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Image Zoom Completion
Moncef Hidane, Mireille El Gheche, Jean-François Aujol, Yannick Berthoumieu, Charles Deledalle

Abstract—We consider the problem of recovering a high-
resolution image from a pair consisting of a complete low-
resolution image and a high-resolution but incomplete one. We
refer to this task as the image zoom completion (IZC) problem.
After discussing possible contexts in which this setting may arise,
we study three regularization strategies, giving full details con-
cerning the numerical optimization of the corresponding energies,
and discussing the benefits and shortcomings of each method. As
the application that leads us to consider the IZC setting concerns
images with strong textural content, we evaluate the performance
of the proposed methods on a set of Brodatz textures, comparing
the results we get with those obtained with two recent state-of-
the-art single-image super-resolution algorithms.

I. INTRODUCTION

Image restoration problems are ubiquitous in the field of
image processing [1]. Therein, the goal is to estimate an
underlying image from a set of related, degraded, and possibly
incomplete measurements. The first step towards this goal is
the identification of the imaging device parameters as well
as those pertaining to the scene being imaged. Considering
a linear forward model, either known a priori or properly
estimated, with additive noise, the restoration problem can be
cast as an inverse problem where the goal is to recover an
image f P Rn, n ě 1, related to measurements y P Rm,
m ď n, through the following forward model

y “ Af ` ηηη, (1)

where A P Rmˆn is a known linear operator and ηηη is unknown
and accounts for both modeling and sensing errors.

Depending on the nature of the matrix A in (1), different
restoration problems are encountered. In all cases, the very
nature of imaging devices leads to problems of the form (1)
which are either undetermined (m ă n) or ill-conditioned (the
condition number of A is very high). A common strategy
to deal with such ill-posed inverse problems is through the
variational approach. In this setting, specific prior information
about the sought-after image is selected by choosing a specific
penalty function J . An estimated image f̂ is then obtained
by minimizing an overall cost function imposing a trade-off
between the prior information (through J) and a data fidelity
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term. The role of the data fidelity term is to control the discrep-
ancy between the estimated image f̂ and the measurements y
according to the forward model (1).

A. Image Zoom Completion

In this paper, we study a specific restoration problem that
we term image zoom completion (IZC). Here, the problem is
to recover a high-resolution (HR) image from a pair consisting
of a complete low-resolution (LR) image and a HR but
incomplete one. To the best of our knowledge, this problem
has been introduced for the first time by the authors of the
present paper in [2].

The application that leads us to investigate a solution to the
IZC problem concerns the estimation of petro-physical param-
eters through image processing techniques. In this context, a
3D non-invasive acquisition of a cylindrical sample of a rock
is performed. This acquisition is further analyzed in order to
automatically segment and classify different regions according
to visual cues related to underlying petro-physical parameters.
A typical example concerns the automatic classification of
different textured regions, which in turn relate to different
porosity levels of the underlying material. In a practical setting,
the resolution provided by this acquisition is not sufficient
for automatic inspection. Thus, a need for higher resolution
image data emerges. In the context we are interested in, this
need is alleviated by performing a second acquisition, this
time focusing on a specific part of the volume. This second
acquisition provides incomplete but higher resolution slices of
the object of interest. Now, the next step is to combine the
image data coming from both acquisitions in order to obtain
a complete HR volume.

The setting we have just described may also arise in the
context of digital photography when one uses a digital camera
to capture an image of a given scene and then uses the optical
zoom of the same camera to capture a subset of the same
scene. The second acquisition is incomplete but it provides
higher resolution than the first one since moving the lens
further from the sensors array leads a smaller portion of the
scene to be seen by the sensors, thus achieving optical zoom.
The IZC problem is now to compute a full HR image with
the aid of the complete LR and incomplete HR data. Figure 1
illustrates this setting. The IZC problem we have just described
is related to two classical image restoration problems: single-
image super-resolution (SR) and image inpainting. We briefly
review in the next subsection some approaches related to these
two problems. Due to the large body of existing literature
we concentrate on specific approaches related to our present
proposal.
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Fig. 1. Setting for the IZC problem. The left image represents a complete LR
acquisition. The right image represents a zoom of a subset of the left image
and is thus referred to as an incomplete HR image. The goal of IZC is to
combine both acquisitions in order to complete the missing HR information.

B. Related Work

In the single-image super-resolution setting, the goal is to
recover an HR image from a single input LR frame. In this
context, there are two degradation sources relating the sought-
after image to the observed one: blurring and coarse sampling.
A possible forward model is given by (1) with A “ S ˝ H
where H P Rnˆn is a convolution (or more generally a
linear filtering) operator and S P Rmˆn is a spatial sub-
sampling operator. This problem is under-constrained, thus
SR algorithms generally make use of various kinds of prior
knowledge.

The baseline method for SR is through linear interpola-
tion methods, especially bicubic interpolation. In order to
outperform bicubic interpolation, many variational approaches
exploiting smoothness and geometric regularity of images have
been proposed (see [3] and references therein). For example,
in [4], the authors study the use of the total variation (TV)
semi-norm [5] for single-image SR. The use of self-similarity
of images patches to regularize the single-image SR problem
has been in introduced in [6]. This idea has been pushed
further in [7] by using patch redundancy across different
scales. Approaches based on image sparsity, either in analysis
or synthesis forms [8], [9] or through Gaussian mixtures [10]
have also been recently considered. The application of ideas
combining sparsity and self-similarity [11], [12] currently
leads to the best performing methods.

A different line of work involves sparse representation of
LR/HR pairs of patches. This kind of approach has been
initiated in [13], [14] where the authors propose to infer the
sparse code of each sought-after HR patch from the sparse
code of its corresponding observed LR version. To enforce
the invariance of LR/HR sparse codes, two coupled LR/HR
dictionaries are learned from a large training data set.

While the IZC problem can be seen as a single-image
SR problem where part of the HR image is known, it can
also be seen as an image completion problem where the
complete image is known at a lower resolution. Trying to
complete a missing HR image without any further reference
to an LR version is an inpainting problem. More precisely, the
inpainting problem consists in modifying the image values of
the pixels of a given region Ω so that this region does not

stand out with respect to its surroundings. The purpose of
inpainting might be to restore damaged portions of an image or
to remove disturbing unwanted elements present in the image,
e.g. occlusions.

Most inpainting methods can be classified as being either
geometry- or texture-oriented. In the first category [15], [16],
[17], interpolation is performed by imposing and continuing
a smoothness assumption to the missing part. Approaches in
the second category rely directly on a sample of the desired
texture to perform the synthesis. The value of a target pixel is
copied from the center of a patch in the sample image. The
interested reader may consult [18], [19], [20] and references
therein.

C. Organization of the Paper
The paper is organized as follows. We recall in Section II

the tools we need to carry the numerical optimization of the
proposed energies.

We formulate in Section III the IZC problem as an inverse
one, and introduce the notations we use throughout the rest of
the paper. We also briefly examine the ill-posed nature of the
IZC problem.

We adopt in Sections IV, V, VI a variational approach in
which we seek a super-resolved and complete image through
the minimization of appropriate energy functions combining
prior information and data fidelity terms related to the obser-
vation model. More specifically, we study three priors for the
regularization of the IZC problem, leading, in turn, to three
solutions. As we proceed, we give full details concerning the
numerical optimization of the corresponding energy functions.

More specifically, Section IV is devoted to a first regulariza-
tion strategy employing the total variation as a penalty func-
tion. This solution is targeted towards the class of piecewise
smooth images with low textural content. Full details about the
numerical optimization of the corresponding energy are given.
In particular, we show that by using variable splitting and
deploying the Douglas-Rachford (DR) algorithm in a product-
space, we can devise a fast and inner-loop-free algorithm.

The second method we develop, detailed in Section V,
targets classes of images with rich but homogeneous textural
content. Rather than imposing a sophisticated prior on the
sought-after image, we obtain separately the structure and
texture components of the super-resolved image, imposing
different priors on each component. We adopt the recent model
introduced by Schaeffer and Osher in [21], making use of
TV penalization on the structure part and a low nuclear norm
on the patch-map of the texture part (see Section V). The
corresponding energy function is then minimized with the
DR algorithm by using variable splitting and rewriting the
functional in a product space as was done in Section IV.

In Section VI we develop a regularization strategy targeting
images with rich, non-necessarily homogeneous, textural con-
tent. To this end, we adopt the self-similarity prior, namely the
observation that natural image patches tend to recur several
times inside the same image. This third method, termed
nonlocal hereafter, tries to enforce this prior knowledge by
exploiting patch similarities and imposing nonlocal smooth-
ness for the super-resolved image. In practice, only one part
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of the HR patches is visible and this makes inferring patch
similarities difficult. In order to circumvent this difficulty, we
propose to compute patch similarities from an interpolated
version of the available LR image. Once this is done, we
formulate a functional which makes use of the above nonlocal
similarities. We carry out the minimization using a recent
primal dual proximal algorithm [22].

We perform a set of numerical simulations in Section
VII, discussing both the benefits and shortcomings of each
of the proposed methods and comparing our results to two
recent state-of-the-art single-image SR algorithms. We finally
conclude this paper in Section VIII, pointing out to possible
future work.

A preliminary version of this paper has been published in
[2]. Therein, the IZC problem is termed “super-resolution from
low- and partial high-resolution image pair” and only the non-
local regularization strategy was developed. Furthermore, the
nonlocal regularization presented therein consists in building
a pointwise estimate of the image where each missing pixel
is connected to a set of pixels that lies in the HR region. In
this work, instead, we regularize each pixel by using the most
similar pixels in a local neighborhood and the closest ones
lying in the HR part.

II. TOOLS FROM CONVEX ANALYSIS AND OPTIMIZATION

We recall in this section some notations and algorithms that
we will use for the numerical optimization of the energy func-
tions appearing in the rest of the paper, namely, the concept
of proximity operator and the Douglas-Rachford algorithm.
We refer the reader to [23] and references therein for further
details and proofs.

A. Definitions and Notations

Let pH, x., .yq be a finite-dimensional inner-product space.
The associated norm is denoted by }.} :“

a

x., .y. A function
f : H Ñ s´8,`8s is said to be proper if its domain,
dompfq :“ tx P H : fpxq ă `8u, is nonempty. The
function f is said to be convex if its epigraph, epipfq :“
tpx, aq P HˆR : fpxq ď au, is convex; it is said to be lower
semicontinuous if epipfq is closed. The set of all proper convex
and lower semicontinuous functions from H to s´8,`8s is
denoted by Γ0pHq.

Let C denote a subset of H. We denote by ripCq the relative
interior of C, that is, its interior relative to its affine hull. The
indicator function of C, denoted ιC , is defined for all x P H
by ιCpxq “ 0 if x P C and ιCpxq “ `8 otherwise. Note that
ιC P Γ0pHq if and only if C is nonempty, closed and convex.

For f P Γ0pHq and z P H, the function x P H ÞÑ
1
2}x´z}

2`fpxq achieves its infimum at a unique point called
proximity operator of f at point z and denoted by proxfz:

proxfz :“ argmin
xPH

fpxq `
1

2
}x´ z}2. (2)

If f “ ιC , then one recovers the definition of the Euclidean
convex projection operator on C, denoted projC : projCz :“
proxιCz.

An important property concerning proximal operators is
their decomposability in orthonormal bases. In particular,
letting pHiq1ďiďn be a family of Hilbert spaces, H “ H1 ˆ

. . .Hn, f P Γ0pHq, fi P Γ0pHiq for i P t1, . . . , nu, such that
fpxq “

řn
i“1 fipxiq, we have

`

proxf pxq
˘

i
“ proxfipxiq for

i P t1, . . . , nu. Such a property makes it possible to devise
parallel proximal splitting algorithms as in [24], [25], [26],
[27], [28], [29], [22], [30]. We will come back to this point
in the sequel.

B. Douglas-Rachford

The strategy we adopt in this paper towards the minimiza-
tion of `1-based energy functions (Sections IV and V) relies
on variable splitting and employing the DR algorithm in a
product space. Consider the following variational problem:

minimize
xPH

F1pxq ` F2pxq, (3)

‚ F1, F2 P Γ0pHq;
‚ ripdomF1q X ripdomF2q ‰ H;
‚ lim
}x}Ñ`8

F1pxq ` F2pxq “ `8.

Then, the set of minimizers of F1`F2 over H is nonempty.
Furthermore, letting pxnqn, pynqn P HN constructed as follows

$

’

&

’

%

y0 P H
xn “ proxνF2

pynq

yn`1 “ yn ` ξ pproxνF1p2xn ´ ynq ´ xnq

(4)

with 0 ă ξ ă 2 and ν ą 0, the sequence pxnq converges to a
minimizer x˚ of F1 ` F2 over H.

For the minimization of the linearly-constrained quadratic
nonlocal energy appearing in Section VI we use the acceler-
ated projected gradient introduced in [31].

We are now ready to tackle the IZC problem. The next
section is dedicated to the formalization of the problem.

III. THE IMAGE ZOOM COMPLETION PROBLEM

The setting for IZC is a complete LR image and a corre-
sponding incomplete HR image. Let yp1q P Rp and yp2q P Rn,
p ă n, respectively denote the lexicographical ordering of the
complete LR and partial HR images. We adopt the following
discrete forward model:

#

yp1q “ SHf0 ` ηηη1 P Rp,
yp2q “Mpf0 ` ηηη2q P Rn,

(5)

where
‚ f0 P Rn denotes the unknown HR image;
‚ S P Rpˆn stands for spatial downsampling by a factor
r in each direction (n “ p r2); Note that SJ P Rnˆp
corresponds to upsampling by the same factor and that
the matrix SJS P Rnˆn is diagonal with binary diagonal
elements;

‚ H P Rnˆn accounts for spatial blurring of the image,
modeled in our case by a discrete circular convolution
with a known point spread function h: Hx “ hf x;

‚ M “ diagpm1, . . . ,mnq P Rnˆn is a binary HR mask
indicating which HR pixels are observed: mi “ 1, if
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pixel i belongs to the observed area of the HR image,
and mi “ 0 otherwise;

‚ the vectors ηηη1 P Rp and ηηη2 P Rn are samples of
a white Gaussian noise accounting for acquisition and
model noise.

Throughout the paper, we assume that the forward model
(5) relating the HR/LR pair to the sought-after image f0 is
completely known. In particular, we discuss neither the iden-
tification of the convolution kernel nor possible registration
issues when the partial zoom is performed.

Under the setting described above, the IZC problem cor-
responds to the recovery of an estimate f̂ of f0 from the
measurements yp1q and yp2q, according to the forward model
(5). Depending on the downsampling factor r, the support of
the blurring kernel and the area of the visible HR part, this
problem can be ill-posed, with more unknowns than equations.
In all cases, the presence of the convolution operator makes it
ill-conditioned.

As usual for such inverse problems in imaging [1], we
formulate the estimation task in a variational setting lead-
ing to the minimization of an energy function of the form
Epfq “ Rpfq`Dpfq. The function R is a regularization term
forcing the solutions to have pre-specified properties, while
the term Dpfq penalizes the discrepancy between f and the
observations yp1q,yp2q, according to the forward model (5).
In the presence of Gaussian noise, the latter term is usually
taken, in its penalized form, as the squared `2 distance, leading
to an optimization problem 1 of the form

minimize
fPRn

Rpfq`λ1}SHf ´yp1q}2`λ2}Mf ´yp2q}2. (6)

When the noise level in the observed part of the HR image
can be neglected, or if one does not want to modify the
observed HR part, one can instead consider the constrained
problem

minimize
fPRn

Rpfq ` λ}SHf ´ yp1q}2 ` ιtM ¨ “yp2qupfq, (7)

where we write tA ¨ “ yu for the set tx P Rn : Ax “ yu
and λ ą 0. This latter setting is the one we adopt in the rest
of the paper.

To summarize, we tackle the IZC problem by minimizing
an energy function of the form given in (7). The problem
now amounts to devising suitable regularizers R as well as
the practical optimization of the corresponding energies. We
begin by investigating the use of the TV prior.

IV. IZC VIA TV REGULARIZATION

Image restoration techniques should be able to preserve
image edges. When adopting a variational setting, this can be
achieved by penalizing the total variation of the sought-after
image. First let us introduce relevant notations. Let

σ : t1, . . . ,
?
nu ˆ t1, . . . ,

?
nu Ñ t1, . . . , nu

1We suppose that ηηη1 and ηηη2 are the realizations of two independent
Gaussian vectors.

denote the lexicographical pixel enumeration2. We consider
the discrete gradient operator ∇ : Rn Ñ Rnˆ2 given, for
1 ď k, l ď

?
n´ 1 by
#

p∇fqσpl,kq,1 “ fσpl,k`1q ´ fσpl,kq,

p∇fqσpl,kq,2 “ fσpl`1,kq ´ fσpl,kq.
(8)

We adopt circular boundary conditions for k “
?
n and/or

l “
?
n so that ´∇J∇ corresponds to the 4-stencil dis-

cretization of the Laplacian operator with circular boundary
conditions, and is thus diagonal in the discrete Fourier domain.
Here ∇J denotes the adjoint of ∇, relatively to the standard
inner products on Rn and Rnˆ2.

We write } ¨ }1,2 for the following norm

p@p P Rnˆmq }p}1,2 “
n
ÿ

i“1

}pi,.}2 “
n
ÿ

i“1

g

f

f

e

m
ÿ

j“1

p2
i,j . (9)

We adopt the following definition for the discrete total varia-
tion of an image f P Rn

Jpfq “ }∇f}1,2. (10)

Adopting the total variation as a prior for our IZC problem
leads to the following convex optimization problem

minimize
fPRn

}∇f}1,2`
λ

2
}SHf´yp1q}2`ιtM ¨ “yp2qupfq. (11)

A. A DR Algorithm in a Product Space

The energy in (11) is composite: it mixes the operators
M,S,H, and it contains two nonsmooth terms. In order to take
advantage of the properties of the involved operators, we adopt
the strategy suggested in [32] by using variable splitting and
working in a product space. For the case of TV regularization,
we show that this approach makes it possible to devise a fast
iterative algorithm with no inner loops.

Letting H “ Rnˆ2 ˆ Rn ˆ Rn and K “ tp∇f ,Hf , fq, f P
Rnu, we rewrite (11) in the form

minimize
x“pp,u,fqPH

F1pxq ` F2pxq, (12)

where

F1pxq “ }p}1,2 `
λ

2
}Su´ yp1q}2 ` ιtM ¨ “yp2qupfq, (13)

and
F2pxq “ ιKpp,u, fq. (14)

Note that F1, F2 P Γ0pHq. In order to apply DR, we need to
evaluate proxνF1

and proxνF2
, ν ą 0, at each iteration. Let us

start with the evaluation of proxνF1
.

Since F1 is separable, the evaluation of proxνF1
pp,u, fq

amounts to evaluating each part separately. The first com-
ponent, proxν}.}1,2 , corresponds to the vector-field soft-
thresholding function given, for all p P Rnˆ2, by

pSTνpqi,j “

#

0 if }pi,.}2 ď ν,
´

1´ ν
}pi,.}

¯

pi,j else.
(15)

2For simplicity of notations, we work with square images.
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The evaluation of proxν}S ¨ ´y1}2
amounts to solving a system

of linear equations whose matrix is given by A1 “
λ1

ν SJS`
I. This computation can be done in linear time since A1 is
diagonal.

Finally, the evaluation of the third component of the prox-
imity operator of F1 is immediate since its corresponds to
projecting on the set tM ¨ “ yp2qu:

´

projtM ¨ “yp2qupfq
¯

i
“

#

y
p2q
i if mi “ 1,

fi if mi “ 0.
(16)

The evaluation of proxνF2
amounts to projecting on the

constraint set K. It is straightforward to see that it leads
to a system of linear equations whose matrix is A2 “

∇J∇ `HJH ` I. Due to the circular boundary choice for
both ∇ and H, the matrix A2 is diagonal in the discrete
Fourier domain and thus the system can be solved by applying
the discrete Fourier transform, modulating, and applying the
inverse discrete Fourier transform.

B. Discussion

The results obtained by the TV approach we have just
introduced are further discussed in Section VII. We discuss in
this subsection the qualitative behavior of the TV-regularized
solutions to the IZC problem along with the iteration com-
plexity of the minimization we have just derived.

From a computational point of view, the complexity of
a single iteration of the algorithm we have just derived is
dominated by the projection on the constraints set K. As
discussed above, due to the properties of the matrix A2, this
is done by applying Fourier methods, leading to a direct and
an inverse Fourier transform at each iteration.

From a qualitative point of view, the TV-regularized solu-
tion suffers from the usual straircasing effect typical of TV
regularization. This is the case even for the simulations we
carried with the exact knowledge of the blurring matrix H
and without addition of noise. This model is thus relevant
only for the class of piecewise smooth images. As we target
reconstructing larger classes of images, typically with mixed
patterns, we now describe a first step towards dealing with
more textured images.

V. IZC VIA TV + LOW-PATCH-RANK DECOMPOSITION

Rather than trying to impose a single prior for the sought-
after HR image, as was done in the previous section, we
adopt in this section a decomposition model for the IZC
problem. The idea here is to compute separately two different
components of the HR image by imposing different priors on
each. The resulting image we obtain is then given by the
sum of these two components. More specifically, we adopt
the structure-texture decomposition framework [33], [34], [35],
[36], [37]. In this context, an image f P Rn is decomposed in
the form f “ u`v, where the structure component u contains
only salient image structures while the texture component v
contains the “oscillating patterns” present in f .

Structure-texture decompositions can be obtained by solving
variational problems of the form

minimize
pu,vqPRnˆRn

F1puq ` F2pvq

subject to f “ u` v, (17)

for appropriate choices of F1 and F2, namely:

‚ F1puq ! F2puq if u is piecewise constant;
‚ F2pvq ! F1pvq if v is composed mainly of oscillating

textures.

While the choice for F1 has now settled to the TV func-
tional, several works have investigated different choices for
F2. Of particular interest to us in the present paper is the
TV+low-patch-rank decomposition model of [21] which we
now briefly describe.

A. TV+Low-Patch-Rank Decomposition Model

This model introduces a new formulation for the texture
penalization term F2 in (17). More precisely, due to the
repetitive aspect of natural textures, it is reasonable to assume
that some patches of the texture part v of an image f will
repeat themselves at different locations. In order to integrate
this observation in a variational setting, the authors of [21]
propose to extract all

?
q ˆ

?
q non-overlapping patches of

an image f P Rn, placing each of them as the column of a
matrix Pf P Rqˆm. Here, the patch-map P : Rn Ñ Rqˆm,
n “ qm, allows to pass from an image in f P Rn to a matrix
Pf P Rqˆm where q is the number of pixels inside a patch
and m is the number of

?
q ˆ

?
q non-overlapping patches

contained in f . Let us note at this point that, due to the fact
that P is essentially a permutation of image pixels, it is an
isometry with respect to all point-wise norms on Rqˆm. This
fact will be important for deriving our minimization algorithm.

Equipped with the patch-map P , the authors of [21] propose
the following decomposition model

minimize
pu,vqPRnˆRn

λTV puq ` }Pv}˚

subject to f “ u` v, (18)

where }A}˚ denotes the nuclear (or trace) norm of a matrix
A, that is, the sum of its singular values. In this context, the
nuclear norm acts as a convex relaxation for the combinatorial
rank function. Thus, adopting the term }Pv}˚ favors an overall
repetition of texture patches. Further details can be found in
[21].

In [21], the decomposition model (18) is applied to de-
noising, deblurring and sparse reconstruction. The authors use
the split Bregman algorithm [38] which is closely related to
the algorithm we use in this paper. Let us finally note that a
generalized version of the decomposition model of [21], where
patches are allowed to overlap, has been recently proposed in
[39].
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B. TV+Low-Patch-Rank for IZC

We adopt in this subsection the following model for con-
structing a solution to our IZC problem:

minimize
pu,vqPRnˆRn

αTV puq ` β}Ppvq}˚ `
λ

2
}SHpu` vq ´ yp1q}2

` ιtM ¨ “yp2qupu` vq, (19)

with α, β, λ ą 0.
The advantage of using (19) instead of the TV-regularized

problem (11) is that the additional term }Ppvq}˚ allows us to
have better control on the texture part of the sought-after HR
image, thus partly avoiding the staircasing effect mentioned
above. Let us note that due to the constraint imposed by the
term ιtM ¨ “yp2qupu ` vq, we expect the visible part of HR
image to be decomposed into a structure-texture image pair.
Forcing the texture component of the sought-after HR image to
have an overall low patch-rank will favor invisible HR patches
to be linear combinations of visible HR ones. This can be
seen as an implicit strategy for making use of the available
HR image in order to complete the unobserved part. We now
detail our approach to the minimization of (19).

C. A DR Algorithm

We work in the Hilbert space H “ Rnˆ2ˆRnˆRnˆRnˆ
Rn. Let

K “ tp∇u,u,v,Hpu` vq,u` vq P H : u P X ,v P X u,

and for x “ pp,u,v,g,wq P H

F1pxq “ α}p}1,2 ` β}Ppvq}˚ `
λ

2
}Sg ´ yp1q}2

` ιtM ¨ “yp2qupwq, (20)

F2pxq “ ιKpxq. (21)

The problem is now to minimize F1`F2 over H. In order
to apply DR, we need to evaluate proxνF1

and proxνF2
, ν ą 0,

at each iteration. Let us start with the evaluation of proxνF1
.

As in Section IV-A, F1 is separable, thus the evaluation
of proxνF1

pp,u,v,g,wq amounts to evaluating each part
separately. The evaluation of the first component corresponds
to the soft-thresholding function defined in (15). The second
component corresponds to the identity since F1 does not
depend on u. The evaluation of the fourth component involves
solving a linear system with a diagonal matrix. The evaluation
of the last component is given in (16).

The evaluation of the third proximity operator is more
intricate since it involves the pre-composition with P and the
nuclear norm. The generic problem is to compute proxµ}P¨}˚
for µ ą 0. Due the fact that P is an isometry with respect to
all point-wise norms, we have (Proposition 11 of [40]) that

proxµ}Pp¨q}˚pvq “ PJproxµ}¨}˚Ppvq (22)

It has been shown in [41] that the latter prox computation can
be done by singular value thresholding:

proxµ}.}˚pvq “ SV Tµpvq :“ UmaxpΣΣΣ´ µI, 0qV˚, (23)

where v “ UΣΣΣV˚ is a singular value decomposition (SVD)
of v.

Regarding the evaluation of proxνF2
, it is easy to see that

it leads to a system of linear equations with matrix

A3 :“

„

∇J∇`HJH` 2I HJH` I
HJH` I HJH` 2I



. (24)

While each block of A3 is diagonal in the Fourier domain,
the overall matrix is not. We instead solve this linear system
with a conjugate gradient method.

D. Discussion

From a computational point of view, the iteration complex-
ity of the algorithm we have derived is dominated, on the one
hand, by the computation of the singular value decomposition
of the patch matrix, and on the other hand, by the conjugate
gradient iterations used to solve a linear system whose matrix
is A3 given in (24).

Concerning the SVD computation, it is important to note
that it applies to a matrix with much fewer rows (numbers of
pixels in a patch) than columns (number of non-overlapping
patches).

Concerning the conjugate gradient solver, in practice we
perform only 4 iterations and use a ‘warm start’ strategy [42],
meaning that we start the conjugate gradient solver at iteration
k`1 with the result it yielded from iteration k. Each conjugate
gradient iteration involves a matrix-vector product A3x, so it
involves the evaluation of one Laplacian filter p∇J∇q and one
low-pass filter pHJHq.

As it will be shown in Section VII, when the sought-after
image contains different types of texture, the global constraint
on the rank of the patch map is not sufficient to recover these
textures.

Next section is devoted to a nonlocal regularization ap-
proach targeting images with rich, possibly non-homogeneous
textures.

VI. IZC VIA NONLOCAL REGULARIZATION

A. The Nonlocal Framework

Classical variational techniques employed in the field of
image processing rely on the regularity of the underlying
image in terms of local relationships between neighboring
pixels. Nonlocal regularization techniques [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56]
replace the local regularity assumption by the self-similarity
prior for natural images. This recent trend of ideas is inspired
by the nonlocal-means algorithm for image denoising [49].

The exploitation of the self-similarity hypothesis of natural
images in the context of inverse problems relies on its incor-
poration in a variational setting. In the context of denoising,
the work of Kindermann, Osher, and Jones [43] interpreted
the class of neighborhood filters as regularization based on
nonlocal functionals. Equipped with those functionals, general
inverse problems can be tackled; for instance, the work of [43]
already considered its applications to image deblurring.

A systematic framework for nonlocal regularization has
been proposed in [44], [45] where nonlocal versions of
Laplacian and TV regularizations are formulated. While the
functionals of [44], [45] are continuous, their discretization



7

Dc D

Dc D

Fig. 2. Notations for the nonlocal regularization of the IZC problem.

leads to the discrete graph regularization framework of [46],
[47], [48] which allows to tackle the problem of denoising and
smoothing signals defined on irregular domains, as long as a
sensible neighborhood relation can be found. This latter line of
works also considers the larger class of p-Laplacians on graphs
and the diffusion processes associated with them. Further
references about the nonlocal approach, targeted specifically
towards the regularization of inverse problems in image pro-
cessing, can be found in [50], [51], [52], [53], [54], [55], [57],
[58], [59], [60], [61].

Non-Local Total Variation (NLTV) is known to preserve
textures, details and fine structures better than the standard
TV. This arises from the fact that TV is based on the discrete
gradient, while NLTV is based on a discrete difference oper-
ator whose orientations are driven by the image itself. Such
directions are chosen for each pixel independently, based on
the similarity between their neighbors.

In the following, we will consider the classical `1,2-NLTV,
expressed as

NLTVpfq “
ÿ

iPΩ

d

ÿ

jPNi

wi,j}fi ´ fj}2, (25)

where Ω “ t1, . . . , nu denotes the set of the image pixels and
Ni Ă Wi is a subset of positions located into a Q ˆ Q
window Wi Ă Ωztiu centered at i. For every i P Ω, we
design the support Ni by selecting the pixels j PWi that are
most similar to i according to a Euclidean distance between
patches surrounding the pixels i and j: }pipfq ´ pjpfq}. The
corresponding edges are weighted according to

wi,j “ e´}pipfq´pjpfq}
2
{2σ2

, (26)

where σ ą 0 and pipfq P Rq denotes an image patch extracted
from f and centered at i.

B. Nonlocal regularization for IZC

In order to enforce the spatial coherence of pixels, we
first need to define a similarity graph of the HR image. As
only a part of the HR image is sensed, the information about
all HR patches is incomplete, and thus it cannot be used to
build the graph. In order to circumvent this difficulty, we take
advantage of the available LR image yp1q P Rp. The first
step in this strategy is to interpolate yp1q P Rp to match
the definition of yp2q P Rn. To this end, we use bicubic
interpolation and get ỹp1q P Rn. Once we have ỹp1q, the
similarities between patches can be estimated by the following
two different approaches.

The first approach is based on the hypothesis that the inter-
polated patches generally exhibit similar spectral structure and
maintain the same coherence. So, for each missing pixel we
compute the weights on patches lying in a local neighborhood.
For the regularization, we use the function introduced in Eq.
(25). The NLTV regularization can be expressed as the `1,2-
norm composed with a discrete difference operator, yielding

NLTVpfq “ }L1f}1,2, (27)

where

L1f “

»

—

–

“

w1,jpf1 ´ fjq
‰

jPN1

...
“

wn,jpfn ´ fjq
‰

jPNn

fi

ffi

fl

u P Rk
...

u P Rk.
(28)

The second approach consists of adding to the previous one
a new set of connections. To do so, we denote the set of
pixels where the HR information is missing by D Ă Ω and
the set of sensed HR pixels by Dc (see Figure 2). We connect
each unobserved HR pixel i P D to its k-nearest observed
HR neighbors in Dc. The new nonlocal gradient operator is
expressed as

L2f “

»

—

—

–

“

wc1,jpf1 ´ y
p2q
j q

‰

jPN c
1

...
“

wcn,jpfn ´ y
p2q
j q

‰

jPN c
n

fi

ffi

ffi

fl

u P Rk
...

u P Rk,
(29)

where @i P Ω, N c
i is a subset of positions in Dc, wci,j are the

weights computed between the patches pipỹp1qq and pjpyp2qq.
Therefore, the second regularizer is defined in function of
W “ rLJ1 LJ2 s

J, leading to

NLTV`pfq “ }Wf}1,2. (30)

Incorporating data consistence terms in the form of a
penalization for the LR image and a constraint for the HR
one leads to the problem

minimize
fPRn

}Wf}1,2`
λ

2
}SHf´yp1q}2`ιtM ¨ “yp2qupfq. (31)

Therefore, we use an interpolated version ỹp1q of the LR image
yp1q to infer a weighted adjacency relations and use it to infer
the values of the missing pixels by solving (31). Note that
each node in D has at least k neighbors in a local region of
Ω and at least k neighbors in Dc.

C. Minimization Using FBPD

The problem of Eq. (31) can be solved using proximal al-
gorithms, such as the Forward-backward Primal Dual method
reported in Algorithm 1. Such a method requires: the proxim-
ity operator of the NLTV discussed in Eq. (15); the projection
onto the constraint set reviewed in Eq. (16); the gradient of
gpfq “ λ

2 }SHf ´ yp1q}2 given by

∇gpfq “ λHJSJSHf ´ λHJSJyp1q, (32)

whose Lipschitz constant is equal to λ.3

3Since SJS is diagonal with binary entries, we have that ~SJS~ “ 1.
Using a normalized kernel H leads to ~HJ~ “ ~H~ “ 1. Where ~ ¨ ~
denotes the spectral norm.
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Algorithm 1 FBPD method [22]

INITIALIZATION
—

—

—

—

—

–

choose
´

xr0s, yr0s
¯

P Rn
ˆ R2kn

set τ ą 0 and ω ą 0 such that

τ
`

λ{2` ω}W}
2
˘

ă 1

FOR l “ 0, 1, . . .
—

—

—

—

—

—

—

–

pxrls “ ∇gpxrlsq `WJyrls

xrl`1s
“ projtM ¨ “yp2qu

`

xrls ´ τ pxrls
˘

pyrls “W
`

2xrl`1s
´ xrls

˘

yrl`1s
“ proxω}¨}1,2

`

yrls ` ω pyrls
˘

If the set of the solutions to Problem (31) is nonempty, then
any sequence pxrlsqlPN generated by Algorithm 1 converges to
an element of this set (under a suitable weak qualification
condition).

D. Discussion
The results obtained by the nonlocal approach we have just

introduced are further discussed and compared to the TV-
based and decomposition-based approaches of Sections VII
and V, respectively. In this subsection, we discuss the iteration
complexity of the minimization we have just derived. We also
discuss two foreseeable shortcomings of the proposed nonlocal
approach.

From a computational point of view, the iteration complex-
ity of the above algorithm depends on the evaluation of ∇gpfq
and Wf . The former is dominated by the application of two
low-pass filters (H and HJ). The latter depends on the sparsity
of W, which is related to the number of unobserved HR pixels
and to the number k of nearest-neighbors. Furthermore, there
is an overhead for computing the patch similarities between
the unobserved and observed HR parts.

As described earlier, patch similarities that drive the non-
local regularization are based on (an interpolated version
of) the LR image. When the super-resolution factor r is
important and/or when the blurring matrix attenuates too much
the high frequencies of the HR scene, these weights can
be erroneous and their incorporation into the regularization
functional can lead to bad reconstructions. While a solution to
the first problem (large super-resolution factor) can consist in
performing zoom completion recursively using a dyadic factor,
the only solution to the second problem (strong attenuation of
high frequencies) is to recompute the weights after a fixed
number of iterations.

Another case where the nonlocal approach we proposed may
fail is when the typical patterns present in the visible HR part
are different from the ones that make the invisible part. In
this case, the nearest-neighbors graphs provides very limited
information and any use of the corresponding weights may
lead to bad reconstructions.

VII. EXPERIMENTAL RESULTS

We evaluate in this section the effectiveness of the three
methods we have introduced on a set of 256 ˆ 256 images.

As the application that lead us to consider the IZC setting
concerns images with strong textural content, we decided to
test our methods on a set of 8 images taken from the Brodatz
image data set (see Fig. 3).

In order to assess the relative performances of the three
approaches detailed in this paper, we start with a ground
truth full HR image f0 and simulate the incomplete image
yp2q by masking part of f0. The binary mask used to hide
a part of the HR image is shown in Figures 4, 5 and 6.
The observed HR pixels amount to 25% of the total pixels.
Similarly, we simulate the complete LR image yp1q by blurring
f0, downsampling the result by a factor r in each direction,
and finally adding white Gaussian noise. In all the experiments
we carried, the blurring kernel corresponds to a normalized
Gaussian e´d

2
{2s2 with s “ 1.2. The kernel is truncated to

a 5 ˆ 5 window. The super-resolution factor r is fixed to 2.
Computations on images are done in the range r0, 255s. The
standard deviation of the additive white Gaussian noise is fixed
to 2.5.

The results we report are obtained by optimizing the param-
eter λ in (11), (19), (31), as well as α, β, γ in (19) in black
box manner, each time maximizing the peak signal to noise
ration (PSNR) to the ground truth image. For the nonlocal
approach detailed in Section VI, three additional parameters
are involved: the size of compared patches, the number k
of nearest neighbors, and the parameter σ in (26). In our
experiments, similarities between pixels were computed based
on 5 ˆ 5 surrounding patches. The number k has been fixed
to 14 and Q to 25, while σ has been optimized in black
box manner. Optimal values of σ lie in the interval r10, 50s.
Furthermore, our nearest neighbors computation is performed
exactly but we note that fast approximate computations can
be performed e.g. using the algorithm of [62]. For TV+low-
patch rank approach, a single additional parameter is involved,
namely the size of the extracted patches. In our experiments,
we tried patch sizes of 4 ˆ 4, 8 ˆ 8 and 16 ˆ 16. With the
images we used, the 8ˆ8 size gave the best results. Regarding
the parameters of the DR algorithms, we use ν “ ζ “ 1. For
TV regularization we used 500 iterations, which in all cases
provided a stable energy profile. For the TV+low-patch rank
and the nonlocal approaches we used 1000 iterations.

Since, to the best of our knowledge, the IZC setting has
not been considered in the literature (except in [2]), we
cannot perform fair comparisons with other methods. Indeed,
in the framework of single-image SR, there is no available
HR data and single-image SR algorithms rely only the LR
image. However, we selected two state-of-the-art single-image
SR methods whose implementations are freely available and
decided to compare the performance yielded by our three
algorithms with the ones yielded by these two methods. The
methods we selected are those of Yang et al. [13] and of Dong
et al. [12].

The method of [13] uses sparse code invariance of LR/HR
patches over learned dictionaries. As the degradation model
assumed in [13] is different from the one we adopted in this
paper, we re-learned a dictionary of size 1024 form LR/HR
examples synthesized from the same data set proposed in
[13] but this time using our degradation model. Furthermore,
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we optimized the Lagrange multiplier appearing in the back-
projection step in order to yield the best results.

The method of Dong et al. [12] combines ideas from
clustering and sparse coding with the nonlocal approach. In
the first iteration of the algorithm, patches of an interpolated
version of the LR image serve as a training set. They are
clustered using K-means. A global dictionary is obtained,
along the corresponding sparse codes, by concatenating PCA
sub-dictionaries from each cluster. The computed sparse codes
are further refined by averaging with similar patches in a
manner similar to the nonlocal-means approach [49], leading
to sparse codes for each input interpolated patch. These sparse
codes are further refined through a back-projection step aiming
to enforce consistency with regard to the degradation model.
A first estimation of the HR image is obtained by averaging
overlapping patches. The overall procedure is iterated a fixed
number of times, each time taking the output of the previous
iteration as input for the next one.

In Table I we report PSNR ans SSIM values between the
8 images of Figure 3 and the results obtained with the 6
methods outlined in the previous paragraph. These values
are computed only on the reconstructed HR part. We also
report the results obtained with bicubic interpolation. For
each of our proposed methods, we also include reconstruction
obtained using the algorithms of Sections IV, V, VI but
without using the available HR data. This corresponds to using
the same algorithms with the null matrix as a binary mask. The
corresponding columns are labeled “no HR” in Table I.

the quality of the observed data is improved by using a
nonlocal

As can be seen in Table I, the NLTV` achieves the best
performance in terms of PSNR. We also note that the nonlocal
approaches achieve the best results (in terms of SSIM) when
the HR part is taken into account. Regarding the methods we
proposed, we note that the TV+}P ¨ }˚ decomposition method
consistently outperforms the TV-based approach. In some
cases, it also achieves better performance than the dictionary-
based method of Yang et al. This numerical evidence can
further be confirmed by inspecting the IZC reconstructions of
Figures 4, 5, 6. Notice in particular how the zoom completion
performed by the nonlocal approach on Figures 4 and 6 is
hardly distinguishable from the sensed HR part. This is also
confirmed in Fig. 7 where the quality of the observed data is
improved by using nonlocal technique on a slice of a CT scan
of a rock 4. The experimental setting is the same as for the
Brodatz images: we start with a ground truth full HR image
f0 and simulate the incomplete image yp2q by masking 25%
of f0. A complete LR image yp1q is obtained by blurring f0,
downsampling the result by a factor 2 in each direction, and
finally adding white Gaussian noise.

VIII. CONCLUSION

An inverse problem which combines single-image SR and
inpainting has been studied in this paper. We have motivated

4The authors would like to thank the team ”Sismage” from the Group
TOTAL for providing CT data.

Original LR HR

TV TV+}P ¨ }˚ NLTV`

Bicubic Yang et al. Dong et al.
Fig. 4. IZC for the “brick” image. From left to right and form top to bottom:
ground-truth, LR input, incomplete HR input, TV (psnr = 27.27), TV+}P ¨ }˚
(psnr = 27.33), NLTV` (psnr = 27.79), bicubic (psnr = 25.38), Yang et al.
[13] (psnr = 27.12), Dong et al. [12] (psnr = 27.41).

Original LR HR

TV TV+}P ¨ }˚ NLTV`

Bicubic Yang et al. Dong et al.
Fig. 5. IZC for the “leather” image. From left to right and form top to bottom:
ground-truth, LR input, incomplete HR input, TV (psnr = 22.62), TV+}P ¨ }˚
(psnr = 22.98), NLTV` (psnr = 23.24), bicubic (psnr = 20.25), Yang et al.
[13] (psnr = 23.01), Dong et al. [12] (psnr = 23.14).
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Fig. 3. A subset from the Brodatz image data set we use as input to SR algorithms. From left to right and from top to bottom : “brick”, “coth”, “leather”,
“mosaic”, “pigskin”, “raffia”, “weave” and “wood”.

TABLE I
PSNR (DB) AND SSIM ON THE RECONSTRUCTED HR AREA FOR DIFFERENT SR METHODS

TV TV+}P ¨ }˚ NLTV NLTV` Bicubic Yang et al. Dong et al.
no HR with HR no HR with HR no HR with HR no HR with HR

Brick 27.26 27.27 27.29 27.33 27.44 27.43 27.71 27.79 25.38 27.12 27.41
0.639 0.640 0.639 0.641 0.687 0.840 0.697 0.847 0.608 0.636 0.650

Coth 26.21 26.22 26.30 26.30 26.50 26.49 26.56 26.58 25.21 26.34 26.34
0.640 0.640 0.657 0.657 0.699 0.850 0.706 0.856 0.577 0.664 0.664

Leather 22.60 22.62 22.93 22.98 22.90 23.06 23.10 23.24 20.25 23.01 23.14
0.706 0.707 0.728 0.730 0.760 0.886 0.772 0.889 0.502 0.721 0.739

Mosaic 18.90 18.93 19.19 19.25 19.10 19.40 19.38 19.51 15.62 18.99 19.27
0.644 0.645 0.671 0.672 0.805 0.910 0.811 0.909 0.490 0.675 0.685

Pigskin 28.09 28.09 28.16 28.18 28.38 28.51 28.63 28.65 26.27 28.10 28.35
0.734 0.735 0.748 0.749 0.788 0.901 0.799 0.902 0.644 0.748 0.758

Raffia 27.88 27.91 28.08 28.13 28.22 28.50 28.63 28.79 24.86 27.95 28.59
0.820 0.821 0.830 0.832 0.865 0.934 0.879 0.939 0.698 0.828 0.848

Weave 26.05 26.06 26.33 26.38 26.43 26.63 26.66 26.74 23.05 26.35 26.72
0.792 0.792 0.805 0.807 0.848 0.927 0.859 0.929 0.643 0.807 0.823

Wood 26.40 26.49 26.47 26.64 27.00 27.51 27.72 28.35 24.74 26.82 27.98
0.794 0.794 0.751 0.759 0.773 0.893 0.801 0.907 0.808 0.729 0.787

Average 25.43 25.44 25.59 25.64 25.74 25.94 26.04 26.20 23.17 25.58 25.97
0.820 0.821 0.822 0.825 0.778 0.893 0.791 0.897 0.722 0.817 0.842

the importance of this problem and one of its possible ap-
plications. Then we developed three regularization methods
and examined the practical optimization of each corresponding
energy functions.

While the TV-based solution is appropriate for the class
of piecewise smooth images, the nonlocal and the TV+low-
patch rank approaches allow targeting larger image classes,
in particular images with strong repetitive textures. Both
approaches organize the patches of the sought-after image
following the evidence provided by the complete LR and
incomplete HR image pair.

The TV+}P ¨ }˚ method allows to go one step further than
the TV-based approach. However, we have seen that in order
to truly leverage the available data, it is necessary to resort
to explicit patch comparisons and to incorporate them in a
nonlocal cost function. In this paper, patch similarities that
drive the nonlocal regularization were based on an interpolated
version of the LR image. When the super-resolution factor r
is important and/or when the blurring matrix attenuates too
much the high frequencies of the HR image, these weights
can be erroneous and their incorporation into the regularization
functional can lead to bad reconstructions.

The approaches introduced in Sections IV and VI for
regularizing the IZC problem relied on the smoothness (local
or nonlocal) of the underlying sought-after image. In section
V, we augmented this smoothness assumption by adopting a
decomposition model and by trying to enforce a low-rank
hypothesis on the patches of the texture component. We
note that all the proposed methods do not rely on sparse
representations over learned dictionaries and as such they can
be easily adapted when the degradation model changes, e.g.
when the blurring filter or the super-resolution factor change.

Possible future work concerning the IZC problem, in par-
ticular when the blurring filter and the super-resolution factor
are fixed, can concentrate on developing IZC strategies based
on sparse and redundant representations [63]. As the setting
for IZC is a LR/HR image pair, one can consider training
both LR and visible HR patches in order to learn an adapted
dictionary. Another possible direction for future work is to
consider, for the nonlocal approach, an iterative minimization
process alternating between weight computation and zoom
completion steps as was done in [19] for image inpainting.
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Original LR HR

TV TV+}P ¨ }˚ NLTV`

Bicubic Yang et al. Dong et al.
Fig. 6. IZC for the “raffia” image. From left to right and form top to bottom:
ground-truth, LR input, incomplete HR input, TV (psnr = 27.91), TV+}P ¨ }˚
(psnr = 28.13), NLTV` (psnr = 28.79), bicubic (psnr = 24.86), Yang et al.
[13] (psnr = 27.95), Dong et al. [12] (psnr = 28.59).

Original LR HR

TV NLTV` TV+}P ¨ }˚
Fig. 7. IZC for a CT image scan. From left to right and from top to bottom :
ground truth, LR image, partial HR image, TV-regularization (psnr = 31.05),
nonlocal regularization (psnr = 32.17), TV+low-patch rank regularization
(psnr = 31.70).
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