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Image Zoom Completion
Moncef Hidane, Mireille El Gheche, Jean-François Aujol, Yannick Berthoumieu, Charles-Alban Deledalle

Abstract—We consider the problem of recovering a high-
resolution image from a pair consisting of a complete low-
resolution image and a high-resolution but incomplete one. We
refer to this task as the image zoom completion problem. After
discussing possible contexts in which this setting may arise, we
introduce a nonlocal regularization strategy, giving full details
concerning the numerical optimization of the corresponding
energy, and discussing its benefits and shortcomings. We also
derive two total variation-based algorithms and evaluate the
performance of the proposed methods on a set of natural and
textured images. We compare the results we get with those
obtained with two recent state-of-the-art single-image super-
resolution algorithms.

I. INTRODUCTION

Image restoration problems are ubiquitous in the field of
image processing [1]. Therein, the goal is to estimate an
underlying image from a set of related, degraded, and possibly
incomplete measurements. The first step towards this goal is
the identification of the imaging device parameters, as well
as those pertaining to the scene being imaged. Considering
a linear forward model, either known a priori or properly
estimated, with additive noise, the restoration problem can
be cast as an inverse problem where the goal is to recover
an image f P Rn, n ě 1, related to measurements y P Rp,
p ď n, through the forward model

y “ Af ` ηηη, (1)

where A P Rpˆn is a known linear operator and ηηη is unknown
and accounts for both sensing and modeling errors.

Depending on the nature of the matrix A in (1), different
restoration problems are encountered. In all cases, the very
nature of imaging devices leads to problems of the form (1)
which are either undetermined (p ă n) or ill-conditioned (the
condition number of A is very high). A common strategy
to deal with such ill-posed inverse problems is through the
variational approach. In this setting, specific prior informa-
tion about the sought-after image is selected by choosing a
penalty function J . An estimated image f̂ is then obtained
by minimizing an overall cost function imposing a trade-off
between prior information (through J) and a data fidelity term
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controlling the discrepancy between the estimated image f̂ and
the measurements y according to the forward model (1).

A. Image Zoom Completion

We study in this paper a specific restoration problem that
we term image zoom completion (IZC). Here, the problem is
to recover a high-resolution (HR) image from a pair consisting
of a complete low-resolution (LR) image and an HR but
incomplete one. To the best of our knowledge, this problem
has been introduced for the first time by the authors of the
present paper in [2].

The application that lead us to investigate a solution to the
IZC problem concerned the estimation of petro-physical pa-
rameters through image processing techniques. In this context,
a 3D computerized tomography (CT) scan of a cylindrical
sample of a rock is performed. This acquisition is analyzed in
order to automatically segment and classify different regions
according to visual cues related to underlying petro-physical
parameters. A typical example concerns the automatic classi-
fication of different textured regions, which in turn relate to
different porosity levels of the underlying material. In practice,
due to the large size of the sample being imaged, the particular
CT system used was not able to provide enough resolution for
automatic classification. In the context we were interested in, it
was possible to perform a second scan, this time focusing on a
specific part of the volume. This second acquisition provides
incomplete but higher resolution slices of the rock sample.
Now, the next step is to combine the image data coming from
both acquisitions in order to obtain a complete HR volume.

The setting we have just described may also arise in the
context of digital photography when one uses a digital camera
to capture an image of a given scene, and then uses the optical
zoom of the same camera to capture a subset of the same scene.
Due to optical zoom, this second acquisition is incomplete,
in the sense that it only captures a subset of the first one,
but it provides higher resolution. The IZC problem is now to
compute a full HR image with the aid of the complete LR and
incomplete HR data. Figure 1 illustrates this setting.

The IZC problem we have just described is closely related
to the classical single-image super-resolution (SISR) problem.
In fact, when no subset of the HR image is available, the two
problems are identical. We review in the next subsection some
approaches related to the SISR problem. Due to the large body
of existing literature, we concentrate on specific approaches
related to our present proposal.

B. SISR

In the SISR setting, the goal is to recover an HR image
from a single input LR frame. In this context, there are two
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Fig. 1. Setting for the IZC problem. The left image represents a complete LR
acquisition. The right image represents a zoom on a subset of the left image
and is thus referred to as an incomplete HR image. The goal of IZC is to
combine both acquisitions in order to complete the missing HR information.

degradation sources relating the sought-after image to the ob-
served one: blurring and coarse sampling. A possible forward
model is given by (1) with A “ S ˝H, where H P Rnˆn is a
convolution (or more generally a linear filtering) operator and
S P Rmˆn is a sub-sampling operator. This problem is under-
constrained, thus SISR algorithms generally rely on various
kinds of assumptions in order to estimate the true image.

The baseline method for SISR is through linear interpo-
lation methods, especially bicubic interpolation. In order to
outperform bicubic interpolation, many variational approaches
exploiting smoothness and/or geometric regularity of images
have been proposed (see [3] and references therein). For
instance, in [4], the authors study the use of the total variation
(TV) semi-norm [5] for SISR. The use of the recurrence of
image patches as a cue to regularize the SISR problem has
been introduced in [6]. This idea has been pushed further in
[7] by restricting the search for example patches to localized
regions, and in [8] by using patch redundancy across different
scales. Similar ideas have been proposed for the multiframe SR
setting, in particular in [9]. Approaches based on image spar-
sity, either in analysis or synthesis forms [10], [11] or through
Gaussian mixtures [12] have also been recently considered.
The application of ideas combining sparsity and self-similarity
[13], [14], [15] currently leads to the best performing methods.

A different line of work involves sparse representation of
LR/HR pairs of patches. This kind of approach has been
initiated in [16], [17], [18] where the authors propose to infer
the sparse code of each sought-after HR patch from the sparse
code of its corresponding observed LR version. To enforce
the invariance of LR/HR sparse codes, two coupled LR/HR
dictionaries are learned from a large training data set.

C. Organization of the Paper

The paper is organized as follows. We formulate in Section
II an observation model for the IZC setting. This leads to view
the IZC problem as an inverse one whose ill-posed nature
is briefly discussed. Then, we outline the general variational
strategy we adopt in order to perform zoom completion.

Section III is dedicated to our main contribution. Therein,
we present a nonlocal regularization strategy targeting images
with possibly rich textural content. To this end, we use the

recurrence of image patches at the same scale as a cue to
perform zoom completion. This is done by computing patch
similarities and imposing nonlocal smoothness for the super-
resolved image. We carry out the minimization using the recent
proximal forward-backward primal-dual (FBPD) algorithm of
[19].

Section IV is devoted to two TV-based regularization strate-
gies to perform IZC. The first one consists in a TV-`2 SR
method where the visible HR part is involved through an
equality constraint. The second one is based on the recent de-
composition model of [20] allowing to impose different priors
on the structure and texture components of the sought-after
image. For both methods, we carry out the minimization by
using variable splitting and deploying the Douglas-Rachford
algorithm [21] in a product-space.

We report a set of numerical experiments in Section V,
comparing the results we get with two recent state-of-the-art
SISR algorithms.

Concluding remarks and directions for possible future work
are outlined in Section VI. Finally, the appendix presents some
background material about proximity operators, the FBPD
and Douglas-Rachford algorithms, and the derivation of the
algorithms presented in Section IV.

A preliminary version of this paper has been published
in [2]. We bring to the attention of the reader the fact that
the nonlocal regularization proposed in [2] is different from
the present one. Indeed, the former is based on a nonlocal
graph where each missing pixel is connected to a set of
pixels that lie in the HR region, while the latter adds to the
previous connections a set of connections from each pixel
to its nearest neighbors in a local window. In this respect,
the present construction generalizes that of [2]. We also note
that the optimization algorithm used in the present paper is
different from that of [2]. This longer version also includes
complete details concerning the numerical optimization of the
TV-based approach mentioned in [2]. Finally, the simultaneous
decomposition and zoom completion method presented in
Section IV-B was not present in [2].

II. THE IMAGE ZOOM COMPLETION PROBLEM

The setting for IZC is a complete LR image and a corre-
sponding incomplete HR image. Let yp1q P Rp and yp2q P Rn,
1 ď p ă n, respectively denote the lexicographical ordering
of the complete LR and partial HR images. We adopt the
following discrete forward model:

#

yp1q “ SHf0 ` ηηη1 P Rp,
yp2q “M pf0 ` ηηη2q P Rn,

(2)

where
‚ f0 P Rn denotes the unknown HR image;
‚ S P Rpˆn stands for spatial downsampling by a factor
r in each direction (n “ p r2); Note that SJ P Rnˆp
corresponds to upsampling by the same factor and that
the matrix SJS P Rnˆn is diagonal with binary diagonal
elements;

‚ H P Rnˆn accounts for spatial blurring of the image,
modeled in our case by a discrete circular convolution
with a known point spread function h: Hx “ hf x;
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‚ M “ diagpm1, . . . ,mnq P Rnˆn is a binary mask
indicating which HR pixels are observed: mi “ 1, if
pixel i belongs to the observed area of the HR image,
and mi “ 0 otherwise;

‚ the vectors ηηη1 P Rp and ηηη2 P Rn are samples of a white
Gaussian noise, accounting for acquisition and modeling
errors.

Throughout the paper, we assume that the forward model
(2) relating the HR/LR pair to the sought-after image f0 is
completely known. In particular, we discuss neither the iden-
tification of the convolution kernel nor possible registration
issues when the partial zoom is performed.

Under the setting described above, the IZC problem cor-
responds to the recovery of an estimate f̂ of f0 from the
measurements yp1q and yp2q, according to the forward model
(2). Depending on the downsampling factor r, the support of
the blur kernel and the visible HR area, this problem can be
under-determined. In all cases, the presence of the convolution
operator makes it ill-conditioned.

As usual for such inverse problems in imaging [1], we
formulate the estimation task in a variational setting lead-
ing to the minimization of an energy function of the form
Epfq “ Rpfq`Dpfq. The function R is a regularization term
forcing the solutions to have pre-specified properties, while
the term Dpfq penalizes the discrepancy between f and the
observations pyp1q,yp2qq, according to the forward model (2).
In the presence of white Gaussian noise, the latter term is
usually taken, in its penalized form, as a squared `2 distance,
leading to an optimization problem of the form

minimize
fPRn

Rpfq`λ1}SHf ´yp1q}2`λ2}Mf ´yp2q}2. (3)

When the noise level in the observed HR part can be
neglected, or if one does not want to modify the observed
HR part, one can instead consider the constrained problem

minimize
fPRn

Rpfq ` λ}SHf ´ yp1q}2 ` ιtM ¨ “yp2qupfq, (4)

where we write tA ¨ “ yu for the set tx P Rn : Ax “ yu, ιC
is the indicator function of a convex set C, given by ιCpxq “ 0
if x P C and ιCpxq “ `8 otherwise, and λ ą 0. This latter
setting is the one we adopt in the rest of the paper.

To summarize, we tackle the IZC problem by minimizing
an energy function of the form given in (4). The problem now
amounts to devising suitable regularizers R as well as the
practical optimization of the corresponding energies.

III. IZC VIA PROPOSED NONLOCAL REGULARIZATION

A. The Nonlocal Framework

Classical variational techniques employed in the field of
image processing rely on the regularity of the underlying
image in terms of local relationships between neighboring
pixels. Nonlocal regularization techniques [22], [23] replace
this local regularity assumption by a nonlocal one, exploiting
patch redundancy across the whole image. The large success
of these methods stems from their ability to preserve textures,
details and fine structures better than their local counterparts.
This arises from the fact that nonlocal regularization strategies

are generally based on discrete difference operators whose
orientations are driven by the observed image itself. Such
directions are chosen for each pixel independently, based on a
given notion of similarity. Further references about the nonlo-
cal approach, targeted specifically towards the regularization
of inverse problems in image processing, can be found e.g. in
[24], [25], [26], [27], [28], [29], [30], [31].

In the following, we will consider the `1,2 nonlocal total
variation (NLTV), expressed as

NLTVpfq “
n
ÿ

i“1

d

ÿ

jPNi

wi,j}fi ´ fj}2, (5)

where Ni is a subset of positions located inside a search
window centered at i. For each pixel i, we design the support
Ni by selecting k pixels that are most similar to i according to
the Euclidean distance between surrounding patches. Letting
pipfq P Rq denote a

?
qˆ
?
q image patch extracted from f and

centered at i, the obtained edges are then weighted according
to

wi,j “ e´}pipfq´pjpfq}
2
{2σ2

, (6)

where σ ą 0. We note that the nearest-neighbors search leads
to a nonlocal neighborhood relation which is not symmetric:
a pixel j can be a neighbor of i (j P Ni) without i being a
neighbor of j (i R Nj).

B. Nonlocal regularization for IZC

In order to adopt a nonlocal strategy for the IZC problem,
we first need to define a weighted graph encoding neigh-
borhood relations between HR pixels. As only part of the
HR image is sensed, the information about all HR patches
is incomplete, and thus it cannot be used to build the graph.
In order to circumvent this difficulty, we take advantage of the
available LR image yp1q P Rp. The first step in this strategy is
to interpolate yp1q P Rp to match the definition of yp2q P Rn.
To this end, we use bicubic interpolation and get ỹp1q P Rn.
Once we have ỹp1q, the similarities between patches can be
estimated by the following two different approaches.

The first approach is based on the hypothesis that the
interpolated patches generally exhibit similar spectral structure
and maintain the same coherence. So, we connect each pixel
to its k-nearest neighbors, inside a search window, according
to the Euclidean distance between surrounding patches. For
the regularization, we use the function introduced in Eq. (5).
Letting } ¨ }1,2 denote the following norm

p@p P Rnˆmq }p}1,2 “
n
ÿ

i“1

}pi,.}2 “
n
ÿ

i“1

g

f

f

e

m
ÿ

j“1

p2i,j , (7)

the NLTV penalty can be expressed as

NLTVpfq “ }D1f}1,2, (8)

where

D1f “

»

—

–

“?
w1,jpf1 ´ fjq

‰

jPN1

...
“?
wn,jpfn ´ fjq

‰

jPNn

fi

ffi

fl

u P Rk
...

u P Rk.
(9)
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The second approach consists in adding to the previous set
of connections a new one. To do so, we denote the set of
pixels where the HR information is missing by D and the
set of sensed HR pixels by Dc (see Figure 1). We connect
each unobserved HR pixel i P D to its k-nearest observed
HR neighbors in Dc, again using patch-based distances. The
corresponding nonlocal gradient operator is expressed as

pD2fqi,. “

#

“a

w̃i,jpfi ´ y
p2q
j q

‰

jPÑi
P Rk, if i P D

0 P Rk, otherwise,
(10)

where Ai,. denotes the ith line of a matrix A, Ñi is the
set of nearest neighbors in Dc of i P D, and w̃i,j denotes
the weight computed between patches pipỹp1qq and pjpỹ

p1qq.
Therefore, the second regularizer we propose is defined in
terms of D “ rDJ1 DJ2 s

J, leading to

NLTV`pfq “ }Df}1,2. (11)

Incorporating data fidelity terms as in Eq. (4) leads to the
problem

minimize
fPRn

}Df}1,2`
λ

2
}SHf´yp1q}2`ιtM ¨ “yp2qupfq. (12)

To summarize, we use an interpolated version of the LR image
to construct a weighted adjacency relations and use it to infer
the values of the missing pixels by solving (12).

C. Minimization Using FBPD

Problem (12) can be solved using proximal algorithms. In
this paper, we use the forward-backward primal-dual (FBPD)
algorithm of [19] with the following identifications: F ”
λ
2 }SH ¨ ´yp1q}2, G ” ιtM¨“yp2qu, H ” } ¨ }1,2 and L “ D.
The authors might refer the appendix for relevant notations
and definitions used.

In order to apply FBPD, we need to evaluate ∇F , proxτG
and proxωH˚ at each iteration. The gradient of F is given by

∇F pfq “ λHJSJSHf ´ λHJSJyp1q, (13)

whose Lipschitz constant is equal to λ.1

The evaluation of proxτG amounts to projecting on the
constraint set. It is given by

´

projtM ¨ “yp2qupfq
¯

i
“

#

y
p2q
i if mi “ 1,

fi if mi “ 0.
(14)

The evaluation of proxωH˚ is given by

proxωH˚pyq “ y ´ soft1pyq, (15)

where soft is the vector-field soft-thresholding function given,
for all p P Rnˆm and ν ą 0 by

psoftνpqi,j “

#

0 if }pi,.}2 ď ν,
´

1´ ν
}pi,.}

¯

pi,j else.
(16)

1Since SJS is diagonal with binary entries, we have that ~SJS~ “ 1.
Using a normalized kernel H leads to ~HJ~ “ ~H~ “ 1, where ~ ¨ ~
denotes the spectral norm.

The final point that needs investigation is the majoration
of the operator norm of D. Let us denote w` the weights
corresponding 2 to D. We have

}Df}2 “
n
ÿ

i“1

ÿ

jPNi
Ť

Ñi

w`i,jpfi ´ fjq
2

ď 2
n
ÿ

i“1

ÿ

jPNi
Ť

Ñi

w`i,jpf
2
i ` f

2
j q,

so that }D} ď 2m, where

m “ max
iPt1...,nu

pdegout
i ` degin

i q, (17)

degout
i “

ÿ

jPNi
Ť

Ñi

w`i,j and degin
i “

ÿ

jPNi
Ť

Ñi

w`j,i. (18)

Algorithm 1 summarizes all these computations. The variable
of interest at convergence is xrls.

Algorithm 1 IZC via Nonlocal Regularization Using
FBPD
INITIALIZATION

—

—

—

—

—

—

—

–

choose
´

xr0s,yr0s
¯

P Rn ˆ R2kn

compute m as in (17)
set τ ą 0 and ω ą 0 such that

τ pλ{2` 2ωmqď1

FOR l “ 0, 1, . . .
—

—

—

—

—

—

—

–

pxrls “ λHJSJpSHxrls ´ yp1qq `DJyrls

xrl`1s
“ projtM ¨ “yp2qu

`

xrls ´ τ pxrls
˘

pyrls “ yrls ` ωD
`

2xrl`1s
´ xrls

˘

yrl`1s
“ pyrls ´ soft1ppyrlsq

D. Discussion

The results obtained by the nonlocal approach we have
just introduced are further discussed in Section V. In this
subsection, we discuss the iteration complexity of Algorithm 1.
We also discuss two foreseeable shortcomings of the proposed
nonlocal approach.

From a computational point of view, the iteration complex-
ity of the above algorithm is dominated by the application
of two low-pass filters (H and HJ) and the matrices D and
DJ. The latter depends on the sparsity of D, which is related
to the number of unobserved HR pixels and to the number
k of nearest-neighbors. Furthermore, there is an overhead for
performing nearest neighbors search.

As described earlier, patch similarities that drive the nonlo-
cal regularization are based on (an interpolated version of)
the LR image yp1q. When the super-resolution factor r is
important and/or when the blurring matrix attenuates too much
the high frequencies of the HR scene, these weights can
be erroneous and their incorporation into the regularization
functional can lead to bad reconstructions. While a solution

2w`i,j “ wi,j ` w̃i,j if i P D and j P Dc, and w`i,j “ wi,j otherwise.
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to the first problem (large super-resolution factor) can consist
in performing zoom completion recursively using a small
SR factor, the only solution to the second problem (strong
attenuation of high frequencies) is to recompute the weights
after a fixed number of iterations.

Another case where the nonlocal approach we proposed may
fail is when the typical patterns present in the visible HR part
are different from the ones that make the invisible part. In
this case, the nearest-neighbors graphs provides very limited
information and any use of the corresponding weights may
lead to bad reconstructions.

IV. IZC VIA STANDARD TV-BASED METHODS

The standard approach for edge-preserving image restora-
tion consists in penalizing the total variation of the sought-
after image. We present in this section a Douglas-Rachford-
based optimization procedure for the TV-`2 regularization of
the IZC problem where the HR data is involved through an
equality constraint. We also present an algorithm for a TV-
based decomposition model allowing to impose different priors
on the structure and texture components of the sought-after
image. The two algorithms presented in this section serve a
baseline for the comparisons we perform in Section V. The
details of the derivation are given in the appendix.

A. IZC via TV Regularization

Let

σ : t1, . . . ,
?
nu ˆ t1, . . . ,

?
nu Ñ t1, . . . , nu

denote a pixel enumeration3. We consider the discrete gradient
operator ∇ : Rn Ñ Rnˆ2 given, for 1 ď k, l ď

?
n´ 1 by

#

p∇fqσpl,kq,1 “ fσpl,k`1q ´ fσpl,kq,

p∇fqσpl,kq,2 “ fσpl`1,kq ´ fσpl,kq.
(19)

We adopt circular boundary conditions so that ´∇J∇, cor-
responding to the 4-stencil discretization of the Laplacian
operator, is diagonalized by the discrete Fourier transform.

We adopt the following definition for the discrete total
variation of an image f P Rn:

TVpfq “ }∇f}1,2. (20)

Adopting (20) as a prior for our IZC problem leads to the
following convex optimization problem

minimize
fPRn

}∇f}1,2`
λ

2
}SHf´yp1q}2`ιtM ¨ “yp2qupfq. (21)

The energy in (21) is composite: it mixes the operators
M,S,H, and it contains two nonsmooth terms. While it is
possible to apply the FBPD algorithm to solve Problem (21),
we follow here the strategy suggested in [32] by using variable
splitting and deploying the Douglas-Rachford algorithm in a
product space.

Letting H “ Rnˆ2 ˆ Rn ˆ Rn and K “ tp∇f ,Hf , fq, f P
Rnu, we rewrite (21) in the form

minimize
x“pp,u,fqPH

F1pxq ` F2pxq, (22)

3For simplicity of notations, we work with square images.

where

F1pxq “ }p}1,2 `
λ

2
}Su´ yp1q}2 ` ιtM ¨ “yp2qupfq, (23)

and
F2pxq “ ιKpp,u, fq. (24)

In order to apply Douglas-Rachford, we need to evaluate
proxF1

and proxF2
at each iteration. We note that the eval-

uation of the p-component of proxF1
is given the soft-

thresholding operator of equation (16). Further details are
given in the appendix. They lead to the iterations reported
in Algorithm 2. The variable of interest at convergence is f

rls
1 .

We note that the f
rls
1 and u

rls
2 updates in Algorithm 2 can

be done without inner loops since A1 is diagonalized by the
Fourier transform and A2 is diagonal.

Algorithm 2 IZC via Constrained TV-Regularization
Using Douglas-Rachford

INITIALIZATION
—

—

—

—

—

–

set H “ Rnˆ2
ˆ Rn ˆ Rn

choose
´

p
r0s
2 ,u

r0s
2 , f

r0s
2

¯

P H

set A1 “ ∇J∇`HJH` I and A2 “ λSJS` I

FOR l “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1
rls
“ A1

´1
`

∇Jp2
rls
`HJu2

rls
` f2

rls
˘

u1
rls
“ Hf2

rls

p1
rls
“ ∇f2

rls

f2
rl`1s

“ f2
rls
´ f1

rls
` projtM ¨ “yp2qup2f1

rls
´ f2

rls
q

u2
rl`1s

“ u2
rls
´ u1

rls
`A2

´1
pλSJyp1q ` 2u1

rls
´ u2

rls
q

p2
rl`1s

“ p2
rls
´ p1

rls
` soft1p2p1

rls
´ p2

rls
q

We show in Section V that the impact of this method,
outside the HR visible area, is very limited. We next derive
an algorithm based on a decomposition approach, allowing to
partly circumvent this problem.

B. IZC via TV + Low-Patch-Rank Decomposition

Rather than trying to impose a single prior for the sought-
after HR image, as was done in the previous section, we
adopt here a decomposition model [33], [34] for the IZC
problem. The idea is to compute separately two different
components of the HR image by imposing different priors on
each. The resulting image is obtained as the sum of these two
components.

Of particular interest to us in the present section is the
TV+low-patch-rank decomposition model of [20]. This model
introduces a new formulation for the texture penalization term.
More precisely, due to the repetitive aspect of natural textures,
it is reasonable to assume that some patches of the texture part
v of an image f will repeat themselves at different locations.
In order to integrate this observation in a variational setting,
the authors of [20] propose to extract all

?
q ˆ

?
q non-

overlapping patches of an image f P Rn, placing each of them
as the column of a matrix Pf P Rqˆm. Here, the patch-map
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P : Rn Ñ Rqˆm, n “ qm, allows to pass from an image
f P Rn to a matrix Pf P Rqˆm where q is the number of
pixels inside a patch and m is the number of

?
q ˆ

?
q non-

overlapping patches contained in f . Let us note at this point
that, due to the fact that P is essentially a permutation of
image pixels, it is an isometry with respect to all point-wise
norms on Rqˆm. for deriving our minimization algorithm.

Equipped with the patch-map P , the authors of [20] propose
the following decomposition model

minimize
pu,vqPRnˆRn

αTVpuq ` β }Pv}˚

subject to f “ u` v, (25)

where }A}˚ denotes the nuclear (or trace) norm of a matrix
A, that is, the sum of its singular values. In this context, the
nuclear norm acts as a convex relaxation for the combinatorial
rank function. Thus, adopting the term }Pv}˚ favors an overall
repetition of texture patches. Further details can be found in
[20].

In [20], the decomposition model (25) is applied to de-
noising, deblurring and sparse reconstruction. The authors use
the split Bregman algorithm [35] which is closely related to
the algorithm we use in this paper. Let us finally note that a
generalized version of the decomposition model of [20], where
patches are allowed to overlap, has been recently proposed in
[36].

Adapting (25) to our IZC setting leads to the following
problem:

minimize
pu,vqPRnˆRn

αTVpuq ` β}Ppvq}˚ `
λ

2
}SHpu` vq ´ yp1q}2

` ιtM ¨ “yp2qupu` vq, (26)

with α, β, λ ą 0.
The advantage of using (26) instead of (21) is that the

additional term }Ppvq}˚ allows to have better control on the
texture part of the sought-after HR image. Let us also note that,
due to the constraint imposed by the term ιtM ¨ “yp2qupu`vq,
this can be seen as an implicit strategy for making use of the
available HR image in order to complete the unobserved part.

We carry out the minimization again by variable splitting
and using the Douglas-Rachford algorithm. The splitting we
adopt amounts to working in the Hilbert space H “ Rnˆ2 ˆ

Rn ˆ Rn ˆ Rn ˆ Rn. Letting

K “ tp∇u,u,v,Hpu` vq,u` vq P H : u,v P Rnu,

and for x “ pp,u,v,g,wq P H

F1pxq “ α}p}1,2 ` β}Ppvq}˚ `
λ

2
}Sg ´ yp1q}2

` ιtM ¨ “yp2qupwq, (27)

F2pxq “ ιKpxq, (28)

Problem (26) is equivalent to minimizing F1`F2 over H. In
order to apply Douglas-Rachford, we need to evaluate proxF1

and proxF2
at each iteration. The details are given in the

appendix. We note that the evaluation of the v-component of

proxF1
involves the singular value thresholding operator given

by:
svtµpvq “ UmaxpΣΣΣ´ µI, 0qV˚, (29)

where v “ UΣΣΣV˚ is a singular value decomposition (SVD)
of v. We also note that the evaluation of proxF2

leads to a
system of linear equations whose matrix is

A3 “

„

∇J∇`HJH` 2I HJH` I
HJH` I HJH` 2I



. (30)

Algorithm 3 summarizes the different steps. The variable of
interest at convergence is u

rls
1 ` v

rls
1 .

Algorithm 3 IZC via TV-}P ¨ }˚ Regularization Using
Douglas-Rachford

INITIALIZATION
—

—

—

—

—

–

set H “ H “ Rnˆ2
ˆ Rn ˆ Rn ˆ Rn ˆ Rn

choose
´

p
r0s
2 ,u

r0s
2 ,v

r0s
2 ,g

r0s
2 ,w

r0s
2

¯

P H

set A3 as in (30) and A2 as in Algorithm 2

FOR l “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

„

u
rls
1

v
rls
1



“ A3
´1

„

∇Jp2
rls
` u2

rls
`HJg2

rls
`w2

rls

v2
rls
`HJg2

rls
`w2

rls



g1
rls
“ Hpu1

rls
` v1

rls
q

w1
rls
“ u1

rls
` v1

rls

p1
rls
“ ∇u1

rls

u2
rl`1s

“ u1
rls

v2
rl`1s

“ v2
rls
´ v1

rls
` PJsvtβPp2v1

rls
´ v2

rls
q

g2
rl`1s

“ g2
rls
´ g1

rls
`A2

´1
pλSJyp1q ` 2g1

rls
´ g2

rls
q

w2
rl`1s

“ w2
rls
´w1

rls
` projtM ¨ “yp2qup2w1

rls
´w2

rls
q

p2
rl`1s

“ p2
rls
´ p1

rls
` softαp2p1

rls
´ p2

rls
q

From a computational point of view, the iteration complex-
ity of Algorithm 3 is dominated, on the one hand, by the
computation of the singular value decomposition of the patch
matrix, and on the other hand, by the solution of the linear
system whose matrix is A3. Concerning the SVD computation,
it is important to note that it applies to a matrix with much
fewer rows (numbers of pixels in a patch) than columns
(number of non-overlapping patches). Concerning the linear
system, we note that while each block of A3 is diagonal in the
Fourier domain, the overall matrix is not. We instead solve this
linear system with a conjugate gradient method. In practice we
perform only 4 iterations and use a ‘warm start’ strategy [37],
meaning that we start the conjugate gradient solver at iteration
l`1 with the result it yielded from iteration l. Each conjugate
gradient iteration involves a matrix-vector product A3x, so it
involves the evaluation of one Laplacian filter p∇J∇q and one
low-pass filter pHJHq.

V. EXPERIMENTAL RESULTS

We start by evaluating the effectiveness of the methods we
have introduced on a set of 4 natural images and 4 textures
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shown in Figure 2. These images correspond to 256 ˆ 256
crops taken from the Kodak4 and Brodatz 5 databases.

In order to assess the relative performance of the different
approaches, we start with a ground truth full HR image f0
and simulate the incomplete image yp2q by masking 75% of
f0. Similarly, we simulate the complete LR image yp1q by
blurring f0, downsampling the result by a factor r in each
direction, and finally adding white Gaussian noise. In all the
experiments we carried, the blurring kernel corresponds to a
normalized Gaussian e´d

2
{2s2 with s “ 1.2. The kernel is

truncated to a 5 ˆ 5 window. The super-resolution factor r
is fixed to 2. The standard deviation of the additive white
Gaussian noise is fixed to 2.5. Computations on images are
done in the range r0, 255s.

The results we report in Table I are obtained by empirically
setting λ “ 0.5 in (12), λ “ 2 in (21), and α “ 0.5, β “
70 and λ “ 5 in (26). For the nonlocal approach detailed
in Section III, three additional parameters are involved: the
size of compared patches, the number k of nearest neighbors,
and the parameter σ in (6). In our experiments, similarities
between pixels were computed based on 5 ˆ 5 surrounding
patches inside a 25 ˆ 25 search window. The number k has
been fixed to 14, while σ has been set in the interval r10, 50s.
Our nearest neighbors computation is performed exactly but
we note that fast approximate computations can be performed,
e.g. using the algorithm of [38]. For the TV+low-patch rank
approach, a single additional parameter is involved: the size
of the extracted patches. This value has been set to 64 “
8 ˆ 8 in all the experiments. A stopping criterion involving
the relative change of two successive iterates has been applied
for Algorithms 1, 2 and 3

Since, to the best of our knowledge, the IZC setting has not
been considered in the literature (except in [2]), we cannot
perform fair comparisons with other methods. Indeed, in the
framework of SISR, there is no available HR data. However,
we selected two state-of-the-art SISR methods whose imple-
mentations are freely available and decided to compare the
performance yielded by our three algorithms with the ones
yielded by these two. The methods we selected are those of
Yang et al. [16] and of Dong et al. [14].

The method of [16] uses sparse code invariance of LR/HR
patches over learned dictionaries. As the degradation model
assumed in [16] is different from the one we adopted in this
paper, we re-learned a dictionary of size 1024 form LR/HR
examples synthesized from the same data set proposed in [16]
but this time using our degradation model. We also adapted
the back-projection step.

The method of Dong et al. [14] combines ideas from
clustering and sparse coding with the nonlocal approach. In
the first iteration of the algorithm, patches of an interpolated
version of the LR image serve as a training set. They are
clustered using K-means. A global dictionary is obtained,
along with the corresponding sparse codes, by concatenating
PCA sub-dictionaries from each cluster. The computed sparse
codes are further refined by averaging with similar patches in

4http://r0k.us/graphics/kodak/
5Brodatz, P. (1966). Textures: A Photographic Album for Artists and

Designers, Dover, New York.

a manner similar to the nonlocal-means approach [39], leading
to sparse codes for each input interpolated patch. These sparse
codes are further refined through a back-projection step aiming
to enforce consistency with regard to the degradation model.
A first estimation of the HR image is obtained by averaging
overlapping patches. The overall procedure is iterated a fixed
number of times, each time taking the output of the previous
iteration as input for the next one.

In Table I we report PSNR and SSIM values between the 8
images of Figure 2 and the results obtained with the specific
algorithms retained. These values are computed only on the
reconstructed HR part. We also report the results obtained
with bicubic interpolation. For each of our proposed methods,
we also include reconstructions obtained using Algorithms
1, 2 and 3 but without using the available HR data. This
corresponds to using the same algorithms with the null matrix
as a binary mask. The corresponding columns are labeled “no
HR” in Table I. We also report the results obtained using the
approach of [2], which corresponds to choosing D2 instead of
D in (12).

As can be seen in Table I, the NLTV` achieves the best
performance in terms of PSNR and SSIM. It is also interesting
to note that the average PSNR and SSIM for NLTV` without
using HR data is higher than that of [14]. Another interesting
aspect is the average gain obtained by passing from the
“no HR” to the “with HR” configuration. While this gain is
very limited for the TV approach, it is more important for
TV+}P ¨ }˚ and the nonlocal approach.

To further assess the performance of the proposed methods,
we perform a second set of experiments using the 24 images of
the Kodak database, in their original size (768ˆ512 or 512ˆ
768). The parameters of the forward model remain unchanged.
We report in Table II PSNR and SSIM values between the first
ten images of the database and the reconstructions obtained
using the retained method. The last row of Table II gives the
average PSNR/SSIM values on the whole database. One can
see here again that the proposed nonlocal approach yields the
best performance. Finally, Table III summarizes the average
running time of the different algorithms considered 6.

The numerical evidence brought by Tables I and II can
further be confirmed by inspecting the corresponding IZC
reconstructions in Figures 3 and 4. Notice in particular how
brick and wood edges are better reconstructed using NLTV`.

In Figure 5 we show the results obtained by our methods on
a slice of a CT scan of a rock 7. Therein, the zoom completion
performed by NLTV` is hardly distinguishable from the true
sensed HR image.

Finally, we show in Figures 6 and 7 the results we obtain
on two 512 ˆ 512 natural images. The setting is the same
as for the previous experiments, except that the proportion of
visible HR pixels is higher. On can see again that our proposed
nonlocal method yields very satisfactory reconstructions.

6All algorithms were implemented in Matlab and executed on 2.9 GHz
CPU. For the methods of [16] and [14], we used the implementations available
at the authors web pages.

7The authors would like to thank the team ”Sismage” from the Group
TOTAL for providing CT data.
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Fig. 2. Image dataset used as input to SR algorithms. From left to right and from top to bottom, 256ˆ 256 central crops of: “Brick”, “Mosaic”, “Pigskin”,
“Wood”, “Kodim01”, “Kodim02”, “Kodim08”, and “Kodim22”.

TABLE I
PSNR (DB) AND SSIM ON THE RECONSTRUCTED HR AREA FOR DIFFERENT SR METHODS (IMAGES OF SIZE 256ˆ 256)

Bicubic NLTV` NLTV Approach of [2] TV TV+}P ¨ }˚ [16] [14]

no HR with HR no HR with HR no HR with HR no HR with HR no HR with HR

Brick 25.38 27.71 27.79 27.26 27.27 27.45 27.42 27.29 27.33 27.44 27.43 27.12 27.41
0.616 0.697 0.847 0.639 0.640 0.698 0.846 0.692 0.763 0.711 0.777 0.711 0.719

Mosaic 15.62 19.38 19.51 19.10 19.40 19.05 19.25 18.90 18.93 19.19 19.25 18.99 19.27
0.589 0.811 0.909 0.805 0.910 0.799 0.904 0.818 0.862 0.835 0.876 0.827 0.845

Pigskin 26.27 28.63 28.65 28.38 28.51 28.53 28.47 28.09 28.09 28.16 28.18 28.10 28.35
0.660 0.799 0.902 0.788 0.901 0.801 0.903 0.775 0.824 0.794 0.838 0.799 0.805

Wood 24.74 27.72 28.35 26.40 26.49 27.19 27.88 26.47 26.64 27.00 27.51 26.82 27.98
0.624 0.801 0.907 0.794 0.794 0.779 0.899 0.746 0.795 0.747 0.804 0.759 0.804

Kodim01 24.09 26.29 26.71 26.22 26.23 26.00 26.17 26.19 26.21 26.32 26.35 26.09 26.62
0.597 0.690 0.853 0.694 0.832 0.700 0.847 0.729 0.790 0.738 0.797 0.714 0.750

Kodim02 33.82 34.91 35.01 34.83 34.85 30.89 30.93 34.51 34.52 33.89 33.90 32.94 33.41
0.803 0.864 0.948 0.861 0.946 0.661 0.818 0.829 0.868 0.801 0.845 0.764 0.773

Kodim08 21.59 25.64 25.97 25.41 25.42 24.84 24.96 25.29 25.32 25.37 25.40 24.17 25.91
0.657 0.804 0.904 0.802 0.897 0.744 0.865 0.796 0.839 0.796 0.839 0.765 0.812

Kodim22 27.94 30.05 30.13 29.96 29.94 28.84 28.90 29.94 29.95 29.81 29.82 28.94 29.79
0.771 0.846 0.918 0.845 0.916 0.713 0.849 0.823 0.867 0.800 0.839 0.766 0.780

Average 24.93 27.54 27.76 27.19 27.26 26.59 26.74 27.08 27.12 27.14 27.23 26.64 27.34
0.664 0.789 0.898 0.778 0.854 0.736 0.866 0.776 0.826 0.777 0.826 0.763 0.786

VI. CONCLUSION

A super-resolution problem from an LR/HR image pair has
been considered. We have motivated its importance and high-
lighted some of its possible applications. Then we developed
a nonlocal regularization strategy for the construction of a
solution and derived two TV-based algorithms. The practical
optimization of the energies resulting from each model has
been discussed.

While the TV-based solution is appropriate for the class
of piecewise constant images, the nonlocal and the TV+low-
patch rank approaches allow targeting larger image classes,
in particular images with strong repetitive textures. Both
approaches organize the patches of the sought-after image
following the evidence provided by the complete LR and
incomplete HR image pair.

On average, the TV+}P ¨ }˚ method allows to go one step
further than the standard TV-`2 approach. However, we have

seen that in order to truly leverage the available HR data, it
is necessary to resort to explicit patch comparisons and to
incorporate them in a nonlocal cost function.

We note that all the proposed methods do not rely on sparse
representations over learned dictionaries and as such they can
be easily adapted when the degradation model changes, e.g.
when the blurring filter or the super-resolution factor changes.

Possible future work concerning the IZC problem, in par-
ticular when the blurring filter and the super-resolution factor
are fixed, can concentrate on developing IZC strategies based
on sparse and redundant representations [40]. As the setting
for IZC is an LR/HR image pair, one can consider training
both LR and visible HR patches in order to learn an adapted
dictionary. When the super-resolution factor r is important
and/or the blurring matrix attenuates too much the high
frequencies of the HR image, one can consider an iterative
minimization process alternating between weight computation
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f0 yp1q yp2q

TV TV+}P ¨ }˚ NLTV`

Bicubic Yang et al. Dong et al.
Fig. 3. IZC for the image “Brick”. From left to right and form top to bottom:
ground-truth, LR input, incomplete HR input, TV (psnr = 27.33), TV+}P ¨ }˚
(psnr = 27.43), NLTV` (psnr = 27.79), bicubic (psnr = 25.38), Yang et al.
[16] (psnr = 27.12), Dong et al. [14] (psnr = 27.41).

f0 yp1q yp2q

TV TV+}P ¨ }˚ NLTV`

Bicubic Yang et al. Dong et al.
Fig. 4. IZC for the image “Kodim02”. From left to right and form top to
bottom: ground-truth, LR input, incomplete HR input, TV (psnr = 34.52),
TV+}P ¨ }˚ (psnr = 33.90), NLTV` (psnr = 35.01), bicubic (psnr =33.82),
Yang et al. [16] (psnr = 32.94), Dong et al. [14] (psnr =33.41).

TABLE II
PSNR (DB) AND SSIM ON THE RECONSTRUCTED HR AREA FOR

DIFFERENT SR METHODS (IMAGES OF SIZE 786ˆ 512)

Bicubic NLTV` NLTV [2] TV TV+}P ¨ }˚ [16] [14]

Kodim01 23.47 26.21 25.94 25.55 25.34 26.04 25.47 26.27
0.599 0.792 0.781 0.771 0.739 0.788 0.718 0.752

Kodim02 30.81 32.27 32.16 31.00 31.56 31.72 30.36 31.59
0.774 0.852 0.849 0.785 0.832 0.825 0.686 0.764

Kodim03 31.29 33.70 33.43 31.49 33.01 32.87 30.90 32.69
0.837 0.907 0.904 0.801 0.894 0.869 0.717 0.813

Kodim04 29.62 32.11 32.00 30.69 31.23 31.60 30.33 31.48
0.801 0.878 0.878 0.809 0.855 0.854 0.728 0.800

Kodim05 23.63 27.31 27.00 26.49 26.10 26.93 26.50 27.12
0.702 0.870 0.865 0.825 0.828 0.857 0.794 0.823

Kodim06 25.51 27.97 27.76 26.92 27.21 27.82 26.92 27.90
0.664 0.826 0.823 0.731 0.792 0.813 0.698 0.753

Kodim07 30.09 34.72 34.25 31.07 33.77 33.32 31.22 32.92
0.859 0.946 0.941 0.800 0.940 0.904 0.776 0.858

Kodim08 20.88 24.40 24.03 23.79 23.28 23.87 23.49 24.26
0.626 0.814 0.808 0.779 0.769 0.801 0.736 0.774

Kodim09 29.05 32.42 32.07 30.79 31.60 31.72 30.23 31.54
0.824 0.907 0.905 0.815 0.901 0.873 0.722 0.813

Kodim10 28.28 31.48 31.10 29.44 30.24 30.64 29.58 31.08
0.810 0.895 0.893 0.776 0.879 0.865 0.731 0.815

Average 27.44 30.22 29.95 28.67 29.45 29.72 28.55 29.65
0.751 0.864 0.861 0.777 0.841 0.842 0.725 0.791

TABLE III
AVERAGE RUNNING TIME IN SECONDS OF THE CONSIDERED SR METHODS

(IMAGES OF SIZE 768ˆ 512)

NLTV` TV TV+}P ¨ }˚ [16] [14]

402 30 221 562 1812

and nonlocal regularization as was done in [41] for image
inpainting.

APPENDIX

We recall in this appendix some definitions and algorithms
used for the numerical optimization of the energy functions
appearing in the paper.

Proximity operators

Let pH, x., .yq be a finite-dimensional inner-product space.
The associated norm is denoted by }.} “

a

x., .y. A function
f : H Ñ s´8,`8s is said to be proper if its domain,
dompfq “ tx P H : fpxq ă `8u, is nonempty. The
function f is said to be convex if its epigraph, epipfq “
tpx, aq P H ˆ R : fpxq ď au, is convex; it is said to
be lower semicontinuous if epipfq is closed. The set of all
proper convex and lower semicontinuous functions from H to
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f0 yp1q yp2q

TV TV+}P ¨ }˚ NLTV`

Fig. 5. IZC for a CT image scan. From left to right and from top to bottom :
ground truth, LR image, partial HR image, TV-regularization (psnr = 31.05),
TV+}P ¨ }˚ (psnr = 31.70), NLTV` (psnr = 32.17).

s´8,`8s is denoted by Γ0pHq. The conjugate of f P Γ0pHq
is the function f˚ P Γ0pHq defined for all y P H by
f˚pyq “ sup

xPH
txx, yy ´ fpxqu.

For f P Γ0pHq and z P H, the function x P H ÞÑ
1
2}x´z}

2`fpxq achieves its infimum at a unique point called
proximity operator of f at point z and denoted by proxfz:

proxfz “ argmin
xPH

fpxq `
1

2
}x´ z}2. (31)

For a nonempty closed C Ă H and f “ ιC , we have that f P
Γ0pHq and one recovers the definition of the Euclidean convex
projection operator on C, denoted projC : projCz “ proxιCz.

An important property concerning proximal operators is
their decomposability in orthonormal bases [21]. In particular,
letting pHiq1ďiďn be a family of Hilbert spaces, H “ H1 ˆ

. . . ˆ Hn, f P Γ0pHq, fi P Γ0pHiq for i P t1, . . . , nu, such
that fpxq “

řn
i“1 fipxiq, we have

`

proxf pxq
˘

i
“ proxfipxiq

for i P t1, . . . , nu.

FBPD (Algorithm 3.1 of [19])

Consider the following variational problem:

minimize
xPH

F pxq `Gpxq `HpLxq, (32)

where
‚ F is convex and differentiable with β-Lipschitz gradient;
‚ L is linear from H to a finite dimensional inner-product

space X ;
‚ G P Γ0pHq and H P Γ0pX q.
Suppose that the set of minimizers of Problem (32) is non-

empty. Letting pxnqn and pynqn constructed as follows
$

’

&

’

%

x0 P H, y0 P X , ω ą 0, τ ą 0 given
xn`1 “ proxτG

`

xn ´ τp∇F pxn ` LJynqq
˘

yn`1 “ proxωH˚ pyn ` ωLp2xn`1 ´ xnqq .

(33)

If τ
`

λ{2` ω }L}2
˘

ď1, then sequence pxnq converges to a
minimizer x˚ of Problem (32).

Douglas-Rachford

Consider the following variational problem:

minimize
xPH

F1pxq ` F2pxq, (34)

with F1, F2 P Γ0pHq. Let pxnqn, pynqn P HN constructed as
follows

$

’

&

’

%

y0 P H
xn “ proxνF2

pynq

yn`1 “ yn ` ξ pproxνF1p2xn ´ ynq ´ xnq

(35)

with 0 ă ξ ă 2 and ν ą 0. If the set of minimizers of F1`F2

over H is nonempty, then the sequence pxnq converges to a
minimizer x˚ of F1 ` F2 over H. In all derivations, we set
ξ “ ν “ 1.

Derivation of Algorithm 2

Letting H “ Rnˆ2 ˆ Rn ˆ Rn and K “ tp∇f ,Hf , fq, f P
Rnu, we rewrite (21) in the form (34) with F1 given in (23)
and F2 given in (24). In order to apply Douglas-Rachford, we
need to evaluate proxF1

and proxF2
at each iteration.

Since F1 is separable, the evaluation of proxF1
pp,u, fq

amounts to evaluating each part separately [21]. The p-
component corresponds to the vector-field soft-thresholding
function given in (16). The evaluation of the u-component
amounts to solving a system of linear equations whose matrix
is given by A2 “ λSJS ` I. This computation can be done
in linear time since A2 is diagonal. Finally, the evaluation of
the f -component is given in (14).

The evaluation of proxF2
amounts to projecting on the

constraint set K. It is straightforward to see that it leads to
a system of linear equations whose matrix is A1 “ ∇J∇ `
HJH ` I. Due to the circular boundary choice for both ∇
and H, the matrix A1 is diagonalized by the discrete Fourier
transform and thus the system can be solved by applying
the discrete Fourier transform, modulating, and applying the
inverse transform.

Derivation of Algorithm 3

Letting this time H “ Rnˆ2 ˆ Rn ˆ Rn ˆ Rn ˆ Rn and
K “ tp∇u,u,v,Hpu ` vq,u ` vq P H : u,v P Rnu, we
rewrite Problem (26) in the form (34) with F1 and F2 given in
(27) and (28). In order to apply Douglas-Rachford, we need
to evaluate proxF1

and proxF2
at each iteration.

As before, F1 is separable, thus the evaluation of
proxF1

pp,u,v,g,wq amounts to evaluating each part sepa-
rately. The evaluation of the p-component corresponds to the
soft-thresholding function defined in (16). The u-component
corresponds to the identity since F1 does not depend on u. The
evaluation of the g-component involves solving a linear system
with a diagonal matrix. The evaluation of the w-component
is given in (14).

The evaluation of the proximity operator of the v-
component is more intricate since it involves the pre-
composition with P and the nuclear norm. The generic prob-
lem is to compute proxµ}P¨}˚ for µ ą 0. Due the fact that P
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Fig. 6. IZC for the image ”Kodim19”. From left to right and from top to bottom: ground truth, LR image, partial HR image, TV-regularization (psnr =
26.96), TV+}P ¨ }˚ (psnr = 27.01), NLTV` (psnr = 28.02), bicubic (psnr = 24.75), Yang et al. (psnr = 25.83), Dong et al. (psnr = 27.26).

is an isometry with respect to all point-wise norms, we have
(Proposition 11 of [21]) that

proxµ}Pp¨q}˚pvq “ PJproxµ}¨}˚Ppvq. (36)

It has been shown in [42] that the latter prox computation can
be done by singular value thresholding:

proxµ}.}˚pvq “ svtµpvq “ UmaxpΣΣΣ´ µI, 0qV˚, (37)

where v “ UΣΣΣV˚ is a singular value decomposition (SVD)
of v.

Regarding the evaluation of proxF2
, it is easy to see that it

leads to a system of linear equations with matrix A3 given in
(30).
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[23] A. Elmoataz, O. Lézoray, and S. Bougleux, “Nonlocal discrete regu-
larization on weighted graphs: A framework for image and manifold
processing,” IEEE Transactions on Image Processing, vol. 17, no. 7,



13

pp. 1047–1060, jul 2008.
[24] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via

nonlocal operators,” Journal of Scientific Computing, vol. 42, no. 2,
pp. 185–197, 2010.

[25] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized non-
local regularization for deconvolution and sparse reconstruction,” SIAM
Journal on Imaging Sciences, vol. 3, no. 3, pp. 253–276, 2010.
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