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Image Zoom Completion

We consider the problem of recovering a highresolution image from a pair consisting of a complete lowresolution image and a high-resolution but incomplete one. We refer to this task as the image zoom completion problem. After discussing possible contexts in which this setting may arise, we introduce a nonlocal regularization strategy, giving full details concerning the numerical optimization of the corresponding energy, and discussing its benefits and shortcomings. We also derive two total variation-based algorithms and evaluate the performance of the proposed methods on a set of natural and textured images. We compare the results we get with those obtained with two recent state-of-the-art single-image superresolution algorithms.

I. INTRODUCTION

Image restoration problems are ubiquitous in the field of image processing [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF]. Therein, the goal is to estimate an underlying image from a set of related, degraded, and possibly incomplete measurements. The first step towards this goal is the identification of the imaging device parameters, as well as those pertaining to the scene being imaged. Considering a linear forward model, either known a priori or properly estimated, with additive noise, the restoration problem can be cast as an inverse problem where the goal is to recover an image f P R n , n ě 1, related to measurements y P R p , p ď n, through the forward model

y " Af `η η η, (1) 
where A P R pˆn is a known linear operator and η η η is unknown and accounts for both sensing and modeling errors. Depending on the nature of the matrix A in [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF], different restoration problems are encountered. In all cases, the very nature of imaging devices leads to problems of the form [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF] which are either undetermined (p ă n) or ill-conditioned (the condition number of A is very high). A common strategy to deal with such ill-posed inverse problems is through the variational approach. In this setting, specific prior information about the sought-after image is selected by choosing a penalty function J. An estimated image f is then obtained by minimizing an overall cost function imposing a trade-off between prior information (through J) and a data fidelity term Moncef Hidane is with INSA Centre Val de Loire and with Laboratoire d'Informatique de l'Université de Tours.

Mireille El Gheche is with the IMS and IMB laboratories of Université de Bordeaux.

Jean-Franc ¸ois Aujol and Charles Deledalle are with IMB CNRS-Université de Bordeaux and Institut Polytechnique de Bordeaux.

Yannick Berthoumieu is with Institut Polytechnique de Bordeaux and with the IMS Laboratory.

This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the "Investments for the future" Programme IdEx Bordeaux -CPU (ANR-10-IDEX-03-02).

J.-F. Aujol acknowledges the support of the Institut Universitaire de France.

controlling the discrepancy between the estimated image f and the measurements y according to the forward model [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF].

A. Image Zoom Completion

We study in this paper a specific restoration problem that we term image zoom completion (IZC). Here, the problem is to recover a high-resolution (HR) image from a pair consisting of a complete low-resolution (LR) image and an HR but incomplete one. To the best of our knowledge, this problem has been introduced for the first time by the authors of the present paper in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF].

The application that lead us to investigate a solution to the IZC problem concerned the estimation of petro-physical parameters through image processing techniques. In this context, a 3D computerized tomography (CT) scan of a cylindrical sample of a rock is performed. This acquisition is analyzed in order to automatically segment and classify different regions according to visual cues related to underlying petro-physical parameters. A typical example concerns the automatic classification of different textured regions, which in turn relate to different porosity levels of the underlying material. In practice, due to the large size of the sample being imaged, the particular CT system used was not able to provide enough resolution for automatic classification. In the context we were interested in, it was possible to perform a second scan, this time focusing on a specific part of the volume. This second acquisition provides incomplete but higher resolution slices of the rock sample. Now, the next step is to combine the image data coming from both acquisitions in order to obtain a complete HR volume.

The setting we have just described may also arise in the context of digital photography when one uses a digital camera to capture an image of a given scene, and then uses the optical zoom of the same camera to capture a subset of the same scene. Due to optical zoom, this second acquisition is incomplete, in the sense that it only captures a subset of the first one, but it provides higher resolution. The IZC problem is now to compute a full HR image with the aid of the complete LR and incomplete HR data. Figure 1 illustrates this setting.

The IZC problem we have just described is closely related to the classical single-image super-resolution (SISR) problem. In fact, when no subset of the HR image is available, the two problems are identical. We review in the next subsection some approaches related to the SISR problem. Due to the large body of existing literature, we concentrate on specific approaches related to our present proposal.

B. SISR

In the SISR setting, the goal is to recover an HR image from a single input LR frame. In this context, there are two degradation sources relating the sought-after image to the observed one: blurring and coarse sampling. A possible forward model is given by (1) with A " S ˝H, where H P R nˆn is a convolution (or more generally a linear filtering) operator and S P R mˆn is a sub-sampling operator. This problem is underconstrained, thus SISR algorithms generally rely on various kinds of assumptions in order to estimate the true image.

The baseline method for SISR is through linear interpolation methods, especially bicubic interpolation. In order to outperform bicubic interpolation, many variational approaches exploiting smoothness and/or geometric regularity of images have been proposed (see [START_REF] Yang | Image super-resolution: Historical overview and future challenges[END_REF] and references therein). For instance, in [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF], the authors study the use of the total variation (TV) semi-norm [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] for SISR. The use of the recurrence of image patches as a cue to regularize the SISR problem has been introduced in [START_REF] Ebrahimi | Solving the inverse problem of image zooming using self-examples?[END_REF]. This idea has been pushed further in [7] by restricting the search for example patches to localized regions, and in [START_REF] Glasner | Super-resolution from a single image[END_REF] by using patch redundancy across different scales. Similar ideas have been proposed for the multiframe SR setting, in particular in [START_REF] Takeda | Locally adaptive kernel regression for spacetime super-resolution[END_REF]. Approaches based on image sparsity, either in analysis or synthesis forms [START_REF] Adler | A shrinkage learning approach for single image super-resolution with overcomplete representations[END_REF], [START_REF] Hawe | Analysis operator learning and its application to image reconstruction[END_REF] or through Gaussian mixtures [START_REF] Yu | Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity[END_REF] have also been recently considered. The application of ideas combining sparsity and self-similarity [START_REF] Zhang | Multi-scale dictionary for single image super-resolution[END_REF], [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF], [START_REF] Egiazarian | Single image super-resolution via bm3d sparse coding[END_REF] currently leads to the best performing methods.

A different line of work involves sparse representation of LR/HR pairs of patches. This kind of approach has been initiated in [START_REF] Yang | Image super-resolution via sparse representation[END_REF], [START_REF] Yang | Coupled dictionary training for image super-resolution[END_REF], [START_REF] Zeyde | On single image scale-up using sparse-representations[END_REF] where the authors propose to infer the sparse code of each sought-after HR patch from the sparse code of its corresponding observed LR version. To enforce the invariance of LR/HR sparse codes, two coupled LR/HR dictionaries are learned from a large training data set.

C. Organization of the Paper

The paper is organized as follows. We formulate in Section II an observation model for the IZC setting. This leads to view the IZC problem as an inverse one whose ill-posed nature is briefly discussed. Then, we outline the general variational strategy we adopt in order to perform zoom completion.

Section III is dedicated to our main contribution. Therein, we present a nonlocal regularization strategy targeting images with possibly rich textural content. To this end, we use the recurrence of image patches at the same scale as a cue to perform zoom completion. This is done by computing patch similarities and imposing nonlocal smoothness for the superresolved image. We carry out the minimization using the recent proximal forward-backward primal-dual (FBPD) algorithm of [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF].

Section IV is devoted to two TV-based regularization strategies to perform IZC. The first one consists in a TV-2 SR method where the visible HR part is involved through an equality constraint. The second one is based on the recent decomposition model of [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF] allowing to impose different priors on the structure and texture components of the sought-after image. For both methods, we carry out the minimization by using variable splitting and deploying the Douglas-Rachford algorithm [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] in a product-space.

We report a set of numerical experiments in Section V, comparing the results we get with two recent state-of-the-art SISR algorithms.

Concluding remarks and directions for possible future work are outlined in Section VI. Finally, the appendix presents some background material about proximity operators, the FBPD and Douglas-Rachford algorithms, and the derivation of the algorithms presented in Section IV.

A preliminary version of this paper has been published in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. We bring to the attention of the reader the fact that the nonlocal regularization proposed in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF] is different from the present one. Indeed, the former is based on a nonlocal graph where each missing pixel is connected to a set of pixels that lie in the HR region, while the latter adds to the previous connections a set of connections from each pixel to its nearest neighbors in a local window. In this respect, the present construction generalizes that of [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. We also note that the optimization algorithm used in the present paper is different from that of [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. This longer version also includes complete details concerning the numerical optimization of the TV-based approach mentioned in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. Finally, the simultaneous decomposition and zoom completion method presented in Section IV-B was not present in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF].

II. THE IMAGE ZOOM COMPLETION PROBLEM

The setting for IZC is a complete LR image and a corresponding incomplete HR image. Let y p1q P R p and y p2q P R n , 1 ď p ă n, respectively denote the lexicographical ordering of the complete LR and partial HR images. We adopt the following discrete forward model:

# y p1q " S H f 0 `η η η 1 P R p , y p2q " M pf 0 `η η η 2 q P R n , (2) 
where ' f 0 P R n denotes the unknown HR image; ' S P R pˆn stands for spatial downsampling by a factor r in each direction (n " p r 2 ); Note that S J P R nˆp corresponds to upsampling by the same factor and that the matrix S J S P R nˆn is diagonal with binary diagonal elements; ' H P R nˆn accounts for spatial blurring of the image, modeled in our case by a discrete circular convolution with a known point spread function h: H x " h f x;

' M " diagpm 1 , . . . , m n q P R nˆn is a binary mask indicating which HR pixels are observed: m i " 1, if pixel i belongs to the observed area of the HR image, and m i " 0 otherwise; ' the vectors η η η 1 P R p and η η η 2 P R n are samples of a white Gaussian noise, accounting for acquisition and modeling errors. Throughout the paper, we assume that the forward model (2) relating the HR/LR pair to the sought-after image f 0 is completely known. In particular, we discuss neither the identification of the convolution kernel nor possible registration issues when the partial zoom is performed.

Under the setting described above, the IZC problem corresponds to the recovery of an estimate f of f 0 from the measurements y p1q and y p2q , according to the forward model [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. Depending on the downsampling factor r, the support of the blur kernel and the visible HR area, this problem can be under-determined. In all cases, the presence of the convolution operator makes it ill-conditioned.

As usual for such inverse problems in imaging [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF], we formulate the estimation task in a variational setting leading to the minimization of an energy function of the form Epf q " Rpf q `Dpf q. The function R is a regularization term forcing the solutions to have pre-specified properties, while the term Dpf q penalizes the discrepancy between f and the observations py p1q , y p2q q, according to the forward model [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]. In the presence of white Gaussian noise, the latter term is usually taken, in its penalized form, as a squared 2 distance, leading to an optimization problem of the form minimize

f PR n Rpf q `λ1 }SHf ´yp1q } 2 `λ2 }Mf ´yp2q } 2 . (3)
When the noise level in the observed HR part can be neglected, or if one does not want to modify the observed HR part, one can instead consider the constrained problem minimize f PR n Rpf q `λ}SHf ´yp1q } 2 `ιtM ¨"y p2q u pf q, (4) where we write tA ¨" yu for the set tx P R n : Ax " yu, ι C is the indicator function of a convex set C, given by ι C pxq " 0 if x P C and ι C pxq " `8 otherwise, and λ ą 0. This latter setting is the one we adopt in the rest of the paper.

To summarize, we tackle the IZC problem by minimizing an energy function of the form given in [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF]. The problem now amounts to devising suitable regularizers R as well as the practical optimization of the corresponding energies.

III. IZC VIA PROPOSED NONLOCAL REGULARIZATION

A. The Nonlocal Framework

Classical variational techniques employed in the field of image processing rely on the regularity of the underlying image in terms of local relationships between neighboring pixels. Nonlocal regularization techniques [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF], [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF] replace this local regularity assumption by a nonlocal one, exploiting patch redundancy across the whole image. The large success of these methods stems from their ability to preserve textures, details and fine structures better than their local counterparts. This arises from the fact that nonlocal regularization strategies are generally based on discrete difference operators whose orientations are driven by the observed image itself. Such directions are chosen for each pixel independently, based on a given notion of similarity. Further references about the nonlocal approach, targeted specifically towards the regularization of inverse problems in image processing, can be found e.g. in [START_REF] Lou | Image recovery via nonlocal operators[END_REF], [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF], [START_REF] Peyré | Non-local regularization of inverse problems[END_REF], [START_REF] Danielyan | Bm3d frames and variational image deblurring[END_REF], [START_REF] Hidane | Nonlinear multilayered representation of graph-signals[END_REF], [START_REF] Couprie | Dual constrained TV-based regularization on graphs[END_REF], [START_REF] Chierchia | Epigraphical splitting for solving constrained convex optimization problems with proximal tools[END_REF], [START_REF] Duran | A nonlocal variational model for pansharpening image fusion[END_REF].

In the following, we will consider the 1,2 nonlocal total variation (NLTV), expressed as NLTVpf q "

n ÿ i"1 d ÿ jPNi w i,j }f i ´fj } 2 , (5) 
where N i is a subset of positions located inside a search window centered at i. For each pixel i, we design the support N i by selecting k pixels that are most similar to i according to the Euclidean distance between surrounding patches. Letting p i pf q P R q denote a ? qˆ?q image patch extracted from f and centered at i, the obtained edges are then weighted according to w i,j " e ´}pipf q´pj pf q} 2 {2σ 2 , (

where σ ą 0. We note that the nearest-neighbors search leads to a nonlocal neighborhood relation which is not symmetric: a pixel j can be a neighbor of i (j P N i ) without i being a neighbor of j (i R N j ).

B. Nonlocal regularization for IZC

In order to adopt a nonlocal strategy for the IZC problem, we first need to define a weighted graph encoding neighborhood relations between HR pixels. As only part of the HR image is sensed, the information about all HR patches is incomplete, and thus it cannot be used to build the graph. In order to circumvent this difficulty, we take advantage of the available LR image y p1q P R p . The first step in this strategy is to interpolate y p1q P R p to match the definition of y p2q P R n . To this end, we use bicubic interpolation and get ỹp1q P R n . Once we have ỹp1q , the similarities between patches can be estimated by the following two different approaches.

The first approach is based on the hypothesis that the interpolated patches generally exhibit similar spectral structure and maintain the same coherence. So, we connect each pixel to its k-nearest neighbors, inside a search window, according to the Euclidean distance between surrounding patches. For the regularization, we use the function introduced in Eq. ( 5). Letting } ¨}1,2 denote the following norm p@p P R nˆm q }p} 1,2 "

n ÿ i"1 }p i,. } 2 " n ÿ i"1 g f f e m ÿ j"1 p 2 i,j , (7) 
the NLTV penalty can be expressed as

NLTVpf q " }D 1 f } 1,2 , (8) 
where

D 1 f " » - - " ? w 1,j pf 1 ´fj q ‰ jPN1 . . . " ? w n,j pf n ´fj q ‰ jPNn fi ffi fl u P R k . . . u P R k . (9) 
The second approach consists in adding to the previous set of connections a new one. To do so, we denote the set of pixels where the HR information is missing by D and the set of sensed HR pixels by D c (see Figure 1). We connect each unobserved HR pixel i P D to its k-nearest observed HR neighbors in D c , again using patch-based distances. The corresponding nonlocal gradient operator is expressed as

pD 2 f q i,. " # "a wi,j pf i ´yp2q j q ‰ jP Ñi P R k , if i P D 0 P R k , otherwise, (10) 
where A i,. denotes the i th line of a matrix A, Ñi is the set of nearest neighbors in D c of i P D, and wi,j denotes the weight computed between patches p i pỹ p1q q and p j pỹ p1q q. Therefore, the second regularizer we propose is defined in terms of D " rD J 1 D J 2 s J , leading to

NLTV `pf q " }Df } 1,2 . (11) 
Incorporating data fidelity terms as in Eq. ( 4) leads to the problem minimize

f PR n }Df } 1,2 `λ 2 }SHf ´yp1q } 2 `ιtM ¨"y p2q u pf q. ( 12 
)
To summarize, we use an interpolated version of the LR image to construct a weighted adjacency relations and use it to infer the values of the missing pixels by solving [START_REF] Yu | Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity[END_REF].

C. Minimization Using FBPD

Problem (12) can be solved using proximal algorithms. In this paper, we use the forward-backward primal-dual (FBPD) algorithm of [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF] with the following identifications: F " λ 2 }SH ¨´y p1q }2 , G " ι tM¨"y p2q u , H " } ¨}1,2 and L " D. The authors might refer the appendix for relevant notations and definitions used.

In order to apply FBPD, we need to evaluate ∇F , prox τ G and prox ωH ˚at each iteration. The gradient of F is given by

∇F pf q " λH J S J SHf ´λH J S J y p1q , (13) 
whose Lipschitz constant is equal to λ. 1The evaluation of prox τ G amounts to projecting on the constraint set. It is given by

´proj tM ¨"y p2q u pf q ¯i " # y p2q i if m i " 1, f i if m i " 0. ( 14 
)
The evaluation of prox ωH ˚is given by

prox ωH ˚pyq " y ´soft 1 pyq, ( 15 
)
where soft is the vector-field soft-thresholding function given, for all p P R nˆm and ν ą 0 by

psoft ν pq i,j " # 0 if }p i,. } 2 ď ν, ´1 ´ν }pi,.} ¯pi,j else. ( 16 
)
The final point that needs investigation is the majoration of the operator norm of D. Let us denote w `the weights corresponding 2 to D. We have

}Df } 2 " n ÿ i"1 ÿ jPNi Ť Ñi w ì,j pf i ´fj q 2 ď 2 n ÿ i"1 ÿ jPNi Ť Ñi w ì,j pf 2 i `f 2 j q,
so that }D} ď 2m, where m " max iPt1...,nu

pdeg out i `deg in i q, ( 17 
)
deg out i " ÿ jPNi Ť Ñi
w ì,j and deg in i "

ÿ jPNi Ť Ñi w j,i . (18) 
Algorithm 1 summarizes all these computations. The variable of interest at convergence is x rls .

Algorithm 1 IZC via Nonlocal Regularization Using FBPD INITIALIZATION - - - - - - - - choose ´xr0s , y r0s ¯P R n ˆR2kn
compute m as in [START_REF] Yang | Coupled dictionary training for image super-resolution[END_REF] set τ ą 0 and ω ą 0 such that τ pλ{2 `2 ω mq ď1

FOR l " 0, 1, . . . - - - - - - - - p
x rls " λH J S J pSHx rls ´yp1q q `DJ y rls

x rl`1s " proj tM ¨"y p2q u `xrls ´τ p x rls p y rls " y rls `ω D `2 x rl`1s ´xrls yrl`1s

" p y rls ´soft1pp y rls q

D. Discussion

The results obtained by the nonlocal approach we have just introduced are further discussed in Section V. In this subsection, we discuss the iteration complexity of Algorithm 1. We also discuss two foreseeable shortcomings of the proposed nonlocal approach.

From a computational point of view, the iteration complexity of the above algorithm is dominated by the application of two low-pass filters (H and H J ) and the matrices D and D J . The latter depends on the sparsity of D, which is related to the number of unobserved HR pixels and to the number k of nearest-neighbors. Furthermore, there is an overhead for performing nearest neighbors search.

As described earlier, patch similarities that drive the nonlocal regularization are based on (an interpolated version of) the LR image y p1q . When the super-resolution factor r is important and/or when the blurring matrix attenuates too much the high frequencies of the HR scene, these weights can be erroneous and their incorporation into the regularization functional can lead to bad reconstructions. While a solution to the first problem (large super-resolution factor) can consist in performing zoom completion recursively using a small SR factor, the only solution to the second problem (strong attenuation of high frequencies) is to recompute the weights after a fixed number of iterations.

Another case where the nonlocal approach we proposed may fail is when the typical patterns present in the visible HR part are different from the ones that make the invisible part. In this case, the nearest-neighbors graphs provides very limited information and any use of the corresponding weights may lead to bad reconstructions.

IV. IZC VIA STANDARD TV-BASED METHODS

The standard approach for edge-preserving image restoration consists in penalizing the total variation of the soughtafter image. We present in this section a Douglas-Rachfordbased optimization procedure for the TV-2 regularization of the IZC problem where the HR data is involved through an equality constraint. We also present an algorithm for a TVbased decomposition model allowing to impose different priors on the structure and texture components of the sought-after image. The two algorithms presented in this section serve a baseline for the comparisons we perform in Section V. The details of the derivation are given in the appendix.

A. IZC via TV Regularization

Let σ : t1, . . . , ? nu ˆt1, . . . , ? nu Ñ t1, . . . , nu denote a pixel enumeration 3 . We consider the discrete gradient operator ∇ : R n Ñ R nˆ2 given, for 1 ď k, l ď ? n ´1 by # p∇f q σpl,kq,1 " f σpl,k`1q ´fσpl,kq , p∇f q σpl,kq,2 " f σpl`1,kq ´fσpl,kq .

We adopt circular boundary conditions so that ´∇J ∇, corresponding to the 4-stencil discretization of the Laplacian operator, is diagonalized by the discrete Fourier transform. We adopt the following definition for the discrete total variation of an image f P R n :

TVpf q " }∇f } 1,2 . (20) 
Adopting [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF] as a prior for our IZC problem leads to the following convex optimization problem minimize

f PR n }∇f } 1,2 `λ 2 }SHf ´yp1q } 2 `ιtM ¨"y p2q u pf q. ( 21 
)
The energy in ( 21) is composite: it mixes the operators M, S, H, and it contains two nonsmooth terms. While it is possible to apply the FBPD algorithm to solve Problem (21), we follow here the strategy suggested in [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] by using variable splitting and deploying the Douglas-Rachford algorithm in a product space.

Letting H " R nˆ2 ˆRn ˆRn and K " tp∇f , Hf , f q, f P R n u, we rewrite (21) in the form minimize

x"pp,u,f qPH

F 1 pxq `F2 pxq, (22) 
3 For simplicity of notations, we work with square images.

where

F 1 pxq " }p} 1,2 `λ 2 }Su ´yp1q } 2 `ιtM ¨"y p2q u pf q, (23) 
and

F 2 pxq " ι K pp, u, f q. ( 24 
)
In order to apply Douglas-Rachford, we need to evaluate prox F1 and prox F2 at each iteration. We note that the evaluation of the p-component of prox F1 is given the softthresholding operator of equation [START_REF] Yang | Image super-resolution via sparse representation[END_REF]. Further details are given in the appendix. They lead to the iterations reported in Algorithm 2. The variable of interest at convergence is f rls 1 . We note that the f rls 1 and u rls 2 updates in Algorithm 2 can be done without inner loops since A 1 is diagonalized by the Fourier transform and A 2 is diagonal.

Algorithm 2 IZC via Constrained TV-Regularization Using Douglas-Rachford INITIALIZATION - - - - - - set H " R nˆ2 ˆRn ˆRn choose ´pr0s 2 , u r0s 
2 , f r0s 
2 ¯P H set A1 " ∇ J ∇ `HJ H `I and A2 " λS J S `I FOR l " 0, 1, . . . - - - - - - - - - - - - - - f1 rls " A1 ´1`∇ J p2 rls `HJ u2 rls `f2 rls ȗ1
rls " Hf2 rls p1 rls " ∇f2 rls f2 rl`1s " f2 rls ´f1 rls `proj tM ¨"y p2q u p2f1 rls ´f2 rls q u2 rl`1s " u2 rls ´u1 rls `A2 ´1pλS J y p1q `2u1 rls ´u2 rls q p2 rl`1s " p2 rls ´p1 rls `soft1p2p1 rls ´p2 rls q

We show in Section V that the impact of this method, outside the HR visible area, is very limited. We next derive an algorithm based on a decomposition approach, allowing to partly circumvent this problem.

B. IZC via TV + Low-Patch-Rank Decomposition

Rather than trying to impose a single prior for the soughtafter HR image, as was done in the previous section, we adopt here a decomposition model [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF], [START_REF] Aujol | Dual norms and image decomposition models[END_REF] for the IZC problem. The idea is to compute separately two different components of the HR image by imposing different priors on each. The resulting image is obtained as the sum of these two components.

Of particular interest to us in the present section is the TV+low-patch-rank decomposition model of [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF]. This model introduces a new formulation for the texture penalization term. More precisely, due to the repetitive aspect of natural textures, it is reasonable to assume that some patches of the texture part v of an image f will repeat themselves at different locations. In order to integrate this observation in a variational setting, the authors of [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF] propose to extract all ? q ˆ?q nonoverlapping patches of an image f P R n , placing each of them as the column of a matrix Pf P R qˆm . Here, the patch-map P : R n Ñ R qˆm , n " qm, allows to pass from an image f P R n to a matrix Pf P R qˆm where q is the number of pixels inside a patch and m is the number of ? q ˆ?q nonoverlapping patches contained in f . Let us note at this point that, due to the fact that P is essentially a permutation of image pixels, it is an isometry with respect to all point-wise norms on R qˆm . for deriving our minimization algorithm. Equipped with the patch-map P, the authors of [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF] propose the following decomposition model minimize pu,vqPR n ˆRn α TVpuq `β }Pv}

subject to f " u `v, (25) 
where }A} ˚denotes the nuclear (or trace) norm of a matrix A, that is, the sum of its singular values. In this context, the nuclear norm acts as a convex relaxation for the combinatorial rank function. Thus, adopting the term }Pv} ˚favors an overall repetition of texture patches. Further details can be found in [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF].

In [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF], the decomposition model ( 25) is applied to denoising, deblurring and sparse reconstruction. The authors use the split Bregman algorithm [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF] which is closely related to the algorithm we use in this paper. Let us finally note that a generalized version of the decomposition model of [START_REF] Schaeffer | A low patch-rank interpretation of texture[END_REF], where patches are allowed to overlap, has been recently proposed in [START_REF] Ono | Cartoon-texture image decomposition using blockwise low-rank texture characterization[END_REF].

Adapting [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF] to our IZC setting leads to the following problem: minimize pu,vqPR n ˆRn α TVpuq `β}Ppvq} ˚`λ 2 }SHpu `vq ´yp1q } 2

`ιtM ¨"y p2q u pu `vq,

with α, β, λ ą 0. The advantage of using (26) instead of ( 21) is that the additional term }Ppvq} ˚allows to have better control on the texture part of the sought-after HR image. Let us also note that, due to the constraint imposed by the term ι tM ¨"y p2q u pu `vq, this can be seen as an implicit strategy for making use of the available HR image in order to complete the unobserved part.

We carry out the minimization again by variable splitting and using the Douglas-Rachford algorithm. The splitting we adopt amounts to working in the Hilbert space H " R nˆ2 Rn ˆRn ˆRn ˆRn . Letting K " tp∇u, u, v, Hpu `vq, u `vq P H : u, v P R n u, and for x " pp, u, v, g, wq P H

F 1 pxq " α}p} 1,2 `β}Ppvq} ˚`λ 2 }Sg ´yp1q } 2 `ιtM ¨"y p2q u pwq, (27) 
F 2 pxq " ι K pxq, (28) 
Problem ( 26) is equivalent to minimizing F 1 `F2 over H. In order to apply Douglas-Rachford, we need to evaluate prox F1 and prox F2 at each iteration. The details are given in the appendix. We note that the evaluation of the v-component of prox F1 involves the singular value thresholding operator given by: svt µ pvq " U maxpΣ Σ Σ ´µI, 0qV ˚, [START_REF] Couprie | Dual constrained TV-based regularization on graphs[END_REF] where v " UΣ Σ ΣV ˚is a singular value decomposition (SVD) of v. We also note that the evaluation of prox F2 leads to a system of linear equations whose matrix is 

A 3 " " ∇ J ∇ `HJ H `2I H J H `I H J H `I H J H `2I  . ( 30 
)
FOR l " 0, 1, . . . - - - - - - - - - - - - - - - - - - - - - - - - " u rls 1 v rls 1  " A3
´1 " ∇ J p2 rls `u2 rls `HJ g2 rls `w2 rls v2 rls `HJ g2 rls `w2 rls  g1 rls " Hpu1 rls `v1 rls q w1 rls " u1 rls `v1 rls p1 rls " ∇u1 rls u2 rl`1s " u1 rls v2 rl`1s " v2 rls ´v1 rls `PJ svt β Pp2v1 rls ´v2 rls q g2 rl`1s " g2 rls ´g1 rls `A2 ´1pλS J y p1q `2g1 rls ´g2 rls q w2 rl`1s " w2 rls ´w1 rls `proj tM ¨"y p2q u p2w1 rls ´w2 rls q p2 rl`1s " p2 rls ´p1 rls `softαp2p1 rls ´p2 rls q

From a computational point of view, the iteration complexity of Algorithm 3 is dominated, on the one hand, by the computation of the singular value decomposition of the patch matrix, and on the other hand, by the solution of the linear system whose matrix is A 3 . Concerning the SVD computation, it is important to note that it applies to a matrix with much fewer rows (numbers of pixels in a patch) than columns (number of non-overlapping patches). Concerning the linear system, we note that while each block of A 3 is diagonal in the Fourier domain, the overall matrix is not. We instead solve this linear system with a conjugate gradient method. In practice we perform only 4 iterations and use a 'warm start' strategy [START_REF] Afonso | Fast image recovery using variable splitting and constrained optimization[END_REF], meaning that we start the conjugate gradient solver at iteration l `1 with the result it yielded from iteration l. Each conjugate gradient iteration involves a matrix-vector product A 3 x, so it involves the evaluation of one Laplacian filter p∇ J ∇q and one low-pass filter pH J Hq.

V. EXPERIMENTAL RESULTS

We start by evaluating the effectiveness of the methods we have introduced on a set of 4 natural images and 4 textures shown in Figure 2. These images correspond to 256 ˆ256 crops taken from the Kodak4 and Brodatz5 databases.

In order to assess the relative performance of the different approaches, we start with a ground truth full HR image f 0 and simulate the incomplete image y p2q by masking 75% of f 0 . Similarly, we simulate the complete LR image y p1q by blurring f 0 , downsampling the result by a factor r in each direction, and finally adding white Gaussian noise. In all the experiments we carried, the blurring kernel corresponds to a normalized Gaussian e ´d2 {2s 2 with s " 1.2. The kernel is truncated to a 5 ˆ5 window. The super-resolution factor r is fixed to 2. The standard deviation of the additive white Gaussian noise is fixed to 2.5. Computations on images are done in the range r0, 255s.

The results we report in Table I are obtained by empirically setting λ " 0.5 in ( 12), λ " 2 in ( 21), and α " 0.5, β " 70 and λ " 5 in [START_REF] Peyré | Non-local regularization of inverse problems[END_REF]. For the nonlocal approach detailed in Section III, three additional parameters are involved: the size of compared patches, the number k of nearest neighbors, and the parameter σ in [START_REF] Ebrahimi | Solving the inverse problem of image zooming using self-examples?[END_REF]. In our experiments, similarities between pixels were computed based on 5 ˆ5 surrounding patches inside a 25 ˆ25 search window. The number k has been fixed to 14, while σ has been set in the interval r10, 50s. Our nearest neighbors computation is performed exactly but we note that fast approximate computations can be performed, e.g. using the algorithm of [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF]. For the TV+low-patch rank approach, a single additional parameter is involved: the size of the extracted patches. This value has been set to 64 " 8 ˆ8 in all the experiments. A stopping criterion involving the relative change of two successive iterates has been applied for Algorithms 1, 2 and 3

Since, to the best of our knowledge, the IZC setting has not been considered in the literature (except in [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF]), we cannot perform fair comparisons with other methods. Indeed, in the framework of SISR, there is no available HR data. However, we selected two state-of-the-art SISR methods whose implementations are freely available and decided to compare the performance yielded by our three algorithms with the ones yielded by these two. The methods we selected are those of Yang et al. [START_REF] Yang | Image super-resolution via sparse representation[END_REF] and of Dong et al. [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF].

The method of [START_REF] Yang | Image super-resolution via sparse representation[END_REF] uses sparse code invariance of LR/HR patches over learned dictionaries. As the degradation model assumed in [START_REF] Yang | Image super-resolution via sparse representation[END_REF] is different from the one we adopted in this paper, we re-learned a dictionary of size 1024 form LR/HR examples synthesized from the same data set proposed in [START_REF] Yang | Image super-resolution via sparse representation[END_REF] but this time using our degradation model. We also adapted the back-projection step.

The method of Dong et al. [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF] combines ideas from clustering and sparse coding with the nonlocal approach. In the first iteration of the algorithm, patches of an interpolated version of the LR image serve as a training set. They are clustered using K-means. A global dictionary is obtained, along with the corresponding sparse codes, by concatenating PCA sub-dictionaries from each cluster. The computed sparse codes are further refined by averaging with similar patches in a manner similar to the nonlocal-means approach [START_REF] Buades | Image denoising methods. A new non-local principle[END_REF], leading to sparse codes for each input interpolated patch. These sparse codes are further refined through a back-projection step aiming to enforce consistency with regard to the degradation model. A first estimation of the HR image is obtained by averaging overlapping patches. The overall procedure is iterated a fixed number of times, each time taking the output of the previous iteration as input for the next one.

In Table I we report PSNR and SSIM values between the 8 images of Figure 2 and the results obtained with the specific algorithms retained. These values are computed only on the reconstructed HR part. We also report the results obtained with bicubic interpolation. For each of our proposed methods, we also include reconstructions obtained using Algorithms 1, 2 and 3 but without using the available HR data. This corresponds to using the same algorithms with the null matrix as a binary mask. The corresponding columns are labeled "no HR" in Table I. We also report the results obtained using the approach of [START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF], which corresponds to choosing D 2 instead of D in [START_REF] Yu | Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity[END_REF].

As can be seen in Table I, the NLTV `achieves the best performance in terms of PSNR and SSIM. It is also interesting to note that the average PSNR and SSIM for NLTV `without using HR data is higher than that of [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF]. Another interesting aspect is the average gain obtained by passing from the "no HR" to the "with HR" configuration. While this gain is very limited for the TV approach, it is more important for TV+}P ¨}˚a nd the nonlocal approach.

To further assess the performance of the proposed methods, we perform a second set of experiments using the 24 images of the Kodak database, in their original size (768 ˆ512 or 512 768). The parameters of the forward model remain unchanged. We report in Table II PSNR and SSIM values between the first ten images of the database and the reconstructions obtained using the retained method. The last row of Table II gives the average PSNR/SSIM values on the whole database. One can see here again that the proposed nonlocal approach yields the best performance. Finally, Table III summarizes the average running time of the different algorithms considered 6 .

The numerical evidence brought by Tables I and II can further be confirmed by inspecting the corresponding IZC reconstructions in Figures 3 and4. Notice in particular how brick and wood edges are better reconstructed using NLTV `.

In Figure 5 we show the results obtained by our methods on a slice of a CT scan of a rock 7 . Therein, the zoom completion performed by NLTV `is hardly distinguishable from the true sensed HR image.

Finally, we show in Figures 6 and7 the results we obtain on two 512 ˆ512 natural images. The setting is the same as for the previous experiments, except that the proportion of visible HR pixels is higher. On can see again that our proposed nonlocal method yields very satisfactory reconstructions. 2. Image dataset used as input to SR algorithms. From left to right and from top to bottom, 256 ˆ256 central crops of: "Brick", "Mosaic", "Pigskin", "Wood", "Kodim01", "Kodim02", "Kodim08", and "Kodim22". 

VI. CONCLUSION

A super-resolution problem from an LR/HR image pair has been considered. We have motivated its importance and highlighted some of its possible applications. Then we developed a nonlocal regularization strategy for the construction of a solution and derived two TV-based algorithms. The practical optimization of the energies resulting from each model has been discussed.

While the TV-based solution is appropriate for the class of piecewise constant images, the nonlocal and the TV+lowpatch rank approaches allow targeting larger image classes, in particular images with strong repetitive textures. Both approaches organize the patches of the sought-after image following the evidence provided by the complete LR and incomplete HR image pair.

On average, the TV+}P ¨}˚m ethod allows to go one step further than the standard TV-2 approach. However, we have seen that in order to truly leverage the available HR data, it is necessary to resort to explicit patch comparisons and to incorporate them in a nonlocal cost function.

We note that all the proposed methods do not rely on sparse representations over learned dictionaries and as such they can be easily adapted when the degradation model changes, e.g. when the blurring filter or the super-resolution factor changes.

Possible future work concerning the IZC problem, in particular when the blurring filter and the super-resolution factor are fixed, can concentrate on developing IZC strategies based on sparse and redundant representations [START_REF] Elad | Sparse and redundant representations: from theory to applications in signal and image processing[END_REF]. As the setting for IZC is an LR/HR image pair, one can consider training both LR and visible HR patches in order to learn an adapted dictionary. When the super-resolution factor r is important and/or the blurring matrix attenuates too much the high frequencies of the HR image, one can consider an iterative minimization process alternating between weight computation and nonlocal regularization as was done in [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF] for image inpainting.

APPENDIX

We recall in this appendix some definitions and algorithms used for the numerical optimization of the energy functions appearing in the paper.

Proximity operators

Let pH, x., .yq be a finite-dimensional inner-product space. The associated norm is denoted by }.} " a x., .y. A function f : H Ñ s´8, `8s is said to be proper if its domain, dompf q " tx P H : f pxq ă `8u, is nonempty. The function f is said to be convex if its epigraph, epipf q " tpx, aq P H ˆR : f pxq ď au, is convex; it is said to be lower semicontinuous if epipf q is closed. The set of all proper convex and lower semicontinuous functions from H to f 0 y p1q y p2q

TV TV+}P ¨}˚N LTV s´8, `8s is denoted by Γ 0 pHq. The conjugate of f P Γ 0 pHq is the function f ˚P Γ 0 pHq defined for all y P H by f ˚pyq " sup xPH txx, yy ´f pxqu.

For f P Γ 0 pHq and z P H, the function x P H Þ Ñ 1 2 }x´z} 2 `f pxq achieves its infimum at a unique point called proximity operator of f at point z and denoted by prox f z:

prox f z " argmin xPH f pxq `1 2 }x ´z} 2 . ( 31 
)
For a nonempty closed C Ă H and f " ι C , we have that f P Γ 0 pHq and one recovers the definition of the Euclidean convex projection operator on C, denoted proj C : proj C z " prox ι C z.

An important property concerning proximal operators is their decomposability in orthonormal bases [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]. In particular, letting pH i q 1ďiďn be a family of Hilbert spaces, H " H 1 . . . ˆHn , f P Γ 0 pHq, f i P Γ 0 pH i q for i P t1, . . . , nu, such that f pxq " ř n i"1 f i px i q, we have `prox f pxq ˘i " prox fi px i q for i P t1, . . . , nu.

FBPD (Algorithm 3.1 of [19])

Consider the following variational problem:

minimize xPH F pxq `Gpxq `HpLxq, (32) 
where ' F is convex and differentiable with β-Lipschitz gradient; ' L is linear from H to a finite dimensional inner-product space X ; ' G P Γ 0 pHq and H P Γ 0 pX q. Suppose that the set of minimizers of Problem (32) is nonempty. Letting px n q n and py n q n constructed as follows $ ' & ' %

x 0 P H, y 0 P X , ω ą 0, τ ą 0 given x n`1 " prox τ G `xn ´τ p∇F px n `LJ y n qq yn`1

" prox ωH ˚py n `ωLp2x n`1 ´xn qq .

If τ `λ{2 `ω }L} 2 ˘ď1, then sequence px n q converges to a minimizer x ˚of Problem [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF].

Douglas-Rachford

Consider the following variational problem:

minimize xPH F 1 pxq `F2 pxq, (34) 
with F 1 , F 2 P Γ 0 pHq. Let px n q n , py n q n P H N constructed as follows $ ' & ' % y 0 P H x n " prox νF2 py n q y n`1 " y n `ξ pprox νF 1 p2x n ´yn q ´xn q (35)

with 0 ă ξ ă 2 and ν ą 0. If the set of minimizers of F 1 `F2 over H is nonempty, then the sequence px n q converges to a minimizer x ˚of F 1 `F2 over H. In all derivations, we set ξ " ν " 1.

Derivation of Algorithm 2

Letting H " R nˆ2 ˆRn ˆRn and K " tp∇f , Hf , f q, f P R n u, we rewrite [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] in the form [START_REF] Aujol | Dual norms and image decomposition models[END_REF] with F 1 given in ( 23) and F 2 given in [START_REF] Lou | Image recovery via nonlocal operators[END_REF]. In order to apply Douglas-Rachford, we need to evaluate prox F1 and prox F2 at each iteration.

Since F 1 is separable, the evaluation of prox F1 pp, u, f q amounts to evaluating each part separately [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]. The pcomponent corresponds to the vector-field soft-thresholding function given in [START_REF] Yang | Image super-resolution via sparse representation[END_REF]. The evaluation of the u-component amounts to solving a system of linear equations whose matrix is given by A 2 " λS J S `I. This computation can be done in linear time since A 2 is diagonal. Finally, the evaluation of the f -component is given in [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF].

The evaluation of prox F2 amounts to projecting on the constraint set K. It is straightforward to see that it leads to a system of linear equations whose matrix is A 1 " ∇ J ∇ HJ H `I. Due to the circular boundary choice for both ∇ and H, the matrix A 1 is diagonalized by the discrete Fourier transform and thus the system can be solved by applying the discrete Fourier transform, modulating, and applying the inverse transform.

Derivation of Algorithm 3

Letting this time H " R nˆ2 ˆRn ˆRn ˆRn ˆRn and K " tp∇u, u, v, Hpu `vq, u `vq P H : u, v P R n u, we rewrite Problem [START_REF] Peyré | Non-local regularization of inverse problems[END_REF] in the form [START_REF] Aujol | Dual norms and image decomposition models[END_REF] with F 1 and F 2 given in ( 27) and [START_REF] Hidane | Nonlinear multilayered representation of graph-signals[END_REF]. In order to apply Douglas-Rachford, we need to evaluate prox F1 and prox F2 at each iteration.

As before, F 1 is separable, thus the evaluation of prox F1 pp, u, v, g, wq amounts to evaluating each part separately. The evaluation of the p-component corresponds to the soft-thresholding function defined in [START_REF] Yang | Image super-resolution via sparse representation[END_REF]. The u-component corresponds to the identity since F 1 does not depend on u. The evaluation of the g-component involves solving a linear system with a diagonal matrix. The evaluation of the w-component is given in [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF].

The evaluation of the proximity operator of the vcomponent is more intricate since it involves the precomposition with P and the nuclear norm. The generic problem is to compute prox µ}P¨}˚f or µ ą 0. Due the fact that P is an isometry with respect to all point-wise norms, we have (Proposition 11 of [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]) that prox µ}Pp¨q}˚p vq " P J prox µ}¨}˚P pvq. (

) 36 
It has been shown in [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF] that the latter prox computation can be done by singular value thresholding: prox µ}.}˚p vq " svt µ pvq " U maxpΣ Σ Σ ´µI, 0qV ˚, [START_REF] Afonso | Fast image recovery using variable splitting and constrained optimization[END_REF] where v " UΣ Σ ΣV ˚is a singular value decomposition (SVD) of v.

Regarding the evaluation of prox F2 , it is easy to see that it leads to a system of linear equations with matrix A 3 given in [START_REF] Chierchia | Epigraphical splitting for solving constrained convex optimization problems with proximal tools[END_REF]. 

Fig. 1 .

 1 Fig. 1. Setting for the IZC problem. The left image represents a complete LR acquisition. The right image represents a zoom on a subset of the left image and is thus referred to as an incomplete HR image. The goal of IZC is to combine both acquisitions in order to complete the missing HR information.

Fig.

  Fig.2. Image dataset used as input to SR algorithms. From left to right and from top to bottom, 256 ˆ256 central crops of: "Brick", "Mosaic", "Pigskin", "Wood", "Kodim01", "Kodim02", "Kodim08", and "Kodim22".

Fig. 3 .

 3 Fig. 3. IZC for the image "Brick". From left to right and form top to bottom: ground-truth, LR input, incomplete HR input, TV (psnr = 27.33), TV+}P ¨}( psnr = 27.43), NLTV `(psnr = 27.79), bicubic (psnr = 25.38), Yang et al. [16] (psnr = 27.12), Dong et al. [14] (psnr = 27.41).

Fig. 4 .

 4 Fig. 4. IZC for the image "Kodim02". From left to right and form top to bottom: ground-truth, LR input, incomplete HR input, TV (psnr = 34.52), TV+}P ¨}˚(psnr = 33.90), NLTV `(psnr = 35.01), bicubic (psnr =33.82), Yang et al. [16] (psnr = 32.94), Dong et al. [14] (psnr =33.41).

Fig. 5 .

 5 Fig. 5. IZC for a CT image scan. From left to right and from top to bottom : ground truth, LR image, partial HR image, TV-regularization (psnr = 31.05), TV+}P ¨}˚(psnr = 31.70), NLTV `(psnr = 32.17).

Fig. 6 .

 6 Fig. 6. IZC for the image "Kodim19". From left to right and from top to bottom: ground truth, LR image, partial HR image, TV-regularization (psnr = 26.96), TV+}P ¨}˚(psnr = 27.01), NLTV `(psnr = 28.02), bicubic (psnr = 24.75), Yang et al. (psnr = 25.83), Dong et al. (psnr = 27.26).

TABLE I PSNR

 I (DB) AND SSIM ON THE RECONSTRUCTED HR AREA FOR DIFFERENT SR METHODS (IMAGES OF SIZE 256 ˆ256)

		Bicubic	NLTV `NLTV	Approach of [2]	TV		TV+}P ¨}˚[16]	[14]
			no HR with HR no HR with HR no HR with HR no HR with HR no HR with HR	
	Brick	25.38 0.616	27.71 0.697	27.79 0.847	27.26 0.639	27.27 0.640	27.45 0.698	27.42 0.846	27.29 0.692	27.33 0.763	27.44 0.711	27.43 0.777	27.12 27.41 0.711 0.719
	Mosaic	15.62 0.589	19.38 0.811	19.51 0.909	19.10 0.805	19.40 0.910	19.05 0.799	19.25 0.904	18.90 0.818	18.93 0.862	19.19 0.835	19.25 0.876	18.99 19.27 0.827 0.845
	Pigskin	26.27 0.660	28.63 0.799	28.65 0.902	28.38 0.788	28.51 0.901	28.53 0.801	28.47 0.903	28.09 0.775	28.09 0.824	28.16 0.794	28.18 0.838	28.10 28.35 0.799 0.805
	Wood	24.74 0.624	27.72 0.801	28.35 0.907	26.40 0.794	26.49 0.794	27.19 0.779	27.88 0.899	26.47 0.746	26.64 0.795	27.00 0.747	27.51 0.804	26.82 27.98 0.759 0.804
	Kodim01	24.09 0.597	26.29 0.690	26.71 0.853	26.22 0.694	26.23 0.832	26.00 0.700	26.17 0.847	26.19 0.729	26.21 0.790	26.32 0.738	26.35 0.797	26.09 26.62 0.714 0.750
	Kodim02	33.82 0.803	34.91 0.864	35.01 0.948	34.83 0.861	34.85 0.946	30.89 0.661	30.93 0.818	34.51 0.829	34.52 0.868	33.89 0.801	33.90 0.845	32.94 33.41 0.764 0.773
	Kodim08	21.59 0.657	25.64 0.804	25.97 0.904	25.41 0.802	25.42 0.897	24.84 0.744	24.96 0.865	25.29 0.796	25.32 0.839	25.37 0.796	25.40 0.839	24.17 25.91 0.765 0.812
	Kodim22	27.94 0.771	30.05 0.846	30.13 0.918	29.96 0.845	29.94 0.916	28.84 0.713	28.90 0.849	29.94 0.823	29.95 0.867	29.81 0.800	29.82 0.839	28.94 29.79 0.766 0.780
	Average	24.93 0.664	27.54 0.789	27.76 0.898	27.19 0.778	27.26 0.854	26.59 0.736	26.74 0.866	27.08 0.776	27.12 0.826	27.14 0.777	27.23 0.826	26.64 27.34 0.763 0.786

TABLE II PSNR

 II (DB) AND SSIM ON THE RECONSTRUCTED HR AREA FOR DIFFERENT SR METHODS (IMAGES OF SIZE 786 ˆ512)Bicubic NLTV `NLTV[START_REF] Hidane | Superresolution from a low-and partial high-resolution image pair[END_REF] TV TV+}P ¨}˚[16] [14] 

	Kodim01	23.47 0.599	26.21 25.94 25.55 25.34 0.792 0.781 0.771 0.739	26.04 0.788	25.47 26.27 0.718 0.752
	Kodim02	30.81 0.774	32.27 32.16 31.00 31.56 0.852 0.849 0.785 0.832	31.72 0.825	30.36 31.59 0.686 0.764
	Kodim03	31.29 0.837	33.70 33.43 31.49 33.01 0.907 0.904 0.801 0.894	32.87 0.869	30.90 32.69 0.717 0.813
	Kodim04	29.62 0.801	32.11 32.00 30.69 31.23 0.878 0.878 0.809 0.855	31.60 0.854	30.33 31.48 0.728 0.800
	Kodim05	23.63 0.702	27.31 27.00 26.49 26.10 0.870 0.865 0.825 0.828	26.93 0.857	26.50 27.12 0.794 0.823
	Kodim06	25.51 0.664	27.97 27.76 26.92 27.21 0.826 0.823 0.731 0.792	27.82 0.813	26.92 27.90 0.698 0.753
	Kodim07	30.09 0.859	34.72 34.25 31.07 33.77 0.946 0.941 0.800 0.940	33.32 0.904	31.22 32.92 0.776 0.858
	Kodim08	20.88 0.626	24.40 24.03 23.79 23.28 0.814 0.808 0.779 0.769	23.87 0.801	23.49 24.26 0.736 0.774
	Kodim09	29.05 0.824	32.42 32.07 30.79 31.60 0.907 0.905 0.815 0.901	31.72 0.873	30.23 31.54 0.722 0.813
	Kodim10	28.28 0.810	31.48 31.10 29.44 30.24 0.895 0.893 0.776 0.879	30.64 0.865	29.58 31.08 0.731 0.815
	Average	27.44 0.751	30.22 29.95 28.67 29.45 0.864 0.861 0.777 0.841	29.72 0.842	28.55 29.65 0.725 0.791

TABLE III AVERAGE

 III RUNNING TIME IN SECONDS OF THE CONSIDERED SR METHODS

	402	30	221	562 1812

(IMAGES OF SIZE 768 ˆ512) NLTV `TV TV+}P ¨}˚
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Since S J S is diagonal with binary entries, we have that ~SJ S~" 1. Using a normalized kernel H leads to ~HJ ~" ~H~" 1, where ~¨d enotes the spectral norm.

w ì,j " w i,j `w i,j if i P D and j P D c , and w ì,j " w i,j otherwise.

http://r0k.us/graphics/kodak/

Brodatz, P. (1966). Textures: A Photographic Album for Artists and Designers, Dover, New York.

All algorithms were implemented in Matlab and executed on 2.9 GHz CPU. For the methods of[START_REF] Yang | Image super-resolution via sparse representation[END_REF] and[START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF], we used the implementations available at the authors web pages.
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