 2Cm‖w‖1−k/m
L∞([0,1])‖w

(m)‖k/mL∞([0,1]).

Together this proves (30). �

We can now turn to the
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Proof of Lemma2.14. Assume without loss of generality thatr ≥ 0, so thatΩr = [r, r + 2]. By
the Sobolev embedding theoremh is continuous and we letr∗ be a point inΩr where |h| attains

its maximum. We can assume thatr∗ ∈ [r, r + 1] and set〈h〉r∗ :=
∫ r∗+1

r∗
h(ξ) dξ (otherwise we use

〈h〉r∗ :=
∫ r∗

r∗−1
h(ξ) dξ). Then for somep ≥ 1 we have

|h(r∗)|p −
∣∣∣〈hp〉r∗

∣∣∣ ≤
∫ r∗+1

r∗
|hp(r∗) − hp(ξ)|dξ =

∫ 1

0
|hp(r∗) − hp(r∗ + ζ)|dζ.

Bt the fundamental theorem of calculus, for anyζ ∈ [0, 1] the integrand can be bounded by

|hp(r∗) − hp(r∗ + ζ)| ≤ p
∫ 1

0
|h(r∗ + sζ)|p−1|h′(r∗ + sζ)|ζ ds

≤ p sup
s∈[0,1]

|h′(r∗ + sζ)|
∫ 1

0
|h(r∗ + sζ)|p−1ζ ds

We now use that

sup
s∈[0,1]

|h′(r∗ + sζ)| = sup
x∈[0,ζ]

|h′(r∗ + x)| ≤ sup
x∈[0,1]

|h′(r∗ + x)| = ‖h′(r∗ + ·)‖L∞([0,1])

and apply the Kolmogorov-Landau inequality for the first derivative in its multiplicative form from
Corollary2.19to the function [0, 1] ∋ x 7→ h(r∗ + x) ∈Wm,∞([0, 1]) to obtain

‖h′(r∗ + ·)‖L∞([0,1]) ≤ 2Cm‖h(r∗ + ·)‖1−1/m
L∞([0,1]) max

{
‖h(r∗ + ·)‖1/mL∞([0,1]), ‖h

(m)(r∗ + ·)‖1/mL∞([0,1])

}

≤ 2Cm|h(r∗)|1−1/m max
{
‖h‖1/mL∞(R), ‖h

(m)‖1/mL∞(R)

}
.

It follows that

|h(r∗)|p −
∣∣∣〈hp〉r∗

∣∣∣ ≤ 2pCm|h(r∗)|1−1/m max
{
‖h‖1/mL∞(R), ‖h

(m)‖1/mL∞(R)

}

×
∫ 1

0

∫ 1

0
|h(r∗ + sζ)|p−1ζ dsdζ.

The latter integral can be further estimated by
∫ 1

0

∫ 1

0
|h(r∗ + sζ)|p−1ζ dsdζ =

∫ 1

0

∫ ζ

0
|h(r∗ + x)|p−1 dxdζ

≤
∫ 1

0

∫ 1

0
|h(r∗ + x)|p−1 dζ dx =

∫ 1

0
|h(r∗ + x)|p−1 dx

=

∫ r∗+1

r∗
|h(ξ)|p−1 dξ ≤

∫

Ωr

|h(ξ)|p−1 dξ.

Using

∣∣∣〈hp〉r∗
∣∣∣ ≤

∫ r∗+1

r∗
|h(ξ)|p dξ ≤ ‖h‖L∞(Ωr )

∫

Ωr

|h(ξ)|p−1 dξ

≤ |h(r∗)|1−1/m‖h‖1/mL∞(R)

∫

Ωr

|h(ξ)|p−1 dξ

we get

|h(r∗)|p ≤ Lm|h(r∗)|1−1/m
∫

Ωr

|h(ξ)|p−1 dξ

with Lm = 2pCm max
{
‖h‖1/mL∞(R), ‖h

(m)‖1/mL∞(R)

}
+ ‖h‖1/mL∞(R), and therefore

|h(r∗)|p−1+1/m ≤ Lm

∫

Ωr

|h(ξ)|p−1 dξ.
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Choosingq := p− 1+ 1/m≥ 1/m then yields

|h(r)|q ≤ |h(r∗)|q ≤ Lm

∫

Ωr

|h(ξ)|q−1/m dξ,

which is the claimed inequality. �

2.4. Gevrey smoothing of weak solutions forL2 initial data: Part I. Equipped with Corollary
2.15we can construct an inductive scheme based upon a uniform bound onG(η−)ǫ(α,1)| f̂ (η−)|. As
already remarked, this result will depend on the dimension,and will actually deteriorate quickly as
dimension increases. Nevertheless it leads to strong regularity properties of weak solutions in the
physically relevant cases.

Theorem 2.20. Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈ L log L(Rd) ∩ L1
m(Rd) for

some m≥ 2, and, in addition, f0 ∈ L2(Rd). Further assume that the cross-section b satisfies the
singularity condition (3) and theintegrability condition (4) for d ≥ 2, and for d= 1, b1 satisfies the
singularity condition (6) and theintegrability condition (7) for some0 < ν < 1. Let f be a weak
solution of the Cauchy problem(1) with initial datum f0. Setαm,d := log

(
4m+d
2m+d

)
/ log 2. Then, for

all 0 < α ≤ min
{
αm,d, ν

}
and T0 > 0, there existsβ > 0, such that for all t∈ [0,T0]

eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (31)

that is, f ∈ G
1

2α (Rd) for all t ∈ (0,T0].

By decreasingβ, if necessary, one even has a uniform bound,

Corollary 2.21. Let T0 > 0. Under the same conditions as in Theorem2.20there exitβ > 0 and
M1 < ∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβt〈η〉2α | f̂ (t, η)| ≤ M1. (32)

Remark 2.22. (i) For strong singularities, the restriction on the Gevreyclass originates in the
bound on the commutation error, with the best value ind = 1 dimension. The aim of part II
below will be to recover the two-dimensional result inany dimension d≥ 2. Under slightly
stronger assumptions on the angular cross-section, which still covers all physically relevant
cases, we can get the one-dimensional result in any dimension d ≥ 1, see part III.

(ii) In dimensionsd = 1, 2, 3 andm = 2, corresponding to initial data with finite energy, we
haveα2,d = log

(
8+d
4+d

)
/ log 2 ≥ log

(
11
7

)
/ log 2 ≃ 0.652077. This means that forν = 1

2 the

weak solution gets analytic and even ultra-analytic forν > 1
2.

(iii) In the case of physical Maxwellian molecules, whereν = 1
4, in three dimensions and with

initial datum having finite mass, energy and entropy, we obtain GevreyG2(R3) regularity.
(iv) Even though the range ofα in Theorem2.20above deteriorates as the dimension increases,

it only fails to cover (ultra-)analyticity results in dimensionsd ≥ 6. Theorems2.30 and
2.35below yield results uniformly in the dimension.

We will prove Theorem2.20 inductively over suitable length scalesΛN → ∞ as N → ∞ in
Fourier space. To prepare for this, we fix someM < ∞, 0 < T0 < ∞ and introduce

Definition 2.23 (Hypothesis Hyp1Λ(M)). Let M ≥ 0. Then for all 0≤ t ≤ T0

sup
|ζ |≤Λ

G(t, ζ)ǫ(α,1)| f̂ (t, ζ)| ≤ M. (33)

Remark 2.24. Recall thatG(t, ζ) = eβt〈ζ〉α , that is, it depends onα, β, andt, and alsof is a time
dependent function, even though we suppress this dependence in our notation. Thus Hyp1Λ(M) also
depends on the parameters inG(t, ζ) and onM andT0, which, for simplicity, we do not emphasise
in our notation. We will later fix someT0 > 0 and a suitable large enoughM. The main reason
why this is possible is that, since‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 < ∞, for anyΛ, β,T0 > 0 the hypothesis
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Hyp1Λ(M) is true for large enoughM and even anyM > ‖ f0‖L1 is possible by choosingβ > 0 small
enough.

A first step into the inductive proof is the following

Lemma 2.25.Letα ≤ ν and define cb,d := |Sd−2|
∫ π

2
0 sind θ b(cosθ) dθ for d ≥ 3, cb,2 :=

∫ π
2

0 sin2 θ b(cosθ) dθ,

cb,1 :=
∫ π

4
−π4

sin2 θ b1(θ) dθ, which are finite by the integrability assumptions(4) and (7), and let

β ≤ C̃ f0
(1+2d−1) cb,dαT0M+1. Then, for any weak solution of the homogenous Boltzmann equation,

Hyp1Λ(M) ⇒ ‖G√2Λ f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 (34)

for all 0 ≤ t ≤ T0.

Remark 2.26. The main point of this lemma is that the right hand side of (34) does not depend on
M. This is crucial for our analysis and might seem a bit surprising, at first. It is achieved by making
β small enough.

Proof. Let d ≥ 2. Since cot2 θ
2 ≥ 1 for θ ∈ [0, π2] and cot2ϑ ≥ 1 for ϑ ∈ [0, π4], we can bound

ǫ(α, cot2 θ
2) andǫ(α, cot2ϑ) by ǫ(α, 1) in the integralsId,

√
2Λ andI+

d,
√

2Λ
from Lemma2.11.

Assume Hyp1Λ(M) holds. Then

G(t, ζ)ǫ(α,1)| f̂ (t, ζ)| ≤ M for all |ζ | ≤ Λ.
In particular, the terms containingη− in Id,

√
2Λ and I+

d,
√

2Λ
can be bounded byM. Thus, these

integrals can now be further estimated by

Id,
√

2Λ ≤ αβt M |Sd−2|
∫ π

2

0
sind θ b(cosθ) dθ

∫

Rd
|G√2Λ(η) f̂ (η)|2 〈η〉2α dη

= αβt M cb,d‖G√2Λ f ‖2Hα(Rd)

and,

I+
d,
√

2Λ
≤ 2dαβt M |Sd−2|

∫ π
4

0
sind ϑb (cos 2ϑ) dϑ

∫

Rd
|G(η+) f̂ (η+)|2〈η+〉2α dη+.

In theϑ integral, we bound sinϑ ≤ sin(2ϑ) to obtain

I+
d,
√

2Λ
≤ 2d−1αβt M cb,d‖G√2Λ f ‖2Hα(Rd)

By Lemma2.11, the commutation error corresponding to the weightG√2Λ is thus bounded by
∣∣∣∣
〈
Q( f ,G√2Λ f ) −G√2ΛQ( f , f ),G√2Λ f

〉∣∣∣∣ ≤ Id,
√

2Λ + I+
d,
√

2Λ

≤ (1+ 2d−1)αβt M cb,d‖G√2Λ f ‖2Hα(Rd).
(35)

With Corollary2.4we then have

‖G√2Λ f ‖2L2(Rd) ≤‖1√2Λ(Dv) f0‖2L2 +

∫ t

0
2C f0‖G√2Λ f ‖2L2(Rd) dτ

+

∫ t

0
2
(
−C̃ f0‖G√2Λ f ‖2Hν(Rd) +

(
(1+ 2d−1)αβt M cb,d + β

)
‖G√2Λ f ‖2Hα(Rd)

)
dτ.

Sinceα ≤ ν andβ ≤ C̃ f0
(1+2d−1)cb,d αT0M+1, this implies

‖G√2Λ f ‖2L2(Rd) ≤ ‖1√2Λ(Dv) f0‖2L2(Rd) +

∫ t

0
2C f0‖G√2Λ f ‖2L2(Rd) dτ

and with Gronwall’s inequality

‖G√2Λ f ‖2L2(Rd) ≤ ‖1√2Λ(Dv) f0‖2L2(Rd) e2C f0T0 (36)
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follows.
For d = 1, we note that, with the obvious change in notation, the above proof literally translates

to the Kac equation. �

The second ingredient gives a uniform bound in terms of a weightedL2 norm and some a priori
uniform bound on some higher derivative off̂ .

Lemma 2.27. Assume that there exist finite constants Am and B, such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd) ≤ B (37)

for some integer m≥ 2 and for all 0 ≤ t ≤ T0. Set

Λ̃ :=
1+
√

2
2
Λ (38)

and assume furthermore that

Λ ≥ Λ0 :=
4
√

d
√

2− 1
. (39)

Then for all|η| ≤ Λ̃
| f̂ (t, η)| ≤ K1 G(t, η)−

2m
2m+d for all 0 ≤ t ≤ T0 (40)

with a constant K1 depending only on the dimension d, m, Am, and B.

Remark 2.28. The exponent 2m
2m+d in equation (40) comes from Corollary2.15, choosingn = d.

This is responsible for our definition ofαm,d, since thenǫ
(
αm,d, 1

)
= 2m

2m+d .

Remark 2.29. The assumptions of Lemma2.27 are quite natural: since the Boltzmann equation
conserves mass and kinetic energy does not increase, we havethe a priori estimate

‖ f (t, ·)‖L1
2(Rd) ≤ ‖ f0‖L1

2(Rd) =: A2,

and due to the known results on moment propagation3 for the homogeneous Boltzmann equation in
the Maxwellian molecules case, we have

f0 ∈ L1
m(Rd) =⇒ f (t, ·) ∈ L1

m(Rd) uniformly in t ≥ 0

for anym> 2 in addition to assumptions (8).

The importance of Lemma2.27is that it effectively converts a localL2 bound on suitable balls
into apointwise boundon slightly smaller balls.

Proof of Lemma2.27. By the Riemann-Lebesgue lemmaf̂ has continuous and bounded derivatives
of order up tom. Since for any multi-indexα ∈ Nd

0 one has∂α f̂ = (−2πi) |α| v̂α f , we obtain the bound

‖Dm f̂ (t, ·)‖L∞(Rd) = sup
ω∈Sd−1

‖(ω · ∇)m f̂ (t, ·)‖L∞(Rd) ≤ sup
ω∈Sd−1

sup
η∈Rd

∑

|α|=m

(
m
α

)
|ωα| |∂α f̂ (η)|

≤ (2π)m sup
ω∈Sd−1

∫

Rd

∑

|α|=m

(
m
α

)
|ωαvα| f (v) dv ≤ (2π)m sup

ω∈Sd−1

∫

Rd
(ω · v)m f (v) dv

≤ (2π)m
∫

Rd
|v|m f (v) dv ≤ (2π)m‖ f (t, ·)‖L1

m(Rd) ≤ (2π)mAm

Of course, also‖ f̂ ‖L∞(Rd) ≤ ‖ f ‖L1(Rd) ≤ Am.

Let η ∈ Rd such that|η| ≤ Λ̃. By Corollary2.15applied to the function̂f , there is a constantLm,d

that depends only ond,m, andAm such that

| f̂ (η)| ≤ Lm,d


∫

Qη

| f̂ (ζ)|2 dζ


m

2m+d

3see, for instance, Villani’s review [40] pp. 73ff for references.
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whereQη is the cube of side length 2 atη, such that all sides are oriented away from the origin. The
definitions ofΛ̃ andΛ0 guarantee by Pythagoras’ theorem, that, for|η| ≤ Λ̃, Qη always stays inside
the ball around the origin with radius

√
2Λ. Since the orientation ofQη is such thatη is the point

closest to the origin and the weightG is radial and increasing, we have

| f̂ (η)| ≤ Lm,d

G(η)−2
∫

Qη

G(ζ)2| f̂ (ζ)|2 dζ


m

2m+d

≤ Lm,d G(η)−
2m

2m+d

(∫

{|η|≤
√

2Λ}
G(ζ)2| f̂ (ζ)|2 dζ

) m
2m+d

≤ Lm,dB
2m

2m+d G(η)−
2m

2m+d .

SettingK1 := Lm,dB
2m

2m+d yields the claimed inequality. �

Proof of Theorem2.20. By Lemma2.25, 2.27, and Remark2.29, a suitable choice forAm, B, and
the length scalesΛN is

B := ‖ f0‖L2(Rd)e
C f0T0,

Am := sup
t≥0
‖ f (t, ·)‖L1

m(Rd) < ∞,

and

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1+
√

2
2
ΛN−1 =


1+
√

2
2


N

Λ0

with Λ0 from (39).
Furthermore, we set

M1 := max{2Am + 1,K1}
with the constantK1 from equation (40).

For the start of the induction, we need Hyp1Λ0
(M1) to be true. Since

sup
0≤t≤T0

sup
|η|≤Λ0

G(η)ǫ(α,1)| f̂ (η)| ≤ eǫ(α,1)βT0(1+Λ2
0)αAm

and from our choice ofM1 there existsβ0 > 0 such that Hyp1Λ0
(M1) is true for all 0≤ β ≤ β0.

Now, we choose

β = min

(
β0,

C̃ f0

(1+ 2d−1)cb,d αT0M1 + 1

)
.

With this choice, the conditions of Lemma2.25and2.27are fulfilled and Hyp1Λ0
(M1) is true.

For the induction step assume that Hyp1ΛN
(M1) is true. Then Lemma2.25gives

‖G√2ΛN
f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 ≤ B.

Note thatǫ(α, 1) ≤ 2m
2m+d , sinceα ≤ min

{
αm,d, ν

}
, see Remark2.28. In addition,ΛN+1 = Λ̃N, so

Lemma2.27shows
sup
|η|≤ΛN+1

G(η)ǫ(α,1)| f̂ (η)| ≤ K1 ≤ M1,

that is, Hyp1ΛN+1
(M1) is true. By induction, it is true for allN ∈ N. Invoking Lemma2.25again,

we also have
‖G√2ΛN

f ‖L2(Rd) ≤ B

for all N ∈ N and passing to the limitN → ∞, we see‖G f‖L2(Rd) ≤ B, which concludes the proof
of the theorem. �

Proof of Corollary2.21. The proof of Theorem2.20showed that givenT0 > 0 there existsM1 > 0
andβ > 0 such that Hyp1ΛN (M1) is true for allN ∈ N. This clearly implies (32). �
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2.5. Gevrey smoothing of weak solutions forL2 initial data: Part II. The results of Part I are
best in one dimension and give the correct smoothing in termsof the Gevrey class forν not too
close to one, more preciselyν ≤ αm,d. In order to improve this in higher dimensionsd ≥ 2 and for
a larger range of singularities 0< ν < 1, the commutator estimates have to be refined. We have

Theorem 2.30. Let d ≥ 3. Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈ L log L(Rd) ∩
L1

m(Rd) for some m≥ 2, and, in addition, f0 ∈ L2(Rd). Further assume that the cross-section b
satisfies thesingularity condition (3) and theintegrability condition (4) for some0 < ν < 1. Let f
be a weak solution of the Cauchy problem(1) with initial datum f0, then for all0 < α ≤ min

{
αm,2, ν

}
and T0 > 0, there existsβ > 0, such that for all t∈ [0,T0]

eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (41)

that is, f ∈ G
1

2α (Rd) for all t ∈ (0,T0].
In particular, the weak solution is real analytic ifν = 1

2 and ultra-analytic ifν > 1
2.

The beauty of this theorem is that, in contrast to Theorem2.20, its result does not deteriorate as
dimension increases. We also have a corollary similar to Corollary 2.21, however with a weaker
conclusion. Moreover, it isnot uniform in the timet ≥ 0 but only holds on finite, but arbitrary, time
intervals [0,T0].

Corollary 2.31. Under the same assumptions as in Theorem2.30, for any weak solution f of the
Cauchy problem(1) and any0 < T0 < ∞ there exists̃β > 0 and M< ∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβ̃t〈η〉2α | f̂ (t, η)| ≤ M. (42)

The proof of Theorem2.30 is again based on an induction over length scales in Fourier space.
Having a close look at the integralsId,Λ andI+d,Λ from Lemma2.11and using thatǫ(α, γ) is decreas-
ing in γ, one sees that it should be enough to bound expressions of theform

∫

Sd−2(η)
G(η−)ǫ(α,1)| f̂ (η−)|1 Λ√

2

(|η−|) dω

and
∫

Sd−2(η+)
G(η−)ǫ(α,1)| f̂ (η−)|1 Λ√

2

(|η−|) dω

uniformly in η andθ, respectivelyη+ andϑ, with the parametrization (25), respectively (28), that
is, instead of having to use the purely pointwise estimates expressed in the hypothesis Hyp1Λ from
the previous section, one can take advantage of averaging over codimension 2 spheres first. This
motivates

Definition 2.32 (Hypothesis Hyp2Λ(M)). Let M ≥ 0 be finite. Then for all 0≤ t ≤ T0,

sup
ζ∈Rd\{0}

sup
(z,ρ)∈AΛ

∫

Sd−2(ζ)
G

(
t, z ζ

|ζ | − ρω
)ǫ(α,1)

∣∣∣∣ f̂
(
t, z ζ

|ζ | − ρω
)∣∣∣∣ dω ≤ M, (43)

whereAΛ = {(z, ρ) ∈ R2 : 0 ≤ z≤ ρ, z2 + ρ2 ≤ Λ2} andSd−2(ζ) = {ω ∈ Rd : ω ⊥ ζ, |ω| = 1}.

Again, we have

Lemma 2.33. Let α ≤ ν, define cb,d,2 =
∫ π

2

0
sind θb(cosθ) dθ (which is finite by the integrability

assumption(4)), and letβ ≤ C̃ f0
(1+2d−1)cb,d,2αT0M+1. Then, for any weak solution of the homogenous

Boltzmann equation,

(Hyp2Λ) ⇒ ‖G√2Λ f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 (44)

for all 0 ≤ t ≤ T0.
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Proof. Using the monotonicity ofǫ(α, γ) in γ and (24) one sees

Id,
√

2Λ ≤ αβt
∫

Rd


∫ π

2

0
sind θb(cosθ)

(∫

Sd−2(η)
G(η−)ǫ(α,1) | f̂ (η−)|1Λ(|η−|) dω

)
dθ



× |G√2Λ(η) f̂ (η)|2 〈η〉2α dη

whereη− = η−(η, θ, ω) is expressed via the parametrization (25). Forσ = (θ, ω) ∈ [0, π2]×Sd−2, one

hasη− = |η| sin2 θ
2
η

|η| + |η| sin θ
2 cosθ2 ω and if |η| ≤

√
2Λ, then|η−| ≤ Λ. Identifyingz= |η| sin2 θ

2 and

ρ = |η| sin θ
2 cosθ2, and the direction ofζ with the direction ofη, hypothesis (Hyp2Λ) clearly implies

sup
|η|≤
√

2Λ

sup
θ∈[0,π/2]

∫

Sd−2(η)
G(η−)ǫ(α,1) | f̂ (η−)|1Λ(|η−|) dω ≤ M

It follows that

Id,
√

2Λ ≤ αβt M
∫

Rd

∫ π
2

0
sind θb(cosθ) dθ |G√2Λ(η) f̂ (η)|2 〈η〉dη

= αβt M cb,d,2‖G√2Λ f ‖2Hα(Rd).

Similarly one has

I+
d,
√

2Λ
≤ 2dαβt

∫

Rd


∫ π

4

0
sind ϑb(cos 2ϑ)

(∫

Sd−2(η+)
G(η−)ǫ(α,1) | f̂ (η−)|1Λ(|η−|) dω

)
dϑ



× |G√2Λ(η+) f̂ (η+)|2 〈η+〉2α dη+

whereη− = η−(η, ϑ, ω) is expressed via the parametrization (28). The vectorsη− andη+ are ortho-
gonal and we haveη− = −|η+| tanϑω for (ϑ, ω) ∈ [0, π4] × Sd−2(η+).

Settingz = 0 andρ = |η+| tanϑ we haveρ = |η−| ≤ Λ in theϑ andη+ integrals above. Thus
(Hyp2Λ) again implies

sup
|η+ |≤

√
2Λ

sup
ϑ∈[0,π/4]

∫

Sd−2(η+)
G(η−)ǫ(α,1) | f̂ (η−)|1Λ(|η−|) dω ≤ M

Hence,

I+
d,
√

2Λ
≤ 2dαβt M

∫ π
2

0
sind θb(cosθ) dθ

∫

Rd
|G√2Λ(η+) f̂ (η+)|2 〈η+〉dη+

≤ 2d−1αβt M cb,d,2‖G√2Λ f ‖2Hα(Rd).

The rest of the proof is the same as in the proof of Lemma2.25. �

To close the induction process, we next show

Lemma 2.34. Letβ ≤ 1
T0

. Assume that there exist finite constants Am and B, such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd) ≤ B (45)

for some integer m≥ 2 and for all 0 ≤ t ≤ T0.

SetΛ̃ := 1+
√

2
2 Λ and assume that

Λ ≥ Λ0 :=
4
√

2
√

2− 1
. (46)

Then for allζ ∈ Rd \ {0} and0 ≤ z≤ ρ with ρ2 + z2 ≤ Λ̃2 one has
∫

Sd−2(ζ)

∣∣∣∣ f̂
(
t, z ζ

|ζ | + ρω
)∣∣∣∣ dω ≤ K2 G̃(t, z2 + ρ2)−

2m
2m+2 for all 0 ≤ t ≤ T0

with a constant K2 depending only on d,m,Am, and B. Recall that̃G(t, s) = eβt(1+s)α .
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Proof. Fix 0 < t ≤ T0, ζ ∈ Rd \ {0}, and setF(ρ, z) := f̂ (t, z ζ

|ζ | + ρω), where we drop, for simplicity,

the dependence on the timet in our notation forF. Then, since‖ f (t, ·)‖L1
m
≤ Am one hasf̂ (t, ·) ∈

Cm(Rd) and thus alsoF ∈ Cm(R2) with ‖F‖L∞ ≤ Am ‖∂m
ρ F‖L∞ ≤ (2π)mAm, and‖∂m

z F‖L∞ ≤ (2π)mAm

and Corollary2.15applied toF yields

∣∣∣∣ f̂
(
z ζ

|ζ | + ρω
)∣∣∣∣ ≤ Lm,2

(∫ ρ+2

ρ

∫ z+2

z

∣∣∣∣ f̂
(
x ζ

|ζ | + yω
)∣∣∣∣

2
dxdy

) m
2m+2

. (47)

where we also dropped the dependence off̂ on the time variablet. Furthermore, we will drop
the time dependence ofG and G̃ in the following, that is,G(ξ) and G̃(s) will stand for G(t, ξ),
respectivelyG̃(t, s).

To recover theL2 norm ofG√2Λ f in the right hand side of (47) we now need to take care of three
things:

(i) Multiply with a suitable power of the radially increasing weightG.
(ii) Integrate over the missingd − 2 directions, which will be taken care of by integrating

overSd−2(ζ) and taking into account additional factors to get thed-dimensional Lebesgue
measure.

(iii) Ensure that the region of integration [ρ, ρ + 2] × [z, z+ 2] × Sd−2(ζ) stays inside a ball of
radius

√
2Λ uniformly in the direction ofζ. This we control by choosingΛ0 large enough

(a simple geometric consideration shows thatΛ0 from the statement of Lemma2.34works)
and restrictingρ andzby ρ2 + z2 ≤ Λ̃2.

Let z, ρ ≥ 0. In the region of integration in (47), the pointρω + z η

|η| is closest to the origin inRd,
and since the weightG is radially increasing, we get

∣∣∣∣ f̂
(
z ζ

|ζ | + ρω
)∣∣∣∣ ≤ Lm,2G̃

(
z2 + ρ2

)− 2m
2m+2

(∫ ρ+2

ρ

∫ z+2

z
G

(
x ζ

|ζ | + yω
)2

∣∣∣∣ f̂
(
x ζ

|ζ | + yω
)∣∣∣∣

2
dxdy

) m
2m+2

.

(48)

Assume thatz2 + ρ2 ≤ Λ̃2. Then the integration of inequality (48) overSd−2(ζ) yields with an
application of Jensen’s inequality (t 7→ t

m
2m+2 is concave!)

∫

Sd−2(ζ)

∣∣∣∣ f̂
(
z ζ

|ζ | + ρω
)∣∣∣∣ dω ≤ Lm,2|Sd−2|

m+2
2m+2 G̃

(
z2 + ρ2

)− 2m
2m+2

×
(∫

Sd−2(ζ)

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ

|ζ | + yω
)2 ∣∣∣∣ f̂

(
x η

|η| + yω
)∣∣∣∣

2
dxdydω

) m
2m+2

.

Now assume additionally 0≤ z≤ ρ andΛ2
0 ≤ ρ

2+z2 ≤ Λ̃2. Since 0≤ z≤ ρ we haveΛ2
0 ≤ z2+ρ2 ≤

2ρ2 and therefore
∫

Sd−2(ζ)

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ

|ζ | + yω
)2 ∣∣∣∣ f̂

(
x ζ

|ζ | + yω
)∣∣∣∣

2
dxdydω

≤ 2
d−2

2 Λ2−d
0

∫

Sd−2(ζ)

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ

|ζ | + yω
)2 ∣∣∣∣ f̂

(
x ζ

|ζ | + yω
)∣∣∣∣

2
yd−2 dxdydω

≤ 2
d−2

2 Λ2−d
0 ‖G√2Λ f ‖2L2(Rd),

sinceyd−2 dxdydω is thed-dimensional Lebesgue measure in the cylindrical coordinates (x, yω)
with x ∈ R, y > 0,ω ∈ Sd−2(ζ) along the cylinder with axisζ. So with the assumption‖G√2Λ f ‖L2(Rd) ≤
B we obtain

∫

Sd−2(ζ)

∣∣∣∣ f̂
(
t, z ζ

|ζ | + ρω
)∣∣∣∣ dω ≤ Lm,2|Sd−2|

m+2
2m+2

(
2

d−2
2 Λ2−d

0 B2
) m

2m+2
G̃

(
t, z2 + ρ2

)− 2m
2m+2

.
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In the casez2 + ρ2 ≤ Λ2
0 we haveG̃(t, z2 + ρ2)−1 eβt(1+Λ2

0)α ≥ 1 and we can simply bound
∫

Sd−2(ζ)

∣∣∣∣ f̂
(
t, z ζ

|ζ | + ρω
)∣∣∣∣ dω ≤ G̃

(
t, z2 + ρ2

)− 2m
2m+2 e

2m
2m+2βt(1+Λ2

0)α |Sd−2| ‖ f̂ (t, ·)‖L∞(Rd)

≤ Am|Sd−2|e1+Λ2
0G̃

(
t, z2 + ρ2

)− 2m
2m+2

sinceβ ≤ 1/T0, by assumption. So choosing

K2 := max

(
Lm,2|Sd−2|

m+2
2m+2

(
2

d−2
2 Λ2−d

0 B2
) m

2m+2
,Am|Sd−2|e1+Λ2

0

)

finishes the proof of the lemma. �

Now we have all the ingredients for the inductive

Proof of Theorem2.30. By Lemmata2.33and2.34a suitable choice forAm andB is

B := ‖ f0‖L2(Rd)e
C f0T0,

Am := sup
t≥0
‖ f (t, ·)‖L1

m(Rd) < ∞.

Note that the finiteness ofAm is guaranteed sincef0 ∈ L1
m(Rd), see Remark2.29. We further choose

the length scalesΛN to be

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1+
√

2
2
ΛN−1 =


1+
√

2
2


N

Λ0

with Λ0 now from (46), and we set

M2 := max
{
2|Sd−2|Am + 1,K2

}

with the constantK2 from Lemma2.34.
For the start of the induction, we need Hyp2Λ0

(M2) to be true. Since

sup
0≤t≤T0

sup
ζ∈Rd\{0}

sup
(z,ρ)∈AΛ0

∫

Sd−2(ζ)
G

(
t, z ζ

|ζ | − ρω
)ǫ(α,1) ∣∣∣∣ f̂

(
t, z ζ

|ζ | − ρω
)∣∣∣∣ dω

≤ |Sd−2|eβT0(1+Λ2
0)Am

and from our choice ofM2 there existsβ0 > 0 such that Hyp2Λ0
(M2) is true for all 0≤ β ≤ β0.

Now, we choose

β = min

(
β0,T

−1
0 ,

C̃ f0

(1+ 2d−1)cb,d,2αT0M2 + 1

)
.

With this choice, the conditions of Lemma2.33and2.34are fulfilled and Hyp2Λ0
(M2) is true.

For the induction step assume that Hyp2ΛN
(M2) is true. Then Lemma2.33gives

‖G√2ΛN
f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 = B

and then, sinceǫ(α, 1) ≤ 2m
2m+2 by our choice ofα, andΛN+1 = Λ̃N, Lemma2.34 shows that

Hyp2ΛN+1
(M2) is true, so by induction, it is true for allN ∈ N. Invoking Lemma2.33again, we also

have
‖G√2ΛN

f ‖L2(Rd) ≤ B

for all N ∈ N and lettingN → ∞, we see‖G f‖L2(Rd) ≤ B, which concludes the proof of Theorem
2.30. �

Proof of Corollary2.31. Theorem2.30 shows thatG f ∈ L2(Rd) for all 0 ≤ t ≤ T0. applying
Corollary2.15with n = d to f̂ yields

| f̂ (η)| ≤ Lm,dG(η)−
2m

2m+d


∫

Qη

G(ζ)2| f̂ (ζ)|2 dζ


m

2m+d

≤ Lm,d‖G f‖
2m

2m+d

L2(Rd)
G(η)−

2m
2m+d ,
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where we also used that the Fourier multiplier is radially increasing. This proves the uniform bound
(42) with β̃ = β 2m

2m+d . �

2.6. Gevrey smoothing of weak solutions forL2 initial data: Part III. Under the slightly stronger
assumption on the angular collision cross-sectionb, namely thatb is bounded away from the singu-
larity, we can state out theorem about Gevrey regularisation in its strongest form.

Theorem 2.35.Assume that the initial datum f0 satisfies f0 ≥ 0, f0 ∈ L logL(Rd)∩L1
m(Rd) for some

m≥ 2, and, in addition, f0 ∈ L2(Rd). Further assume that the cross-section b in dimensions d≥ 2
satisfies thesingularity condition (3) for some0 < ν < 1 and theboundedness condition (16). Let f
be a weak solution of the Cauchy problem(1) with initial datum f0, then for all0 < α ≤ min

{
αm,1, ν

}

and all T0 > 0, there existsβ > 0, such that for all t∈ [0,T0]

eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (49)

that is, f ∈ G
1

2α (Rd) for all t ∈ (0,T0].
In particular, the weak solution is real analytic ifν = 1

2 and ultra-analytic ifν > 1
2.

Remark 2.36. Thus, under slightly stronger assumption onb than in Theorem2.20, which we stress
are nevertheless fulfilled in any physically reasonable cases, we can prove the same regularity in
any dimensionas can be obtained for radially symmetric solutions of the homogenous Boltzmann
equation.

Corollary 2.37. Under the same assumptions as in Theorem2.35, for any weak solution f of the
Cauchy problem(1) and any0 < T0 < ∞ there existsβ > 0 and M< ∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβt〈η〉2α | f̂ (t, η)| ≤ M. (50)

Proof. Given Theorem2.35, the proof of Corollary2.37 is the same as the proof of Corollary
2.31. �

The proof of Theorem2.35shows the delicate interplay between the angular singularity of the
collision kernel, the strict concavity of the Gevrey weights, and the use of averages of the weak
solution in Fourier space, together with our inductive procedure, which has proved to be successful
in Theorems2.20and2.30. Again, the main work is to bound the expressionsId,Λ and I+d,Λ from
Lemma2.11. Before we start the proof of Theorem2.35, we start with some preparations. It is
clear that we only have to prove Theorem2.35in dimensiond ≥ 2 and for singularitiesν > α2,m,
since otherwise the result is already contained in Theorems2.20and2.30.

Looking at the integralId,Λ from Lemma2.11, one has

Id,Λ = αβt
∫

Rd


∫ π

2

0

∫

Sd−2(η)
sind θb(cosθ) G(η−)

ǫ

(
α,cot2 θ2

)

| f̂ (η−)|1 Λ√
2

(|η−|) dω dθ



× |GΛ(η) f̂ (η)|2 〈η〉2α dη.

where we use the parametrization (25) for η− = η−(η, θ, ω). Splitting theθ integral above at a point
θ0 ∈ (0, π2) and using the monotonicity of the cotangent on [0, π2] and ofǫ(α, γ) in γ one sees

Id,Λ ≤ Id,Λ,1 + Id,Λ,2

whith

Id,Λ,1 := αβT0 sup
0<θ≤π2

sup
0<|η|≤Λ

∫

Sd−2(η)
G(η−(η, θ, ω))

ǫ

(
α,cot2

θ0
2

)

| f̂ (η−(η, θ, ω))|1 Λ√
2

(|η−(η, θ, ω)|) dω

×
∫ θ0

0
sind θ b(cosθ) dθ ‖GΛ f ‖2Hα(Rd) (51)
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and

Id,Λ,2 := Cθ0αβT0 sup
0<|η|≤Λ

∫ π
2

θ0

∫

Sd−2(η)
G(η−(η, θ, ω))ǫ(α,1) | f̂ (η−(η, θ, ω))|1 Λ√

2

(|η−(η, θ, ω)|) dω dθ

× ‖GΛ f ‖2Hα(Rd) (52)

whereCθ0 is an upper bound forb(cosθ) on [θ0,
π
2]. Now we chooseθ0 > 0 so small that

ǫ(α, cot2
θ0

2
) ≤ ǫ(α2,m, 1) =

2m
2m+ 2

and note that from Corollary2.31, sinceν > α2,m, there exists a finiteM2 such that

sup
0<θ≤π2

sup
0<|η|≤Λ

∫

Sd−2(η)
G(η−(η, θ, ω))ǫ(α2,m,1) | f̂ (η−(η, θ, ω))|1 Λ√

2

(|η−(η, θ, ω)|) dω ≤ M2 < ∞.

So from (51) we get the bound

Id,Λ,1 ≤ αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd) (53)

where the finiteness ofcb,d,2 follows from the singularity condition and the boundednessof b(cosθ)
away fromθ = 0.

For the integralI+d,Λ from Lemma2.11, a completely analogous reasoning as above shows for

small enoughϑ0 such thatǫ(α cotϑ) ≤ ǫ(α2,m, 1) we also have

I+d,Λ ≤ I+d,Λ,1 + I+d,Λ,2

with

I+d,Λ,1 ≤ 2d−1αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd) (54)

and

I+d,Λ,2 := 2dCϑ0αβT0 sup
0<|η+ |≤Λ

∫ π
4

ϑ0

∫

Sd−2(η+)
G(η−(η+, ϑ, ω))ǫ(α,1) | f̂ (η−(η+, ϑ, ω))|1 Λ√

2

(|η−(η+, ϑ, ω)|) dω dϑ

× ‖GΛ f ‖2Hα(Rd) (55)

where we use the parametrization (28) for η− = η−(η+, ϑ, ω) and whereCϑ0 is an upper bound for
b(cos(2ϑ)) on [ϑ0,

π
4].

Recall that we always assumeα ≤ α1,m, soǫ(α, 1) ≤ ǫ(α1,m, 1) = 2m
2m+1. Thus we see that in order

to set up our inductive procedure for controllingIdΛ andI+d,Λ it is natural to introduce

Definition 2.38 (HypothesisHyp3Λ(M)). Let M ≥ 0 be finite, 0< θ0, ϑ0 <
π
4, T0 > 0, andm ≥ 2

an integer. Then for all 0≤ t ≤ T0 one has

sup
|η|≤
√

2Λ

∫ π
2

θ0

∫

Sd−2(η)
G

(
t, η−(η, θ, ω)

) 2m
2m+1

∣∣∣ f̂ (
η−(η, θ, ω)

)∣∣∣1Λ(|η−(η, θ, ω)|) dω dθ ≤ M, (56)

where we use the parametrization given in (25) for η−, and

sup
|η+ |≤

√
2Λ

∫ π
4

ϑ0

∫

Sd−2(η+)
G

(
t, η−(η+, ϑ, ω)

) 2m
2m+1

∣∣∣ f̂ (
η−(η+, ϑ, ω)

)∣∣∣1Λ(|η−(η+, ϑ, ω)|) dω dϑ ≤ M (57)

where we use the parametrization given in (28) for η−.

(58)

For the induction proof of Theorem2.35, we again start with
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Lemma 2.39. Let M ≥ 0, T0 > 0, m ≥ 2 an integer,αm,2 < ν < 1, 0 < α ≤ ν and recall

cb,d,2 =
∫ π

2

0 sind θb(cosθ) dθ (which is finite by the singularity assumption(4) and the boundedness

assumption(16)). Let M2 be from Corollary2.31andβ ≤ C̃ f0
αT0[(1+2d−1)cb,d,2M2+(Cθ0+2dCϑ0)M]+1. Then

for any weak solution of the homogenous Boltzmann equation,

Hyp3Λ(M) ⇒ ‖G√2Λ f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 (59)

for all 0 ≤ t ≤ T0.

Proof. Given Lemma2.11 and the above discussion with the bounds in (53), (54) and using the
hypotheses (Hyp3Λ) for the terms in (52) and (55), one sees that the commutation error on the level√

2Λ is bounded by∣∣∣∣
〈
Q( f ,G√2Λ f ) −G√2ΛQ( f , f ),G√2Λ f

〉∣∣∣∣ ≤ Id,
√

2Λ + I+
d,
√

2Λ

≤ (1+ 2d−1)αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd) + (Cθ0 + 2dCϑ0)αβT0M‖GΛ f ‖2Hα(Rd).

Given this bound on the commutation error, the rest of the proof is the same as in the proof of
Lemma2.25. �

To close the induction step we also need a suitable version ofLemma2.34but before we prove
this we need a preparatory Lemma.

Lemma 2.40. Let H : Rd → R+ be a locally integrable function and letη, η+ ∈ Rd with |η|, |η+| ≥
Λ0 > 0, 0 < θ0 ≤ π

2, and0 < ϑ0 ≤ π
8. Then with the parametrizationη− = η−(η, θ, ω) given in(25)

one has
∫ π

2

θ0

∫ 2

0
H

(
η−(η, θ, ω) + z η

|η|

)
dzdθ ≤ 2

Λ0 cosθ0

∫ |η|
2 +2

Λ0 sin2 θ0
2

∫ |η|
2

Λ0 sinθ0

H
(
x η

|η| − yω
)

dydx

for any unit vectorω orthogonal toη. Moreover, with the parametrizationη− = η−(η+, θ, ω) given

in (28) one has, for anỹΛ ≥ 1+
√

2
2 Λ0,

∫ π
4

ϑ0

∫ 2

0
H

(
η−(η+, ϑ, ω) + z η

|η|

)
1
Λ̃√
2

(|η−(η+, ϑ, ω)|) dzdϑ

≤ 1
2Λ0

∫ 2

0

∫ Λ̃√
2

Λ0 tanϑ0

H
(
x η

|η| − yω
)

dydx

Remark 2.41. The restrictionϑ0 ≤ π
8 is only for convenience, to ensure thatΛ0 tanϑ0 ≤ Λ̃√

2
.

Proof. Fix η as required andω orthogonal to it. We want to have a mapΦ1 : (θ, z) 7→ Φ1(θ, z) =
(x, y) such that

η−(η, θ, ω) + z η

|η| = x η

|η| − yω.

From the parametrization (25) we read off

x = |η| sin2 θ

2
+ z andy =

|η|
2

sinθ

and we can compute the Jacobian going from the (θ, z) variables to (x, y) as
∣∣∣∣∣
∂(x, y)
∂(θ, z)

∣∣∣∣∣ = |detDΦ1| =
|η|
2

cosθ ≥ |η|
2

cosθ0.

Since|η| ≥ Λ0, θ ∈ [θ0,
π
2], and 0≤ z ≤ 2, we haveΛ0 sin2 θ0

2 ≤ x ≤ |η| sin2 π
4 =

η

2 and Λ0
2 sinθ0 ≤

y ≤ η

2. So doing a change of variables (θ, z) = Φ−1
1 (x, y) in the integral we can bound

∫ π
2

θ0

∫ 2

0
H

(
η−(η, θ, ω) + z η

|η|

)
dzdθ ≤ 2

Λ0 cosθ0

∫ |η|
2 +2

Λ0 sin2 θ0
2

∫ |η|
2

Λ0 sinθ0

H
(
x η

|η| + yω
)

dydx
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since the mapΦ1 is a nice diffeomorphism.
For the second bound the calculation is, in fact, a bit easier, one just has to take care that|η−|

cannot be too large, which is taken into account by the factor1Λ(|η−|). We now want a mapΦ2 :
(θ, z) 7→ Φ2(θ, z) = (x, y) such that

η−(η+, ϑ, ω) + z η+

|η+ | = x η+

|η+ | − yω.

From the parametrization (25) we read off

x = z andy = |η−| = |η+| tanϑ

and the Jacobian going from the (ϑ, z) variables to (x, y) is simply
∣∣∣∣∣
∂(x, y)
∂(ϑ, z)

∣∣∣∣∣ = |detDΦ2| = 2|η+| ≥ 2Λ0.

We certainly have 0≤ x ≤ 2 and alsoΛ0 tanϑ0 ≤ y. Sincey = |η−|, we also have the restriction
y ≤ Λ. So the proof of the second inequality follows similar to theproof of first one. �

Finally, we can state and prove the second step in our inductive procedure.

Lemma 2.42. Letβ ≤ 1
T0

. Asssume that there exist finite constants Am and B, such that

‖ f (t, ·)‖L1
m
≤ Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd) ≤ B (60)

for some integer m≥ 2 and for all 0 ≤ t ≤ T0.

SetΛ̃ := 1+
√

2
2 Λ and assume that

Λ ≥ Λ0 := 3. (61)

Then there exist a finite K3, depending only on d,m,Am, and B such thatHyp3̃
Λ

(K3) is true.

Proof. Fix 0 < t ≤ T0, a directionη ∈ Rd \ {0}, and define the function

z 7→ F(z) := f̂ (t, η− + z η

|η| )

of the single real variablez, where we think ofη− as given in theη-parametrization (25) for some
θ andω ∈ Sd−2(η), and where we drop, for simplicity, the dependence on the time t in our notation
for F and f . Then, since‖ f (t, ·)‖L1

m
≤ Am one hasf̂ (t, ·) ∈ Cm(Rd) and thus alsoF ∈ Cm(R) with

‖F‖L∞ ≤ Am ‖∂m
z F‖L∞ ≤ (2π)mAm, and Corollary2.15applied toF now gives

| f̂ (η−)| ≤ Lm,1

(∫ 2

0
| f̂ (η− + z η

|η| )|
2 dz

) m
2m+2

.

We multiply this with the radially increasing weightG to get

G(η−)
2m

2m+1 | f̂ (η−)| ≤ Lm,1

(∫ 2

0
|G(η− + z η

|η| ) f̂ (η− + z η

|η| )|
2 dz

) m
2m+2

.

Integrating this with respect toω andθ, where we think ofη− = η−(η, θ, ω) in the parametrization
(25), and using Jensen’s inequality for concave functions, onegets

∫ π
2

θ0

∫

Sd−2(η)
G(η−)

2m
2m+1 | f̂ (η−)|dθ dω

≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1


∫ π

2

θ0

∫

Sd−2(η)

∫ 2

0
|G(η− + z η

|η| ) f̂ (η− + z η

|η| )|
2 dzdθ dω



m
2m+1

. (62)
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Now assume that|η| ≥ Λ0. Because of the first part of Lemma2.40, we can further bound

(62) ≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
2

Λ0 cosθ0

) m
2m+1



∫

Sd−2(η)

∫ |η|
2 +2

Λ0 sin2 θ0
2

∫ |η|
2

Λ0 sinθ0

|G(x η

|η| − yω) f̂ (x η

|η| − yω)|2 dydxdω



m
2m+1

≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
2

Λ0 cosθ0

) m
2m+1

(Λ0 sinθ0)2−d



∫

Sd−2(η)

∫ |η|
2 +2

Λ0 sin2 θ0
2

∫ |η|
2

Λ0 sinθ0

|G(x η

|η| − yω) f̂ (x η

|η| − yω)|2 yd−2dydxdω



m
2m+1

Again, the integration measureyd−2dydxdω is d-dimensional Lebesgue measure in the cylindrical
coordinates (x, yω) with respect to the cylinder in theη direction. One checks that the condition
Λ ≥ Λ0 ≥ 3 ensures that

(Λ̃/2+ 2)2 + (Λ̃/2) ≤ (
√

2Λ)2

so since|η| ≤ Λ̃, we can extend the integration above to a ball of radius
√

2Λ to get

(62) ≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
2

Λ0 cosθ0

) m
2m+1

(Λ0 sinθ0)2−d‖G√2Λ f ‖
2m

2m+1

L2(Rd)

≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
2

Λ0 cosθ0

) m
2m+1

(Λ0 sinθ0)2−dB
2m

2m+1 . (63)

If |η| ≤ Λ0 we simply bound
∫ π

2

θ0

∫

Sd−2(η)
G(η−)

2m
2m+1 | f̂ (η−)|dθ dω ≤ ‖ f̂ ‖L∞

π

2
|Sd−2|eβT0(1+Λ2

0/2) ≤ Am
π

2
|Sd−2|e1+Λ2

0/2. (64)

Concerning the bound in the second half of Hyp
Λ̃

, a completely analogous calculation as the one
above, using the second halft of Lemma2.40gives forλ0 ≤ |η+| ≤ Λ̃,

∫ π
2

ϑ0

∫

Sd−2(η+)
G

(
t, η−(η+, ϑ, ω)

) 2m
2m+1

∣∣∣ f̂ (
η−(η+, ϑ, ω)

)∣∣∣1 Λ√
2

(|η−(η+, ϑ, ω)|) dω dϑ

≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tanϑ0)2−d


∫

Sd−2(η+)

∫ 2

0

∫ Λ̃√
2

0
|G(x η

|η| − yω) f̂ (x η

|η| − yω)|2 yd−2dydxdω



m
2m+1

(65)

By our choice of̃Λ andΛ0, we always have 22+ (Λ̃/2)2 ≤ (
√

2Λ)2, so we can extend the integration
above to the whole ball|η+| ≤

√
2Λ to see

(65) ≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tanϑ0)2−d‖G√2Λ f ‖
2m

2m+1

L2(Rd)

≤ Lm,1(π2)
m+1
2m+1 |Sd−2|

m+1
2m+1

(
1

2Λ0

) m
2m+1

(Λ0 tanϑ0)2−dB
2m

2m+1 (66)

If |η+| ≤ Λ0 we simply bound as above
∫ π

4

ϑ0

∫

Sd−2(η+)
G(η−)

2m
2m+1 | f̂ (η−)|dϑdω ≤ Am

π

4
|Sd−2|e1+Λ2

0. (67)
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Now we setK3 equal to the maximum of the constants in (63), (64), (66), (67). with this choice,K3

depends only ond,m,Am, andB and Hyp3̃
Λ

(K3) is true. �

Proof of Theorem2.35. By Lemmata2.33and2.34a suitable choice forAm andB is

B := ‖ f0‖L2(Rd)e
C f0T0,

Am := sup
t≥0
‖ f (t, ·)‖L1

m(Rd) < ∞.

Note that the finiteness ofAm is guaranteed sincef0 ∈ L1
m(Rd), see Remark2.29. Again choose the

length scalesΛN to be

ΛN :=
ΛN−1 +

√
2ΛN−1

2
=

1+
√

2
2
ΛN−1 =


1+
√

2
2


N

Λ0

with Λ0 = 3, see (61), and we set

M3 := max
{
2|Sd−2|Am + 1,K3

}

with the constantK3 from Lemma2.42.
For the start of the induction, we need Hyp3Λ0

(M3) to be true. Since

sup
0≤t≤T0

sup
ζ∈Rd\{0}

sup
(z,ρ)∈AΛ0

∫

Sd−2(ζ)
G

(
t, z ζ

|ζ | − ρω
)ǫ(α,1)

∣∣∣∣ f̂
(
t, z ζ

|ζ | − ρω
)∣∣∣∣ dω

≤ |Sd−2|eβT0(1+Λ2
0)Am

and from our choice ofM2 there existsβ0 > 0 such that Hyp2Λ0
(M2) is true for all 0≤ β ≤ β0.

Now, we choose

β = min

(
β0,T

−1
0 ,

C̃ f0

2dcb,d,2αT0M2 + 1

)
.

With this choice, the conditions of Lemma2.33and2.34are fulfilled and Hyp2Λ0
(M2) is true.

For the induction step assume that Hyp2ΛN
(M2) is true. Then Lemma2.33gives

‖G√2ΛN
f ‖L2(Rd) ≤ ‖1√2Λ(Dv) f0‖L2(Rd) eC f0T0 = B

and then, sinceǫ(α, 1) ≤ 2m
2m+2 by our choice ofα, andΛN+1 = Λ̃N, Lemma2.34 shows that

Hyp2ΛN+1
(M2) is true, so by induction, it is true for allN ∈ N. Invoking Lemma2.33again, we also

have
‖G√2ΛN

f ‖L2(Rd) ≤ B

for all N ∈ N and lettingN → ∞, we see‖G f‖L2(Rd) ≤ B, which concludes the proof of Theorem
2.30. �

3. Removing the L2
constraint: Gevrey regularity and (ultra-)analyticity of weak solutions

In this section we will give the proofs of Theorem1.6, 1.8, and1.9 in a slightly more general
form. More precisely, we will prove

Theorem 3.1(Gevrey smoothing I). Assume that the cross-section b satisfies thesingularity con-
dition (3) and theintegrability condition (4) for d ≥ 2, and for d= 1, b1 satisfies thesingularity
condition (6) and theintegrability condition (7) for some0 < ν < 1. Let f be a weak solution of
the Cauchy problem(1) with initial datum f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L log L(Rd) for some integer
m≥ 2. Then, for all0 < α ≤ min

{
αm,d, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (68)

for all t > 0, whereαm,d =
log[(4m+d)/(2m+d)]

log 2 .
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Theorem 3.2 (Gevrey smoothing II). Let d ≥ 2. Assume that the cross-section b satisfies the
conditions of Theorem1.6. Let f be a weak solution of the Cauchy problem(1) with initial datum
f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L logL(Rd) for some integer m≥ 2. Then, for all0 < α ≤ min
{
αm,2, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (69)

for all t > 0, whereαm,2 =
log[(4m+2)/(2m+2)]

log 2 . In particular, the weak solution is real analytic ifν = 1
2

and ultra-analytic ifν > 1
2 in any dimension.

If the integrability conditions (4) is replaced by the slightly stronger condition (16), which is true
in all physically relevant cases, we can prove the stronger result

Theorem 3.3 (Gevrey smoothing III). Let d ≥ 2. Assume that the cross-section b satisfies the
conditions of Theorem1.6 and the condition(16), that is, they are bounded away from the sin-
gularity. Let f be a weak solution of the Cauchy problem(1) with initial datum f0 ≥ 0 and
f0 ∈ L1

m(Rd) ∩ L logL(Rd) for some integer m≥ 2. Then, for all0 < α ≤ min
{
αm,1, ν

}
,

f (t, ·) ∈ G
1

2α (Rd) (70)

for all t > 0, whereαm,1 =
log[(4m+1)/(2m+1)]

log 2 .

Remark 3.4.

We even have the uniform bound

Corollary 3.5. Under the same assumptions as in Theorem3.1 (or 3.2, respectively3.3), for any
weak solution f of the Cauchy problem(1) initial datum f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L logL(Rd) for
some integer m≥ 2 and for any0 < α ≤ min{αd,m, ν} (or any0 < α ≤ min{αm,2, ν}, respectively
0 < α ≤ min{αm,1, ν}) there exist constants0 < K,C < ∞ such that

sup
0≤t<∞

sup
η∈Rd

eK min(t,1)〈η〉2α | f̂ (t, η)| ≤ C. (71)

Proof of Theorems3.1through3.3. In the case where the initial conditionf0 obeys f0 ≥ 0 and
f0 ∈ L1

m(Rd) ∩ L logL(Rd) for some integerm ≥ 2, but is not necessarily inL2(Rd), we use the
knownH∞ smoothing of the Boltzmann [16, 4, 30] and Kac equation4 [23] in a mild way (see also
AppendixB): for τ > 0 one hasf (τ, ·) ∈ L2(Rd) and using this as a new initial condition in Theorems
1.6 through1.9, and noting thatT0 in those theorems is arbitrary, this implies thatf (t, ·) ∈ G

1
2α (Rd)

for t > 0. �

Proof of Corollary3.5 . Using known results about propagation of Gevrey regularityby Desvil-
lettes, Furioli, and Terraneo [15] for the non-cutoff homogeneous Boltzmann and Kac equation
for Maxwellian molecules, the bounds from Corollary2.21through2.37extend to all times. �

Appendix A. L2
type reformulation of the Boltzmann and Kac equations

A reformulation of the weak form (9) of the Boltzmann and Kac equations is derived. We want
to choose a suitable test functionϕ in terms of the weak solutionf itself in the weak formulation of
the Cauchy problem (1). We useϕ(t, ·) := G2

Λ
(t,Dv) f (t, ·) and since this involves a hard cut-off in

Fourier space, we automatically have high regularity ofϕ(t, v) in the velocity variable, the question
is to haveC1 regularity in the time variable. For this we follow the strategy by Morimoto et al.
[30].

4A H∞ smoothing effect for the homogeneous non-cutoff Kac equation was first proved by L. Desvillettes [11], but
under the stronger assumption that all polynomial moments of the initial datumf0 are bounded, i.e.f0 ∈ L1

k(R)∩L log L(R)
for all k ∈ N.
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Proposition A.1. Let f be a weak solution of the Cauchy problem(1) with initial datum f0 satisfying
(8), and let T0 > 0. Then for all t ∈ (0,T0], β > 0, α ∈ (0, 1), andΛ > 0 we have GΛ f ∈
C

(
[0,T0]; L2(Rd)

)
and

1
2
‖GΛ(t,Dv) f (t, ·)‖2L2(Rd) −

1
2

∫ t

0

〈
f (τ, ·),

(
∂tG

2
Λ(τ,Dv)

)
f (τ, ·)

〉
dτ

=
1
2
‖1Λ(Dv) f0‖2L2(Rd) +

∫ t

0

〈
Q( f , f )(τ, ·),G2

Λ(τ,Dv) f (τ, ·)
〉

dτ.

(72)

To ensure that we can useG2
Λ

f as a test function in the weak formulation of the Boltzmann
equation, we need the following bilinear estimate onQ(g, f ), which is a special case of a larger
class of functional inequalities by Alexandre [1, 2, 5].

Lemma A.2 (Functional Estimate on Collision Operator). Assume that the angular collision cross-
section b satisfies assumptions(3)-(4) or (6)-(7), respectively. Then for any k> d+4

2 there exists a
constant C> 0 such that

‖Q(g, f )‖H−k(Rd) ≤ C‖g‖L1
2(Rd)‖ f ‖L1

2(Rd). (73)

Proof. This is a direct consequence5 of Theorem 7.4 in Alexandre’s review [2]: under the assump-
tions onb, for anym ∈ R there exists a constant̃C > 0 such that

‖Q(g, f )‖H−m(Rd) ≤ C̃‖g‖L1
2ν(R

d)‖ f ‖H−m+2ν
2ν (Rd).

SinceL1(Rd) ⊂ H−s(Rd) for any s> d
2, we obtain fork > d+4

2 andν ∈ (0, 1),

‖ f ‖H−k+2ν
2ν (Rd) = ‖〈·〉

2ν f ‖H−k+2ν(Rd) ≤ C‖〈·〉2ν f ‖L1(Rd) ≤ c‖〈·〉2 f ‖L1(Rd) = c‖ f ‖L1
2(Rd).

i.e. L1
2(Rd) ⊂ H−k+2ν

2ν (Rd) for anyk > d+4
2 andν ∈ (0, 1). Therefore,

‖Q(g, f )‖H−k(Rd) ≤ C̃‖g‖L1
2ν(R

d)‖ f ‖H−k+2ν
2ν (Rd) ≤ C‖g‖L1

2(Rd)‖ f ‖L1
2(Rd).

�

LemmaA.2 implies that forf , g ∈ L1
2(Rd), 〈Q(g, f ), h〉 is well-defined for allh ∈ Hk(Rd), k > d+4

2 ,

and one has〈Q(g, f ), h〉 = 〈Q̂(g, f ), ĥ〉L2.

Proof of PropositionA.1. Choosing a constant in time test functionϕ(t, ·) = ψ ∈ C∞0 (Rd) in the
weak formulation (9) yields

∫

Rd
f (t, v)ψ(v) dv −

∫

Rd
f (s, v)ψ(v) dv =

∫ t

s
〈Q( f , f )(τ, ·), ψ〉dτ, for 0 ≤ s≤ t ≤ T0

for all ψ ∈ C∞0 (Rd) (this was already remarked by Villani [39] as an equivalent formulation of (9)).
By means of (73) this equality can be extended to test functionsψ ∈ Hk for k > d+4

2 , in particular
one can chooseψ = G2

Λ
f (t, ·) andψ = G2

Λ
f (s, ·) which, taking the sum of both resulting equations,

yields

‖GΛ f (t, ·)‖2L2(Rd) − ‖GΛ f (s, ·)‖2L2(Rd) =
〈

f (t, ·),G2
Λ f (t, ·)

〉
−

〈
f (s, ·),G2

Λ f (s, ·)
〉

=
〈

f (t, ·),
(
G2
Λ(t,Dv) −G2

Λ(s,Dv)
)

f (s, ·)
〉
+

∫ t

s

〈
Q( f , f )(τ, ·),G2

Λ f (t, ·) +G2
Λ f (s, ·)

〉
dτ.

(74)

5This result is proved in [2] for d = 3, but the proof depends only on assumption (3) and general properties of
Littlewood-Paley decompositions and holds in any dimension d ≥ 1.
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Using Plancherel, the first term on the right hand side of (74) can be estimated by
∣∣∣∣
〈

f (t, ·),
(
G2
Λ(t,Dv) −G2

Λ(s,Dv)
)

f (s, ·)
〉∣∣∣∣ =

∣∣∣∣
〈

f̂ (t, ·),
(
G2
Λ(t, ·) −G2

Λ(s, ·)
)

f̂ (s, ·)
〉∣∣∣∣

≤
∫

Rd
| f̂ (t, η)| |G2

Λ(t, η) −G2
Λ(s, η)| | f̂ (s, η)|dη

≤ |t − s|
∫

Rd
2β〈η〉2αG2

Λ(t, η) dη ‖ f (t, ·)‖L1(Rd)‖ f (s, ·)‖L1(Rd) ≤ CΛ,T0|t − s| ‖ f0‖2L1(Rd),

and, using that the terms involving the collision operator can, for anyk > d+4
2 (compare (73)), be

bounded by

|〈Q( f , f )(τ, ·),G2
Λ f (t, ·)〉| ≤ ‖Q( f , f )(τ, ·)‖H−k(Rd)‖G2

Λ f (t, ·)‖Hk(Rd)

≤ C‖ f ‖2
L1

2(Rd)

(∫

Rd
〈η〉2kG4

Λ(t, η)| f̂ (t, η)|2 dη

)1/2

≤ C‖ f ‖2
L1

2(Rd)
‖ f (t, ·)‖L1(Rd)

(∫

Rd
〈η〉2kG4

Λ(T0, η) dη

)1/2

≤ C′Λ,T0
‖ f0‖2L1

2(Rd)
‖ f0‖L1(Rd)

for anyt ∈ [0,T0], yields
∣∣∣∣∣∣

∫ t

s
〈Q( f , f )(τ, ·),G2

Λ f (t, ·) +G2
Λ f (s, ·)〉dτ

∣∣∣∣∣∣ ≤ 2C′Λ,T0
|t − s| ‖ f0‖2L1

2(Rd)
‖ f0‖L1(Rd).

Plugging the latter two bounds into (74) shows thatGΛ f ∈ C([0,T0]; L2(Rd)), in fact, the map
[0,T0] ∋ t 7→ ‖GΛ f (t, ·)‖L2(Rd) is even Lipschitz continuous.

For any test functionϕ ∈ C1(R+; C∞0 (Rd)) the term involving the partial derivative∂tϕ in the
weak formulation (9) can be rewritten as

∫ t

0
〈 f (τ, ·), ∂τϕ(τ, ·)〉 dτ = lim

h→0

∫ t

0

〈
f (τ, ·) + f (τ + h, ·), ϕ(τ + h, ·) − ϕ(τ, ·)

2h

〉
dτ,

since f ∈ C(R+; D′(Rd)). The integral on the right hand side is well-defined even for ϕ ∈
L∞([0,T0]; W2,∞(Rd)), in particular forϕ = G2

Λ
f , yielding

∫ t

0

〈
f (τ, ·) + f (τ + h, ·), ϕ(τ + h, ·) − ϕ(τ, ·)

2h

〉
dτ

=

∫ t

0

〈
f (τ, ·) + f (τ + h, ·),

G2
Λ

f (τ + h, ·) −G2
Λ

f (τ, ·)
2h

〉
dτ

=
1
2h

∫ t

0

(
‖GΛ f (τ + h, ·)‖2L2 − ‖GΛ f (τ, ·)‖2L2

)
dτ

+

∫ t

0

〈
f (τ, ·),

G2
Λ

(τ + h,Dv) −G2
Λ

(τ,Dv)

2h
f (τ + h, ·)

〉
dτ.

UsingGΛ f ∈ C([0,T0]; L2(Rd)) it follows that

1
2h

∫ t

0

(
‖GΛ f (τ + h, ·)‖2L2(Rd) − ‖GΛ f (τ, ·)‖2L2(Rd)

)
dτ

=
1
2h

∫ t+h

t
‖GΛ f (τ, ·)‖2L2(Rd) dτ − 1

2h

∫ h

0
‖GΛ f (τ, ·)‖2L2(Rd) dτ

h→0−→ 1
2
‖GΛ f (t, ·)‖2L2(Rd) −

1
2
‖GΛ f (0, ·)‖2L2(Rd).
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where‖GΛ f (0, ·)‖L2(Rd) = ‖1Λ(Dv) f0‖L2(Rd). For the second integral, an application of dominated
convergence gives

lim
h→0

∫ t

0

〈
f (τ, ·),

G2
Λ

(τ + h,Dv) −G2
Λ

(τ,Dv)

2h
f (τ + h, ·)

〉
dτ

=
1
2

∫ t

0

〈
f (τ, ·),

(
∂τG

2
Λ

)
(τ,Dv) f (τ, ·)

〉
dτ.

Putting everything together, we thus have proved equation (72), i.e.

1
2
‖GΛ f ‖2L2(Rd) =

1
2
‖1Λ(Dv) f0‖2L2(Rd) +

1
2

∫ t

0

〈
f (τ, ·),

(
∂τG

2
Λ

)
(τ,Dv) f (τ, ·)

〉
dτ

+

∫ t

0

〈
Q( f , f ),G2

Λ f
〉

dτ.

�

Appendix B. H∞ smoothing of the Boltzmann an Kac equations

We follow the strategy as in our proof of Gevrey regularity, with several simplifications. Of
course, wedo notassume thatf0 is square integrable! We have

Theorem B.1 (H∞ smoothing for the homogeneous Boltzmann and Kac equation). Assume that
the cross-section b satisfies(3)-(4) for d ≥ 2, respectively(6)-(7) for d = 1, with 0 < ν < 1. Let f
be a weak solution of the Cauchy problem(1) with initial datum satisfying conditions(8). Then

f (t, ·) ∈ H∞(Rd) (75)

for all t > 0.

The proof is known, at least for the three dimensional Boltzmann equation see [30], we give
a proof for the convenience of the reader. Again, one has to use suitable time-dependent Fourier
multipliers. Note that forf0 ∈ L1(Rd) one has

‖ f0‖H−γ(Rd) ≤ Cd,γ‖ f0‖L1(Rd)

with Cd,γ =
(∫
Rd〈η〉−γ dη

)1/2
which is finite for allγ > d/2. We chooseγ = d, for convenience, and

MΛ(t, η) := 〈η〉−deβt log〈η〉
1Λ(|η|)

as a multiplier. Then

sup
Λ>0
‖MΛ(0,Dv) f0‖L2(Rd) = ‖M∞(0, ·) f̂0‖L2(Rd) = ‖ f0‖H−d(Rd) ≤ Cd,d‖ f0‖L1(Rd)

The proof of PropositionA.1 carries over and we have

1
2
‖MΛ(t,Dv) f (t, ·)‖2L2(Rd) −

1
2

∫ t

0

〈
f (τ, ·),

(
∂τM

2
Λ(τ,Dv)

)
f (τ, ·)

〉
dτ

=
1
2
‖MΛ(0,Dv) f0‖2L2(Rd) +

∫ t

0

〈
Q( f , f )(τ, ·),M2

Λ(τ,Dv) f (τ, ·)
〉

dτ.

(76)

and as in the proof of Corollary2.4, we have

〈Q( f , f ),M2
Λ f 〉 = 〈Q( f ,MΛ f ),MΛ f 〉 + 〈MΛQ( f , f ) − Q( f ,MΛ f ),MΛ f 〉

≤ −C̃ f0‖MΛ f ‖2Hν +C f0‖MΛ f ‖2L2 + 〈MΛQ( f , f ) − Q( f ,MΛ f ),MΛ f 〉
(77)

The replacement of Proposition2.9 is

Proposition B.2. The commutation error is bounded by

|〈MΛQ( f , f ) − Q( f ,MΛ f ),MΛ f 〉| ≤ (1+ 2d−1)cb,d‖ f ‖L1

(
d
2
+
βt
2

2βt/2
)
‖MΛ f ‖2L2 (78)

with the constant cb,d from Lemma2.25.
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Remark B.3. Of course, for any weak solutionf of the Boltzmann and Kac equations,‖ f ‖L1 =

‖ f (t, ·)‖L1 = ‖ f0‖L1. The fact that the commutator is bounded in terms of theL2 norm of MΛ f
makes the proof ofH∞ smoothing for the Boltzmann and Kac equations much simpler than the
proof of Gevrey regularity.

Proof. As in the proof of Proposition2.9, Bobylev’s formula shows

|〈MΛQ( f , f ) − Q( f ,MΛ f ),MΛ f 〉| ≤

≤
∫

Rd

∫

Sd−1
b

(
η

|η| · σ
)

MΛ(η)| f̂ (η)|| f̂ (η−)|| f̂ (η+)||MΛ(t, η) − MΛ(t, η+)|dσ dη

≤ ‖ f̂ ‖L∞
∫

Rd

∫

Sd−1
b

(
η

|η| · σ
)

MΛ(η)| f̂ (η)|| f̂ (η+)||MΛ(t, η) − MΛ(t, η+)|dσ dη

(79)

where, as before,η± = 1
2(η ± |η|σ). To bound|MΛ(η) − MΛ(η+)|, we let s := |η|2 and s+ = |η+|2.

Recall that|η+|2 = |η|
2

2 (1+ η

|η| · σ) and

1− s+

s
= 1− |η

+|2

|η|2
=

1
2

(
1− η

|η| · σ
)

Again, because of the support condition on the collision kernel b(cosθ), we haves
2 ≤ s+ ≤ s. Set

M̃(s) := (1+ s)−d/2e
βt
2 log(1+s). Then, for|η| ≤ Λ,

MΛ(η) − MΛ(η+) = M̃(s) − M̃(s+) = (1+ s)−d/2e
βt
2 log(1+s) − (1+ s+)−d/2e

βt
2 log(1+s+)

= (1+ s)−d/2
(
e
βt
2 log(1+s) − e

βt
2 log(1+s+)

)
+

(
(1+ s)−d/2 − (1+ s+)−d/2

)
e
βt
2 log(1+s+).

(80)

Sinces≤ 2s+, we have (1+ s+)−1 ≤ 2(1+ s)−1. Hence
∣∣∣(1+ s)−d/2 − (1+ s+)−d/2

∣∣∣ = d
2

∫ s

s+
(1+ r)−d/2−1 dr ≤ d

2
(1+ s+)−d/2−1(s− s+)

≤ d(1+ s+)−d/2
(
1− s+

s

)

In addition, log(1+ s) ≤ log(2(1+ s+)) = log 2+ log(1+ s+). So
∣∣∣∣e

βt
2 log(1+s) − e

βt
2 log(1+s+)

∣∣∣∣ ≤
βt
2

∫ s

s+

1
1+ r

e
βt
2 log(1+r) dr ≤ βt

2
s

1+ s+
e
βt
2 log(1+s)

(
1− s+

s

)

≤ βt2
βt
2 e

βt
2 log(1+s+)

(
1− s+

s

)
.

Also log(1+ s) ≤ log(2(1+ s+)) = log 2+ log(1+ s+). These bounds together with (80) show

∣∣∣MΛ(η) − MΛ(η+)
∣∣∣ ≤

(
d + βt 2

βt
2

) (
1− |η

+|2

|η|2

)
MΛ(η+)

for all |η| ≤ Λ. Since the integration in (79) is only over |η| ≤ Λ, plugging this together with
‖ f̂ ‖L∞ ≤ ‖ f ‖L1 into (79) yields

|〈MΛQ( f , f ) − Q( f ,MΛ f ),MΛ f 〉|

≤ ‖ f ‖L1

(
d + βt 2

βt
2

) ∫

Rd

∫

Sd−1
b

(
η

|η|
· σ

) (
1− |η

+|2

|η|2

)
MΛ(η)| f̂ (η)|MΛ(η+)| f̂ (η+)|dσ dη.

Noting again

MΛ(η)| f̂ (η)|MΛ(η+)| f̂ (η+)| ≤ 1
2

(
(MΛ(η)| f̂ (η)|)2 + (MΛ(η+)| f̂ (η+)|)2

)

and performing the same change of variables for the integralcontainingη+ as in the proof of Lemma
2.11finishes the proof of equation (78). �

Now we can finish the
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Proof of TheoremB.1. Using (76), (77), PropositionB.2, and

∂τMΛ(τ, η)2 = 2β log〈η〉MΛ(τ, η)2

one sees

‖MΛ(t,Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d + 2C f0

∫ t

0
‖MΛ(τ,Dv) f (τ, ·)‖2L2 dτ

+

∫ t

0

〈
MΛ(τ,Dv) f (τ, ·),

(
β log〈Dv〉 − 2C̃ f0〈Dv〉2ν

)
MΛ(τ,Dv) f (τ, ·)

〉
dτ

+ (1+ 2d−1)cb,d‖ f0‖L1

∫ t

0

(
d
2
+
βτ

2
2
βτ

2

)
‖MΛ(τ,Dv) f (τ, ·)‖2L2

Setting

A(β, τ) := sup
η∈Rd

(
β log〈η〉 − 2C̃ f0〈η〉2ν

)
+ 2C f0 + (1+ 2d−1)cb,d‖ f0‖L1

(
d
2
+
βτ

2
2
βτ

2

)

=
β

2ν

log


β

4νC̃ f0

 − 1

 + 2C f0 + (1+ 2d−1)cb,d‖ f0‖L1

(
d
2
+
βτ

2
2
βτ

2

)

the above can be bounded by

‖MΛ(t,Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d +

∫ t

0
A(β, τ)‖MΛ(τ,Dv) f (τ, ·)‖2L2 dτ

and from Gronwall’s lemma we get

‖MΛ(t,Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d exp

(∫ t

0
A(β, τ) dτ

)
.

LettingΛ→ ∞ one sees

‖ f (t, ·)‖2Hβt−d = ‖M∞(t,Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d exp

(∫ t

0
A(β, τ) dτ

)
.

that is, f (t, ·) ∈ Hβt−d(Rd). Now letβ→ ∞ to see thatf (t, ·) ∈ H∞(Rd) for anyt > 0. �

Remark B.4. Settingβ = γ+d
t , one sees that‖ f (t, ·)‖Hγ(Rd) . t−

γ+d
4ν , so theHγ norms, in particular

theL2 norm, of f (t, ·) blow up at most polynomially ast → 0.

Appendix C. The Kolmogorov-Landau inequality

In this section we give a short proof of

Lemma C.1 (Kolmogorov-Landau inequality on the unit interval). Let m≥ 2 be an integer. There
exists a constant Cm > 0 such that for all w∈Wm,∞([0, 1]),

‖w(k)‖L∞([0,1]) ≤ Cm

(‖w‖L∞([0,1])

uk
+ um−k‖w(m)‖L∞([0,1])

)
, k = 1, . . . ,m− 1,

for all 0 < u ≤ 1.

For the convenience of the reader, we give a short proof. The following argument is in part
borrowed from R. A. DeVore and G. G. Lorentz’s book [17] (pp.37–39).

Proof. Sincew ∈ Wm,∞([0, 1]), it has absolutely continuous derivatives of order up tom− 1 and
essentially boundedmth derivative.

Let x ∈ [0, 1
2] andh ∈ [0, 1

2]. Then, by Taylor’s theorem,

w(x+ h) = w(x) +
m−1∑

j=1

h j

j!
w( j)(x) + Rm(x, h)
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with remainderRm(x, h) =
∫ h

0
(h−t)m−1

(m−1)! w(m)(x+ t) dt, which can be bounded by

|Rm(x, h)| ≤ ‖w(m)‖L∞([0,1])

∫ h

0

(h− t)m−1

(m− 1)!
dt =

hm

m!
‖w(m)‖L∞([0,1]).

Choosingm− 1 real numbers 0< λ1 < λ2 < · · · < λm−1 ≤ 1 we obtain forh ∈ [0, 1
2] the system

of equations

m−1∑

j=1

λ
j
s
h j

j!
w( j)(x) = w(x+ λsh) − w(x) − Rm(x, λsh) for s= 1, · · · ,m− 1. (81)

Setting

V =



λ1 λ2
1 · · · λm−1

1
λ2 λ2

2 · · · λm−1
2

...
. . .

...

λm−1 λ2
m−1 · · · λm−1

m−1


, w(x) =



hw′(x)
h2

2 w′′(x)
...

hm−1

(m−1)!w
(m−1)(x)


,

b(x) =



w(x+ λ1h) − w(x) − Rm(x, λ1h)
w(x+ λ2h) − w(x) − Rm(x, λ2h)

...

w(x+ λm−1h) − w(x) − Rm(x, λm−1h)


,

we haveVw(x) = b(x). Since the Vandermonde determinant

detV =
m−1∏

i=1

λi

∏

1≤ j<l≤m−1

(λl − λ j) , 0,

V is invertible and we obtainw(x) = V−1b(x) and therefore
∣∣∣∣∣∣
hk

k!
w(k)(x)

∣∣∣∣∣∣ ≤ ‖w(x)‖ ≤ ‖V−1‖ ‖b(x)‖. (82)

where‖ · ‖ is any norm onRm−1, respectively the induced operator norm on the space of (m− 1)×
(m− 1) real matrices. Choosing for concreteness theℓ1 norm onRm−1, we have

‖b(x)‖ =
m−1∑

s=1

|w(x+ λsh) − w(x) − Rm(x, λsh)| ≤ (m− 1)

(
2‖w‖L∞([0,1]) +

hm

m!
‖w(m)‖L∞([0,1])

)
.

While for our application the size of‖V−1‖ is of no importance, one can even explicitly calculate it:
The inverse of the Vandermonde matrixV is explicitly known (see for instance [18]),

(
V−1

)
αβ
= (−1)α−1 σ

β

m−1−α
λβ

∏
ν,β(λν − λβ)

, α, β = 1, . . . ,m− 1,

whereσ j
i , i, j = 1, . . . ,m− 2 is the ith elementary symmetric function in the (m − 2) variables

λ1, . . . , λ j−1, λ j+1, . . . , λm−1,

σ
j
i =

∑

1≤ν1<···<νi≤m−1
ν1,...,νi, j

λν1 · · · λνi , σ
j
0 := 1.

By means of the identity (Lemma 1 in [18])

m−2∑

i=0

σ
j
i =

m−1∏

ν=1
ν, j

(1+ λν)
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which holds since theλν are all positive, we get

‖V−1‖ = max
1≤β≤m−1

m−1∑

α=1

∣∣∣∣
(
V−1

)
αβ

∣∣∣∣ = max
1≤β≤m−1

1
λβ

∏
ν,β |λν − λβ|

m−1∑

α=1

σ
β

m−1−α

= max
1≤β≤m−1

1
λβ

m−1∏

ν=1
ν,β

1+ λν
|λν − λβ|

.

Going back to inequality (82), we have so far proved that

hk

k!

∣∣∣w(k)(x)
∣∣∣ ≤ (m− 1)‖V−1‖

(
2‖w‖L∞([0,1]) +

hm

m!
‖w(m)‖L∞([0,1])

)
,

which yields

∣∣∣w(k)(x)
∣∣∣ ≤ (m− 1)‖V−1‖

(
2k!

hk
‖w‖L∞([0,1]) + hm−k k!

m!
‖w(m)‖L∞([0,1])

)

≤ (m− 1)‖V−1‖
(
2m!

hk
‖w‖L∞([0,1]) + hm−k‖w(m)‖L∞([0,1])

) (83)

For x ∈ [ 1
2 , 1] the same calculations withh replaced by−h prove inequality (83) also in this case, so

‖w(k)‖L∞([0,1]) ≤ (m− 1)‖V−1‖
(
2m!

hk
‖w‖L∞([0,1]) + hm−k‖w(m)‖L∞([0,1])

)
(84)

for all h ∈ [0, 1
2]. Taking an arbitraryu ∈ [0, 1], inequality (84) implies withh = u

2 ∈ [0, 1
2],

‖w(k)‖L∞([0,1]) ≤ 2mm!(m− 1)‖V−1‖
(

1

uk
‖w‖L∞([0,1]) + um−k‖w(m)‖L∞([0,1])

)
,

which is the claimed inequality with

Cm = 2mm!(m− 1)‖V−1‖ = 2mm!(m− 1) max
1≤β≤m−1

1
λβ

m−1∏

ν=1
ν,β

1+ λν
|λν − λβ|

. (85)

�

Remark C.2. The constantCm in equality (85) is far from optimal, but can be made small by
minimising in the choice of the points 0< λ1 < · · · < λm−1 ≤ 1, suggesting that the optimal
constant might be obtained by methods from approximation theory.

Indeed, by a more refined argument making use of numerical differentiation formulas, the min-
imisers of the associated multiplicative Kolmogorov-Landau inequality, i.e., extremisers of

Mk(σ) := sup{‖w(k)‖L∞([0,1]) : w ∈Wm,∞([0, 1]), ‖w‖L∞([0,1]) ≤ 1, ‖wm‖L∞([0,1]) ≤ σ}

are explicitly known (at least for a wide range of parametersm ∈ N andσ ≥ 0). The optimal
Kolmogorov-Landau constants in these cases are given by theend-point values of certain Chebyshev
type perfect splines. We refer to the papers by A. Pinkus [34] and S. Karlin [22], as well as the
recent article by A. Shadrin [35] and references therein.

Appendix D. Proof of Lemma 1.1

Proof. Let f ∈ L1
2(Rd) ∩ L logL(Rd) Then

|H( f )| =
∫

Rd
f log+ f dv+

∫

Rd
f log− f dv.
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The positive part is bounded by
∫

f log(1+ f ) dv = ‖ f ‖L log L. The negative part can be controlled
by

∫

Rd
f log− f dv =

∫

{ f≤1}
f log

1
f

dv ≤ Cδ

∫

{ f≤1}
f 1−δ dv ≤ Cδ

(∫

Rd
(1+ |v|2)−

1−δ
δ dv

)δ
‖ f ‖1−δ

L1
2

which is finite for 0< δ < 2
d+2, having used that for anyδ > 0 there exists a constantCδ such that

log t ≤ Cδtδ for all t ≥ 1.
Conversely, letf ∈ L1

2(Rd) with finite entropyH( f ). Then
∫

Rd
f log(1+ f ) dv =

∫

{ f≤1}
f log(1+ f ) dv+

∫

{ f>1}
f log(1+ f ) dv

On wheref ≤ 1, we replacef by 1 and wheref > 1, we bound 1+ f by 2f leading to
∫

Rd
f log(1+ f ) dv ≤ log 2

∫

Rd
f dv+

∫

Rd
f log f dv+

∫

Rd
f log− f dv

As above, we conclude∫

Rd
f log(1+ f ) dv ≤ log 2|| f ‖L1(Rd) + H( f ) +Cδ,d‖ f ‖1−δL1

2(Rd)
. (86)

with a finite constantCδ,d for 0 < δ < 2
d+2. �
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