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Practically Self-Stabilizing Paxos Replicated State-Machine?

Peva Blanchard1??, Shlomi Dolev2???, Joffroy Beauquier1†, and Sylvie Delaët1‡

1 LRI, Paris-Sud XI Univ., Orsay, France
2 Dept. of Computer Science, Ben-Gurion Univ. of the Negev, Beer-Sheva, 84105, Israel

Abstract. We present the first (practically) self-stabilizing replicated state machine for asynchronous message
passing systems. The scheme ensures that starting from an arbitrary configurations, the replicated state-machine
eventually exhibits the desired behaviour for a long enough execution regarding all practical considerations.

1 Introduction

To provide a highly reliable system, a common approach is to replicate a state-machine over many servers (repli-
cas). From the system’s client point of view, the replicas implements a unique state-machine which acts in a
sequential manner. This problem is related to the Consensus problem. Indeed, if all the replicas initially share the
same state and if they execute the same requests in the same order, then the system is coherent from the client’s
point of view. In other words, we can picture the system as a sequence of Consensus instances that decide on the
request to execute at each step. In an asynchronous message-passing system prone to crash failures, solving a sin-
gle consensus instance has been proven impossible [9]. This hinders the possibility of a state-machine replication
protocol.

However, Lamport has provided an algorithmic scheme, namely Paxos [13,14], that partially satisfy the re-
quirements of state-machine replication in the following sense. The safety property (two processes cannot decide
to execute different requests for the same step) is always guaranteed. On the other hand, the liveness property (ev-
ery non-crashed process eventually decides) requires additional assumptions, usually any means to elect a unique
leader for a long enough period of time. Note that the original formulation [14] presented Paxos as a (partial)
solution to the Consensus problem, but its actual purpose is to implement a replicated state-machine. Since then,
many improvements have been proposed, e.g., Fast Paxos [16], Generalized Paxos [15], Byzantine Paxos [17], and
the study of Paxos has become a subject of research on its own. The extreme usefulness of such an approach is
proven daily by the usage of this technique by the very leading companies [4].

Unfortunately, none of these approaches deal with the issue of transient faults. A transient fault may put the
system in a completely arbitrary configuration. In the context of replicated state-machine, the consequences may
be the following: (a) the states of the replica are incoherent, (b) the replicas never execute the same requests in the
same order, (c) the replicas are blocked even if the usual liveness conditions (e.g. unique leader) are satisfied. The
issues (a) and (b) hinder the linearizability of the state-machine, whereas the issue (c) hinders the liveness of the
state-machine.

A self-stabilizing system is able to recover from any transient fault after a finite period of time. In other words,
after any transient fault, a self-stabilizing system ensures that eventually the replicas have coherent states, execute
the same requests in the same order and progress is achieved when the liveness conditions are satisfied.

Nevertheless, completing this goal is rather difficult. One of the main ingredient of any Paxos-based replicated
state-machine algorithm is its ability to distinguish old and new messages. At a very abstract level, one uses natural
integers to timestamp data, i.e., each processor is assumed to have an infinite memory. At a more concrete level,
the processes have a finite memory, and the simplest timestamp structure is given by a natural integer bounded
by some constant 2b (b-bits counter). Roughly saying, this implies that the classic Paxos-based replicated state-
machine approach is able to distinguish messages in a window of size 2b.
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This constant is so large that it is sufficient for any practical purposes, as long as transient faults are not
considered. For example, if a 64-bits counter is initialized to 0, incrementing the counter every nanosecond will
last about 500 years before the maximum value is reached; this is far greater than any concrete system’s timescale.
But, a transient fault may corrupt the timestamps (e.g. counters set to the maximum value) and, thus, lead to replicas
executing requests in different order or being permanently blocked although the usual liveness related conditions
(e.g. unique leader) are satisfied.

This remark leads to a weaker form of self-stabilizing systems, namely practically self-stabilizing systems.
Roughly speaking, after any transient fault, a practically self-stabilizing system is ensured to reach a finite segment
of execution during which its behavior is correct, this segment being “long enough” relatively to some predefined
timescale. We give details in Sect 2.

In this paper, we provide a new bounded timestamp architecture and describe the core of a practically self-
stabilizing replicated state-machine, in an asynchronous message passing communication environment prone to
crash failures.

(Related work). If a process undergoes a transient fault, then one can model the process behaviour as a byzan-
tine behaviour. In [3], Castro and Liskov present a concrete1 replicated state-machine algorithm that copes with
byzantine failures. Lamport presents in [17] a byzantine tolerant variant of Paxos which has some connections with
Castro and Liskov’s solution. Note, however, that in both cases, the number of byzantine must be less than the third
of the total number of processes. This is related to the impossibility of a byzantine tolerant solution to Consensus
where more than a third of the system are byzantine. The approach of self-stabilization is comprehensive, rather
than addressing specific fault scenarios (risking to miss a scenario), and thus is somehow orthogonal to byzantine
fault tolerance. The issue of bounded timestamp system has been studied in [5] and [11], but these works do not
deal with self-stabilization. The first work, as far as we know, on a self-stabilizing timestamp system is presented in
[1], but it assumes communications based on a shared memory. In [2], the authors present the notion of practical2

stabilization, and provide an implementation of a practically self-stabilizing single-writer multi-reader atomic reg-
ister. Doing so, they introduce a self-stabilizing timestamp system. However, their approach assumes that a single
processor (the writer) is responsible for incrementing timestamps. Our timestamp system is a generalization which
allows many processors to increment timestamps. Finally, in [8], the authors present the first practically replicated
state-machine in the case of shared memory based communications.

The paper starts with a background and description of techniques and correctness in a nutshell. Then we turn
to a more formal and detailed description.

2 Overview

In this section, we define the Replicated State-Machine (RSM) problem and give an overview of the Paxos algo-
rithm. In addition, we give arguments for the need of a self-stabilizing algorithm that would solve the Replicated
State-Machine Problem. Doing so, we investigate a new kind of self-stabilizing behaviour, namely the practically
self-stabilizing behaviour, and also briefly present the core idea of our algorithm.

(Replicated State-Machine). Replicated State-Machine (RSM) aims at providing a reliable service to clients.
From the client point of view, it is only required that the RSM acts as a correct sequential machine, and that every
client request eventually gets a response. Formally, the problem is defined by the two following properties: (Safety)
every execution yields an history of client requests and responses that is linearizable [10], (Liveness) in this history,
every request has a corresponding response.

(Original Paxos). Although the original Paxos algorithm [14] has been formulated as a (partial) solution to the
Consensus problem, its actual purpose is to implement a RSM. Hence, in the following, our presentation of Paxos
will include aspects related to the RSM problem.

The original Paxos algorithm allows to implement a RSM property in an asynchronous complete network of
processors communicating by message-passing such that less than half of the processors are prone to crash failures.
Precisely, the safety of the RSM is always guaranteed, whereas the liveness is guaranteed if some conditions (e.g.

1 In their paper, “practical” is not related to our notion of practical self-stabilization.
2 “pragmatic” in their text.



unique leader) are satisfied. We refer to these conditions as the liveness conditions. The algorithm uses unbounded
integers and also assumes that the system starts in a consistent initial configuration.

If it were possible to elect a unique leader in the system, then implementing a replicated state-machine would
be easy: this leader receives the client requests, chooses an order, and tells the other processors. But, since the
leader may crash (no more leader), and since it is impossible to reliably detect the crashes (many leaders at the
same time), a take-over mechanism is required. To do so, the Paxos algorithm defines three roles: proposer (or
leader), acceptor and learner.

Basically, a proposer is a willing-to-be leader. It receives requests from clients, orders them (using a step
number s, natural integer) and proposes them to the acceptors. The acceptor accepts a request for a step s values
according to some specific rules discussed below. A request can be decided on for step s when a majority of
acceptors have accepted it in step s. Finally, the learner learns when some value has been accepted by a majority of
acceptors for some step and decides accordingly. The learner has a local copy of the state-machine, and it applies
the decided requests in the increasing step order.

There are many possible mappings of these roles to the processors of a concrete system. In our case, we assume
that every processor is both an acceptor and a learner. We also assume that some unreliable failure detector elects
some processors; the elected processors, in addition to their other roles, become proposers.

To deal with the presence of many proposers, the Paxos algorithm uses ballot numbers (unbounded natural
integers). Every proposer can create new ballot numbers (two proposers include their identifiers to produce mutu-
ally distinct ballot numbers). Every acceptor records a ballot number which roughly represents the proposer it is
attached to. When a processor becomes a proposer, it executes the following prepare phase or phase 1. It creates a
new ballot number t, and tries to recruit a majority of acceptors by broadcasting its ballot number (p1a message)
and waiting for replies (p1b) from a majority. An acceptor adopts the ballot number t (i.e. is recruited by the pro-
poser) only if its previously adopted ballot number is strictly smaller. In any case, it replies to the proposer. If the
proposer does not manage to recruit a majority of acceptors, it increments its ballot number and tries again.

An acceptor α adds to its p1b reply, the lastly accepted request acceptedα [s] for each step s (if any), along with
the corresponding ballot number at the time of acceptance. Thanks to this data, at the end of the prepare phase,
the proposer knows the advancement of a majority of acceptors, and can compute requests to propose which do
not interfere with possibly previous proposals. It select, for each step s, the most recent (by refering to the ballot
numbers of the accepted requests) accepted request, and if there are no such requests, it can pick any requests it
has personally received from clients.

Then for each step s for which the proposer has a request to propose, the proposer executes the following accept
phase or phase 2. The proposer broadcasts to the acceptors a p2a message containing its ballot number t, the step
s, and the proposed request p. An acceptor accepts this request for step s if the ballot number t is greater than or
equal to its previously adopted ballot number, and acknowledges the proposer. If the proposer sees an acceptor
with a greater ballot number, it reexecutes a phase 1. Otherwise, it receives positive answers from a majority of
acceptors, and it tells the learners to decide on the request for the corresponding step.

The phase 2 can be thought as the “normal case” operation. When a proposer is unique, each time it receives a
request from a client, it assigns to it a step number and tell the acceptors. The phase 1 is executed when a processor
becomes a proposer. Usually, a processor becomes a proposer when it detects the crash of the previous proposer.
The phase 1 serves as a “take-over” mechanism: the new proposer recruits a majority of acceptors and records,
for each of them, their lastly accepted requests. In order for the proposer to make sure that these lastly accepted
requests are accepted by a majority of acceptors, it executes a phase 2 for each corresponding step.

The difficulty lies in proving that the safety property holds. Indeed, since the failure detection is unreliable,
many proposers may be active simultaneously. Roughly speaking, the safety correctness is given by the claim that
once a proposer has succeeded to complete the phase 2 for a given step s, the request value is not changed afterwards
for the step s. Ordering of events in a common processor that answers two proposers yields the detailed argument,
and the existence of such a common processor stems from the fact that any two majorities of acceptors always
have non-empty intersection. The liveness property, however, is not guaranteed. A close look at the behaviour of
Paxos shows why it is so. Indeed, since every proposer tries to produce a ballot number that is greater than the
ballot numbers of a majority of acceptor, two such proposers may execute many unsuccessful phases 1. Intuitively
though, it is clear that if there is a single proposer in the system during a long enough period of time, then requests
are eventually decided on, and progress of the state-machine is ensured.



(Practically Self-Stabilizing Replicated State-Machine). As we pointed out in the previous section, the Paxos
algorithm uses unbounded integers to timestamp data (ballot and step numbers). In practice, however, every integer
handled by the processors is bounded by some constant 2b where b is the integer memory size. Yet, if every integer
variable is initialized to a very low value, the time needed for any such variable to reach the maximum value 2b is
actually way larger than any reasonable system’s timescale. For instance, counting from 0 to 264 by incrementing
every nanosecond takes roughly 500 years to complete. Such a long sequence is said to be practically infinite.
This leads to the following important remark from which the current work stems. Assuming that the integers are
theoretically unbounded is reasonable only when it is ensured, in practice, that every counter is initially set to
low values, compared to the maximum value. In particular, any initialized execution of the Paxos algorithm with
bounded integers is valid as long as the counters are not exhausted.

In the context of self-stabilization, a transient fault may hinder the system in several ways as explained in
the introduction. First, it can corrupt the states of the replicas or alter messages leading to incoherent replicas
states. Second, and most importantly, a transient fault may also corrupt the variables used to timestamp data (e.g.
ballot or step number) in the processors memory or in the communication channels, and set them to a value close
to the maximum value 2b. This leads to an infinite suffix of execution in which the State-Machine Replication
conditions are never jointly satisfied. This issue is much more worrying than punctual breakings of the State-
Machine Replication specifications.

Intuitively though, if one can manage to get every integer variable to be reset to low values at some point in
time, then there is consequently a finite execution (ending with ballot or step number reaching the maximum value
2b) during which the system behaves like an initialized original Paxos-based State-Machine Replication execution
that satisfies the specifications. Since we use bounded integers, we cannot prove the safe execution to be infinite,
but we can prove that this safe execution is as long as counting from 0 to 2b, which is as long as the length of an
initialized and safe execution assumed in the original Paxos prior to exhausting the counters. This is what we call
a practically self-stabilizing behaviour.

More formally, a finite execution is said to be practically infinite when it contains a causally ordered (Lam-
port’s happen-before relation [12]) chain of events of length greater than 2b. We then formulate the Practically
Self-Stabilizing Replicated State-Machine (PSS-RSM) specification as follows: (Safety) Every infinite execution
contains a practically infinite segment that yields a linearizable history of client requests and responses, (Liveness)
In this history, every request has a corresponding response.

(Tag System). Our algorithm uses a new kind of timestamping architecture, namely a tag system, to deal with the
overflow of integer variables. We first describe a simpler tag system that works when there is a single proposer,
before adapting it to the case of multiple proposers.

One of the key ingredient of Paxos is the possibilty for a proposer to increment its ballot number t. We start
with t being a natural integer between 0 and a large constant 2b, namely a bounded integer. Assume, for now, that
there is a single proposer in the system. With an arbitrary initial configuration, some processors may have ballot
numbers set to the maximum 2b, thus the proposer will not be able to produce a greater ballot number. To cope
with this problem, we redefine the ballot number to be a couple (l t) where t is a bounded integer (the integer ballot
number), and l a label, which is not an integer but whose type is explicited below. We simply assume that it is
possible to increment a label, and that two labels are comparable. The proposer can increment the integer variable
t, or increment the label l and reset the integer variable t to zero. Now, if the proposer manages to produce a label
that is greater than every label of the acceptors, then right after everything is as if the (integer part of the) ballot
numbers of the processors have all started from zero, and, intuitively, we get a practically infinite execution that
looks like an initialized one. To do so, whenever the proposer notices an acceptor label which is not less than or
equal to the proposer current label (such an acceptor label is said to cancel the proposer label), it records it in a
history of canceling labels and produces a label greater than every label in its history.

Obviously, the label type cannot be an integer. Actually, it is sufficient to have some finite set of labels along
with a comparison operator and a function that takes any finite (bounded by some constant) subset of labels and
produces a label that is greater than every label in this subset. Such a device is called a finite labeling scheme (see
Sec. 3).

In the case of multiple proposers, the situation is a bit more complicated. Indeed, in the previous case, the
single proposer is the only processor to produce labels, and thus it manages to produce a label greater than every
acceptor label once it has collected enough information in its canceling label history. If multiple proposers were



also producing labels, none of them would be ensured to produce a label that every other proposer will use. Indeed,
the first proposer can produce a label l1, and then a second proposer produces a label l2 such that l1 ≺ l2. The first
proposer then sees that the label l2 cancels its label and it produces a label l3 such that l2 ≺ l3, and so on.

To avoid such interferences between the proposers, we elaborate on the previous scheme as follows. Instead of
being a couple (l, t) as above, a ballot number will be a couple (v, t) where t is the integer ballot number, and v is a
tag, i.e., a vector of labels indexed by the identifiers of the processors. We assume that the set of identifiers is totally
ordered. A proposer µ can only create new labels in the entry µ of its tag. By recording enough of the labels that
cancel the label in the entry µ , µ is able to produce a greatest label in the entry µ; therefore the entry µ becomes a
valid entry (it has a greatest label) that can be used by other proposers. In order for the different processors to agree
on which valid entry to use, we simply impose that each of them uses the valid entry with the smallest identifier.

Finally, in the informal presentation above, we presented the tag system as a means to deal with overflows of
ballot numbers, but the same goes for overflows of any other kind of ever increasing (but bounded) sort of variables.
In particular, in any implementation of Paxos, the processors record the sequence of executed requests (which is
related to the step number); our tag system also copes with overflows of this kind of data.

3 System Settings

(Model). All the basic notions we use (state, configuration, execution, asynchrony, . . . ) can be found in, e.g.,
[6,18]. Here, the model we work with is given by a system of n asynchronous processors in a complete commu-
nication network. Each communication channel between two processors is a bidirectional asynchronous commu-
nication channel of finite capacity C [7]. Every processor has a unique identifier and the set Π of identifiers is
totally ordered. If α and β are two processor identifiers, the couple (α,β ) denotes the communication channel
between α and β . A configuration is the vector of states of every processor and communication channel. If γ is a
configuration of the system, we note γ(α) (resp. γ(α,β )) for the state of the processor α (resp. the communication
channel (α,β )) in the configuration γ . We informally1 define an event as the sending or reception of a message at
a processor or as a local state transition at a processor. Given a configuration, an event induces a transition to a new
configuration. An execution is denoted by a sequence of configurations (γk)0≤k<T , T ∈ N∪{+∞} related by such
transitions2. A local execution at processor λ is the sequence of states obtained as the projection of an execution
on λ .

We consider transient and crash faults only. The effect of a transient fault is to corrupt the state of some
processors and/or communication channels. As usual in self-stabilization, we only consider the suffix of execution
after the last transient fault; though crash faults may occur in this suffix. In other words, this amounts to assume
that the initial configuration of every execution is arbitrary and at most f processors are prone to crash failures.

A quorum is any set of at least n− f processors. The maximum number of crash failures f satisfies n≥ 2 · f+1.
Thus, there always exists a responding majority quorum and any two quorums have a non-empty intersection. We
also use the “happened-before” strict partial order introduced by Lamport [12]. In our case, we note e f and we
say that e happens before f , or f happens after3 e. Each processor plays the role of a proposer, acceptor and learner.
A proposer can be active or inactive4. We simply assume that at least one processor acts as a proposer infinitely
often. This proposer is not required to be unique in order for our algorithm to stabilize. A unique proposer is
required only for the liveness of the state-machine (Sec. 6). Finally, we fix a state-machine M , and each processor
has a local copy of M . A request corresponds to a transition of the state-machine. We assume that the machine M
has a predefined initial state.

(Data Structures). Given a positive integer b, a b-bounded integer, or simply a bounded integer, is any non-
negative integer less than or equal to 2b. A finite labeling scheme is a 4-tuple L = (L ,≺,d,ν) where L is a
finite set whose elements are called labels, ≺ is a partial relation on L that is irreflexive (l 6≺ l) and antisymmetric
( 6 ∃(l, l′) l ≺ l′∧ l′ ≺ l), d is an integer, namely the dimension of the labeling scheme, and ν is the label increment
function, i.e., a function that maps any finite set A of at most d labels to a label ν(A) such that for every label l in

1 For a formal definition, refer to, e.g., [6,18].
2 For sake of simplicity, the events and the transitions are omitted.
3 Note that the sentences “ f happens after e” and “e does not happen before f ” are not equivalent.
4 How a proposer becomes active can be modeled by a the output of a failure detector.



A, we have l ≺ ν(A). We denote the reflexive closure of≺ by4. The definition of a finite labeling scheme imposes
that the relation ≺ is not transitive. Hence, it is not a preorder relation. Given a label l, a canceling label for l is a
label cl such that cl 64 l. See [2] for a concrete construction of finite labeling scheme of any dimension.

A tag is a vector v[µ] = (l cl) where µ ∈ Π is a processor identifier, l is a label, cl is either the null symbol
⊥, the overflow symbol ∞ or a canceling label for l. The entry µ in v is said to be valid when the corresponding
canceling field is null, v[µ].cl = ⊥. If v has at least one valid entry, we denote by χ(v) the first valid entry of v,
i.e., the smallest identifier µ such that v[µ] is valid. If v has no valid entry, we set χ(v) = ω where ω is a special
symbol (not in Π ). Given two tags v and v′, we note v ≺ v′ when either χ(v) > χ(v′) or χ(v) = χ(v′) = µ 6= ω

and v[µ].l < v′[µ].l. We note v' v′ when χ(v) = χ(v′) = µ and v[µ] = v′[µ]. We note v4 v′ when either v≺ v′ or
v' v′.

A fifo label history H of size d, is a vector of size d of labels along with an operator + defined as follows. Let
H = (l1, . . . , ld) and l be a label. If l does not appear in H, then H + l = (l, l1, . . . , ld−1), otherwise H + l = H. We
define the tag storage limit K and the canceling label storage limit Kcl by K = n+C n(n−1)

2 and Kcl = (n+1)K.

4 The Algorithm

In this section, we describe the Practically Self-Stabilizing Paxos algorithm. In its essence, our algorithm is close
to the Paxos scheme except for some details. First, in the original Paxos, the processors decide on a unique request
for each step s. In our case, there is no actual step number, but the processors agree on a growing sequence of
requests (of size at most 2b as in [15]. Second, our algorithm includes tag related data to cope with overflows.

The variables are presented in Alg. 1. The clients are not modeled here; we simply assume that each active
proposer α can query a stream queueα to get a client request to propose. The variables are divided in three sections
corresponding to the different Paxos roles: proposer, acceptor, learner. In each section, some variables are marked
as Paxos variables1 while the others are related to the tag system.

The message flow is similar to Paxos. When a proposer λ becomes active, it executes a prepare phase (phase
1), trying to recruit a majority of acceptors. An acceptor α is recruited if the proposer ballot number is (strictly)
greater than its own ballot number. In this case, it adopts the ballot number. It also replies (positively or negatively)
to the leader with its latest accepted sequence of requests acceptedα along with the corresponding (integer) ballot
number. After recruiting a quorum of acceptors, the proposer λ records the latest sequence (w.r.t. the associated
integer ballot numbers) of requests accepted by them in its variable proposed proposedλ . If this phase 1 is success-
ful, the proposer λ can execute accept phases (phase 2) for each request received in queueλ . For each such request
r, the proposer λ appends r to its variable proposedλ , and tell the acceptors to accept proposedλ . An acceptor
accepts the proposal proposedλ when the two following conditions are satisfied: (1) the proposer’s ballot number
is greater than or equal to its own ballot number, and (2) if the ballot integer associated with the lastly accepted
proposal is equal to the proposer’s ballot integer, then proposedλ is an extension of the lastly accepted proposal.
Roughly speaking, this last condition avoids the acceptor to accept an older (hence shorter) sequence of request. In
any case, the acceptor replies (positively or negatively) to the proposer. The proposer λ plays the role of a special
learner in the sense that it waits for positive replies from a quorum of acceptors, and, sends the corresponding de-
cision message. The decision procedure when receiving a decision message is similar to the acceptation procedure
(reception of a p2a message), except that if the acceptor accepts the proposal, then it also learns (decides on) this
proposal and execute the corresponding new requests.

We now describe the treatment of the variables related to the tag system. Anytime a processor α (as an acceptor,
learner or proposer) with tag vα receives a message with a tag v′, it updates the canceling label fields before
comparing them, i.e., for any µ , if vα [µ].l (or vα [µ].cl) is a label that cancels v′[µ].l, or vα [µ].cl = ∞ is the
overflow symbol, then the field v′[µ].cl is updated accordingly2, and vice versa. Also, if the processor α notices
an overflow in its own variables (e.g. its ballot integer, or one of the request sequence variables, has reached the
upper bound), it sets the overflow symbol ∞ in the canceling field of the first valid entry of the tag. If after such
an update, the label vα [α].l is canceled, then the corresponding canceling label is added to Hcl

α as well as the label
vα [α].l, and vα [α].l is set to the new label ν(Hcl

α ) created from the labels in Hcl
α with the label increment function.

1 They come from the original formulation of Paxos.
2 i.e., the field v′[µ].cl is set to vα [µ].(l or cl). In case, there is a canceling label and the overflow symbol, the canceling label

is prefered.



The purpose of Hcl
α is to record enough canceling labels for the proposer to produce a greatest label. In addition,

if, after the update, it appears that vα 4 v′, then α adopts the tag v′, i.e., it copies the content of the first valid entry
µ = χ(v′) of v′ to the same entry in vα (assuming µ < α). Doing so, it also records the previous label in vα in
the label history Hα [µ]. If there is a label in Hα [µ] that cancels vα [µ].l, then the corresponding field is updated
accordingly. The purpose of Hα [µ] is to avoid cycle of labels in the entry µ of the tag. Recall that the comparison
between labels is not a preorder. In case µ = α , then α uses the label increment function on Hcl

α to produce a
greater label as above.

We say that there is an epoch change in the tag vλ if either the first valid entry χ(vλ ) has changed, or the first
valid entry has not changed but the corresponding label has changed. Whenever there is an epoch change in the tag
vλ the processor cleans the Paxos related variables. For a proposer λ , this means that the proposer ballot integer
t p
λ

is reset to zero, the proposed requests proposedλ to the empy sequence; in addition, the proposer proceeds to a
new prepare phase. For an acceptor (and learner) α , this means that the acceptor ballot integer is reset to zero, the
sequences acceptedα and learnedα are reset to the empty sequence, and the local state q∗α is reset to the predefined
initial state of the state-machine.

The pseudo-code in Algorithms 2 and 3 sums up the previous description. Note that, the predicate (vα , tα) <
(vλ , tλ ) (resp. (vα , tα)≤ (vλ , tλ )) means that either vα ≺ vλ , or vα ' vλ and tα < tλ (resp. tα ≤ tλ ).

Algorithm 1: Variables at processor α

1 (tag system)
2 vα : tag
3 canceling label history, Hcl

α : fifo history of size (K+1)Kcl

4 for each µ ∈Π , label history, H[µ] : fifo history of size K
5 (proposer)
6 client requests, queueα : queue (read-only)
7 [Paxos] proposer ballot integer, t p

α : bounded integer
8 [Paxos] proposed requests, proposedα : requests sequence of size ≤ 2b

9 (acceptor)
10 [Paxos] acceptor ballot integer, ta

α : bounded integer
11 [Paxos] accepted requests, acceptedα = (t,seq) : t bounded integer, seq requests sequence of size ≤ 2b

12 (learner)
13 [Paxos] learned requests, learnedα : requests sequence of size ≤ 2b

14 [Paxos] local state, q∗α : state of the state-machine

5 Proofs

Due to lack of space, proofs are only sketched.

5.1 Tag Stabilization

Definition 1 (Interrupt). Let λ be any processor (as a proposer, or an acceptor) and consider a local subexecution
σ = (γk(λ ))k0≤k≤k1 at λ . We denote by vk

λ
for the value of λ ’s tag in γk(λ ). We say that an interrupt has occurred

at position k in the local subsexecution σ when one of the following happens

– µ < λ , type [µ,←] : the first valid entry moves to µ such that µ = χ(vk+1
λ

) < χ(vk
λ
), or the first valid entry

does not change but the label does, i.e., µ = χ(vk+1
λ

) = χ(vk
λ
) and vk

λ
[µ].l 6= vk+1

λ
[µ].l.

– µ < λ , type [µ,→] : the first valid entry moves to µ such that µ = χ(vk+1
λ

) > χ(vk
λ
).

– type [λ ,∞] : the first valid entry is the same but there is a change of label in the entry λ due to an overflow of
one of the Paxos variables; we then have χ(vk+1

λ
) = χ(vk

λ
) = λ and vk

λ
[λ ].l 6= vk+1

λ
[λ ].l.

– [λ ,cl] : the first valid entry is the same but there is a change of label in the entry λ due to the canceling of the
corresponding label; we then have χ(vk+1

λ
) = χ(vk

λ
) = λ and vk

λ
[λ ].l 6= vk+1

λ
[λ ].l.



Algorithm 2: Prepare phase (Phase 1)

1 Processor λ becomes a proposer:
2 increment tλ
3 if tλ reaches 2b then
4 set vλ [χ(vλ )].cl to ∞

5 update the entry vλ [λ ] with Hcl if it is invalid
6 clean the proposer Paxos variables
7 broadcast 〈p1a,vλ , tλ ,λ 〉
8 collect replies R from some quorum Q
9 update (if necessary) the tag vλ and the label histories

10 if no epoch change in vλ and all replies are positive then
11 order R with lexicographical order

(acceptedα .t, |acceptedα .seq|)
12 proposedλ ← acceptedα .seq the maximum in R

(break ties if necessary)
13 if proposedλ has reached max length then
14 set vλ [χ(vλ )].cl to ∞

15 update the entry vλ [λ ] with Hcl if it is invalid
16 clean the Paxos variables
17 repeat phase 1
18 else
19 if epoch change in vλ then
20 clean the Paxos variables
21 repeat phase 1

22

23 Processor α receives p1a message from λ :
24 update canceling fields in (vα ,vλ )
25 if (vα , tα ) < (vλ , tλ ) then
26 adopt vλ , tλ
27 if epoch change in vα then
28 clean Paxos variables
29 reply to λ , 〈p1b,vα , tα ,acceptedα ,α〉
30

Algorithm 3: Accept phase (Phase 2) and Decision

1 Processor λ has requests in queueλ :
2 append requests to proposedλ

3 broadcast 〈p2a,vλ , tλ , proposedλ 〉
4 collect replies R from some quorum Q
5 update (if necessary) the tag vλ and the label histories
6 if no epoch change in vλ and all replies are positive then
7 broadcast 〈dec,vλ , tλ , proposedλ 〉
8 else
9 if epoch change in vλ then clean the Paxos variables

10 proceed to phase 1
11

12 Processor α receives p2a or dec message from λ :
13 update canceling fields in (vα ,vλ )
14 if (vα , tα )≤ (vλ , tλ ) then
15 adopt vλ , tλ
16 if epoch change in vα then clean the Paxos variables
17 if acceptedα .t = tλ ⇒ acceptedα .seq@ proposedλ

then
18 accept (tλ , proposedλ )
19 if it is a dec message then
20 learn proposedλ

21 update q∗α by executing the new requests
22 if it is a p2a message then
23 reply to λ , 〈p2b,vα , tα ,acceptedα ,α〉
24



For each type [µ,∗] (µ ≤ λ ) of interrupt, we denote by |[µ,∗]| the total number (possibly infinite) of interrupts of
type [µ,∗] that occur during the local subexecution σ .

If there is an interrupt like [µ,←], µ < λ , occurs at position k, then necessarily there is a change of label in the
field vλ [µ].l (due to the adoption of received tag). In addition, the new label l′ is greater than the previous label l,
i.e., l ≺ l′. Also note that, if χ(vk

λ
) = λ , the proposer λ never copies the content of the entry λ of a received tag,

say v′, to the entry λ of its tag, even if vk
λ
[λ ].l ≺ v′[λ ].l. New labels in the entry λ are only produced with the label

increment function applied to the union of the current label and the canceling label history Hcl
λ

.

Definition 2 (Epoch). Let λ be a processor. An epoch σ at λ is a maximal (for the inclusion of local subexecutions)
local subexecution at λ such that no interrupts occur at any position in σ except for the last position. By the
definition of an interrupt, every tag values within a given epoch σ at λ have the same first valid entry, say µ , and
the same corresponding label, i.e., for any two processor states that appear in σ , the corresponding tag values
v and v′ satisfies χ(v) = χ(v′) = µ and v[µ].l = v′[µ].l. We denote by µσ and lσ the first valid entry and the
corresponding label common to all the tag values in σ .

Definition 3 (h-Safe Epoch). Consider an execution E and a processor λ . Let Σ be a subexecution in E such
that the local subexecution σ = Σ(λ ) is an epoch at λ . Let γ∗ be the configuration of the system right before the
subexecution Σ , and h be a bounded integer. The epoch σ is said to be h-safe when the interrupt at the end of σ is
due to an overflow of one of the Paxos variables. In addition, for every processor α (resp. communication channel
(α,β )), for every tag x in γ∗(α) (resp. γ∗(α,β )), if x[µσ ].l = lσ then any corresponding integer variables (ballot
integers, or lengths of request sequences) have values less than or equal to h.

If there is an epoch σ at processor λ such that µσ = λ and λ has produced the label lσ , then necessarily, at the
beginning of σ , the Paxos variables have been reset. However, other processors may already be using the label lσ
with, for example, arbitrary ballot integer value. Such an arbitrary value may be the cause of the overflow interrupt
at the end of σ . The definition of a h-safe epoch ensures that the epoch is truly as long as counting from h to 2b.

Since a processor λ always checks that the entry vλ [λ ] is valid (updating with ν(Hcl
λ

) if necessary), it is now
assumed, unless stated explicitly, that we always have χ(vλ )≤ λ .

Consider a configuration γ and a processor identifier µ . Let S(γ) be the set of every tag present either in a
processor memory or in some message in a communication channel, in the configuration γ . Let Scl(µ,γ) be the set
of labels l such that either l is the value of the label field x[µ].l for some tag x in S(γ), or l appears in the label
history Hα [µ] of some processor α , in the configuration γ . Then, we have |S(γ)| ≤ K and |Scl(µ,γ)| ≤ Kcl . In
particular, the number of label values x[µ].l with x in S(γ) is less than or equal to K.

Lemma 1 (Cycle of Labels). Consider a subexecution E, a processor λ and an entry µ < λ in the tag variable
vλ . The label value in vλ [µ].l can change during the subexecution E and we denote by (li)1≤i≤T+1 for the sequence
of successive distinct label values that are taken by the label vλ [µ].l in the entry µ during the subexecution E. We
assume that the first T labels l1, . . . , lT are different from each other, i.e., for every 1≤ i < j ≤ T , li 6= l j. If T > K,
then at least one of the label li has been produced1 by the processor µ during E. If T ≤ K and lT+1 = l1, then
when the processor λ adopts the label lT+1 in the entry µ of its tag vλ , the entry µ becomes invalid.

Proof (Sketch). This stems from the fact that in any configuration there are at most K different tags in the system,
and that λ records the last K label values of the entry µ of its tag. ut

Lemma 2 (Counting the Interrupts). Consider an infinite execution E∞ and let λ be a processor identifier such
that every processor µ < λ produces labels finitely many times. Consider an identifier µ < λ and any processor
ρ ≥ λ . Then, the local execution E∞(ρ) at ρ induces a sequence of interrupts such that |[µ,←]| ≤ Rµ = (Jµ +
1) · (K + 1)− 1 where Jµ is the number of times the processor µ has produced a label since the beginning of the
execution.

Proof (Sketch). Assume the contrary. Then there are Rµ + 1 successive distinct label values in the field vρ [µ].l,
l1 ≺ ·· · ≺ lRµ +1. We can divide this sequence in Jµ +1 segments of length K+1. Due to the previous lemma, there
is one segment containing a cycle of labels of length ≤K; this is a contradiction since ρ records the last K labels
in Hρ [µ]. ut

1 Precisely, it has invoked the label increment function to update the entry µ of its tag vµ .



Theorem 1 (Existence of a 0-Safe Epoch). Consider an infinite execution E∞ and let λ be a processor such that
every processor µ < λ produces labels finitely many times. We denote by |λ | the number of identifiers µ ≤ λ , Jµ

for the number of times a proposer µ < λ produces a label and we define

Tλ = ( ∑
µ<λ

Rµ +1) · (|λ |+1) · (Kcl +1) · (K+1) (1)

where Rµ = (Jµ + 1) · (K + 1)− 1. Assume that there are more than Tλ interrupts at processor λ during E∞ and
consider the concatenation Ec(λ ) of the first Tλ epochs, Ec(λ ) = σ1 . . .σTλ . Then Ec(λ ) contains a 0-safe epoch.

Proof (Sketch). The bound given by the previous lemma and successive applications of the pigeonhole principle
yield a segment E2(λ ) of (Kcl +1)(K+1) successive epochs with interrupts like [λ ,∞] and [λ ,cl] only. If there is
in E2 a segment E3 of K + 1 successive epochs with interrupts like [λ ,∞] only, λ must have a created a label that
was not present in the system; and the corresponding epoch is 0-safe. Otherwise, there is at least Kcl +1 interrupts
like [λ ,cl]. This implies that λ has collected all the possible canceling labels. At the end, it produces a greatest
label, and the corresponding epoch is necessarily 0-safe. ut

Note that the epoch found in the proof is not necessarily the unique 0-safe epoch in Ec(λ ). The idea is only
to prove that there exists a practically infinite epoch. If the first epoch σ at λ ends because the corresponding
label lσ in the entry µσ gets canceled, but lasts a practically infinite long time, then this epoch can be considered,
from an informal point of view, safe. One could worry about having only very “short” epochs at λ due to some
inconsistencies (canceling labels or overflows) in the system. Theorem 1 shows that every time a “short” epoch
ends, the system somehow loses one of its inconsistencies, and, eventually, the proposer λ reaches a practically
infinite epoch. Note also that a 0-safe epoch and a 1-safe or a 2-safe epoch are, in practice, as long as each other.
Indeed, any h-safe epoch with h very small compared to 2b can be considered practically infinite. Whether h can be
considered very small depends on the concrete timescale of the system. Besides, every processor α always checks
that the entry α is valid. Doing so the processor α still works to find a “winning” label for its entry α . In that case,
if the entry µ becomes invalid, then the entry α is ready to be used, and a safe epoch can start without waiting any
longer.

5.2 Safety

To prove the safety property within a subexecution, we have to focus on the events that correspond to deciding a
proposal, e.g., (v, t, p) at processor α (v being a tag, t a ballot integer, p a sequence of requests). Such an event
may be due to corrupted messages in the communication channels an any stage of the Paxos algorithm. Indeed,
a proposer computes the proposal it will send in its phase 2 thanks to the replies it has received at the end of its
phase 1. Hence, if one of these messages is corrupted, then the safety might be violated. However, there is a finite
number of corrupted messages since the capacity of the communication channels is finite. To formally deal with
these issues, we define the notion of scenario that corresponds to specific chain of events involved in the Paxos
algorithm. Consider a subexecution E = (γk)k0≤k≤k1 . A scenario in E is a sequence U = (Ui)0≤i<I where each Ui
is a collection of events in E. In addition, every event in Ui happens before every event in Ui+1.

Definition 4 (Phase Scenario). Consider a proposer ρ , an acceptor α , quorums S and Q of acceptors, a tag v, a
ballot integer t, and a sequence of requests p.

A phase 1 scenario is defined as follows. The proposer ρ broadcasts a message p1a containing the tag v, and
ballot integer t. Every acceptor in the quorum S receives this message and adopts1 the tag v. Every processor α

in the quorum S replies to the proposer ρ a p1b message telling they adopted the couple (v, t), and containing the

last proposal they accepted. These messages are received by ρ . We denote this scenario by ρ
p1a−−→ (S,v, t)

p1b−−→ ρ .
A phase 2 scenario with acceptation is defined as follows. The proposer ρ broadcasts a p2a message containing

the tag v, the ballot integer t, and the proposed sequence of requests p. The acceptor α accepts the proposal (v, t, p).

We denote this scenario by ρ
p2a−−→ (α,v, t, p).

1 Recall that this means the acceptor, say α , copies the entry v[χ(v)] in the entry vα [χ(v)].



A phase 2 scenario with quorum acceptation is defined as follows. The proposer ρ broadcasts a p2a message
containing the tag v, the ballot integer t, and the proposed sequence of requests p. Every acceptor in the quorum
Q accepts the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a p2b message telling
that it has accepted the proposal (v, t, p). The proposer ρ receives these messages. We denote this scenario by

ρ
p2a−−→ (Q,v, t, p)

p2b−−→ ρ .
A phase 2 scenario with decision is defined as follows. The proposer ρ broadcasts a p2a message containing

the tag v, the ballot integer t, and the proposed sequence of requests p. Every acceptor in the quorum Q accepts
the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a p2b message telling that it has
accepted the proposal (v, t, p). The proposer ρ receives these messages. The proposer ρ sends a decision message
containing the proposal (v, t, p). The processor α receives this message, accepts and decides on the proposal

(v, t, p). We denote this scenario by ρ
p2a−−→ (Q,v, t, p)

p2b−−→ ρ
dec−−→ (α,v, t, p).

In all the previous cases, we say that the phase scenarios are conducted by the proposer ρ and use the ballot
(v, t).

Definition 5 (Simple Acceptation Scenario). A simple acceptation scenario is the concatenation of a phase 1
scenario, followed by a finite number of phase 2 scenarios with quorum acceptation, and ending with a phase 2
scenario with either acceptation, or decision; all the phase scenarios being conducted by the same proposer ρ ,
and using the same ballot (v, t). Let S be the quorum of acceptors in the phase 1 scenario, p be the sequence
of requests accepted (or decided on) in the last event of the scenario, and α be the corresponding acceptor. If
the last phase scenario is a phase scenario with acceptation, then we denote the simple acceptation scenario by

ρ
p1a−−→ (S,v, t) ρ

p2a−−→ (α,v, t, p). If the last phase scenario is a phase scenario with decision, then we denote the

simple acceptation scenario by ρ
p1a−−→ (S,v, t) ρ

p2a−−→ (Q,v, t, p)
p2b−−→ ρ

dec−−→ (α,v, t, p). When we want to indicate
that both cases are possible, we simply denote the simple acceptation scenario by (ρ,S,v, t) (α,v, t, p).

A simple acceptation scenario is simply a basic execution of the Paxos algorithm that leads a processor to either
accept a proposal, or decide on a proposal (accepting it by the way).

Definition 6 (Fake Message). Given a subexecution E = (γk)k0≤k≤k1 , a fake message relatively to the subexecu-
tion E, or simply a fake message, is a message that is in the communication channels in the first configuration γk0
of the subexecution E.

This definition of fake messages comprises the messages at the beginning of E that were not sent by any
processor, but also messages produced in the prefix of execution that precedes E.

Definition 7 (Fake Phase Scenario). Consider a proposer ρ , an acceptor α , quorums S and Q of acceptors, a tag
v, a ballot integer t, and a sequence of requests p. Fix a subexecution E. A fake phase scenario relatively to E is
one of the following scenario.

(Fake phase 1 scenario) The proposer ρ sends a p1a message with ballot (v, t). It receives positive replies from
a quorum S, one of these replies at least being fake (i.e. it was not actually sent by an acceptor). We denote this

fake phase scenario by ρ
p1a−−→ (S,v, t)

f ake p1b−−−−−→ ρ .
(Fake phase 2 scenario with acceptation) The acceptor α receives a fake p2a with proposal (v, t, p) that seems to

come from the processor ρ . The acceptor α accepts the proposal. We denote this scenario by ρ
f ake p2a−−−−−→ (α,v, t, p).

(Fake phase 2 scenario with quorum acceptation) The proposer ρ sends a p2a message with proposal (v, t, p).
The proposer ρ receives positive replies from a quorum Q, one of these replies, at least, being fake. Then ρ sends
a decision message with proposal (v, t, p) to the acceptor α , and α decides accordingly. We denote this scenario

by ρ
p2a−−→ (Q,v, t, p)

f ake p2b−−−−−→ ρ
dec−−→ (α,v, t, p).

(Fake phase 2 scenario with decision) The acceptor α receives a fake decision message with proposal (v, t, p)
which seems to come from the proposer ρ . The acceptor α decides accordingly. We denote this scenario by

ρ
f ake dec−−−−−→ (α,v, t, p).

Definition 8 (Simple Fake Acceptation Scenario). A simple fake acceptation scenario is either a fake phase 2
scenario with acceptation, a fake phase 2 scenario with quorum acceptation, a fake phase 2 scenario with decision,



or the concatenation of a fake phase 1 scenario, followed by a finite number of (non-fake) phase 2 scenarios with
quorum acceptation, and ending with a (non-fake) phase 2 scenario with either an acceptation, or a decision; all
the scenarios being conducted by the same proposer ρ , and using the same ballot (v, t). We often denote this kind
of scenarios by f ake (α,v, t, p) where (α,v, t, p) refers to the last acceptation (or decision) event.

A simple fake acceptation scenario is somehow similar to a simple acceptation scenario except for the fact that
at least one fake message (relatively to the given subexecution) is involved during the scenario.

Definition 9 (Composition). Consider two simple scenarios

U = X  (α1,v1, t1, p1)
V = (ρ2,S2,v2, t2) (α2,v2, t2, p2)

where X = f ake or X = (ρ1,S1,v1, t1) such that the following three conditions are satisfied. (1) The processor α1
belongs to S2 (2) Let e2 be the event that corresponds to α1 sending a p1b message in scenario V . Then the event
“α1 accepts the proposal (v1, t1, p1)” from U is the last acceptation event before e2 occurring at α1. In addition,
the proposer ρ2 selects the proposal (t1, p1) as the highest-numbered proposal at the end of the Paxos phase 1. In
particular, p1 is a prefix of p2, i.e., p1 @ p2. (3) All the tags involved share the same first valid entry, the same
corresponding label.

Then the composition of the two simple scenarios is the concatenation the scenarios U and V . This scenario
is denoted by X  (α1,v1, t1, p1)→ (ρ2,S2,v2, t2) (α2,v2, t2, p2). Note also that the ballot integer is strictly
increasing along the simple scenarios.

Fig. 1. Composition of scenarios - Time flows downward, straight lines are local executions, arrows represent messages.

Definition 10 (Acceptation Scenario). Given a subexecution E, an acceptation scenario is the composition U
of simple acceptation scenarios U1, . . . ,Ur where U1 is either a simple acceptation scenario or a simple fake
acceptation scenario relatively to E, whereas the other are real (i.e. non-fake) simple acceptation scenarios. We
denote it by X  (α1,v1, t1, p1) → (ρ2,S2,v2, t2)  (α2,v2, t2, p1) . . .(ρr,Sr,vr, tr)  (αr,vr, tr, pr) where X is
either f ake or some (ρ1,S1,v1, t1).

An acceptation scenario whose first simple scenario is not fake relatively to E is called real acceptation scenario
relatively to E. An acceptation scenario whose first simple scenario is fake relatively to E is called fake acceptation
scenario relatively to E.

Given an acceptation event or a decision event, there is always at least one way to trace back the scenario that
has lead to this event. If one of these scenarios involve a fake message, then we cannot control the safety property.
Besides, all the tags involved share the same first valid entry µ and the same corresponding label l. Also, the ballot
integer value, as well as the sequence of requests, is increasing along the acceptation scenario; i.e., if i < j, then
ti < t j and pi @ p j.



Definition 11 (Fake event). Consider an event e that corresponds to some processor accepting a proposal, let
U be the simple acceptation scenarios that ends with the event e. The event e is said to be fake relatively to a
subexecution E if U is a fake simple acceptation scenario relatively to E. The event e is sait to be real relatively to
E otherwise.

Definition 12 (Simple Scenario Characteristic). The characteristic of a simple acceptation scenario U with tag
v, ballot integer t, is the tuple char(U) = (χ(v),v[χ(v)].l, t).

Definition 13 (Observed Zone). Consider an execution E. Let λ be a proposer and let Σ be a subexecution such
that the local execution σ = Σ(λ ) at λ is a h-safe epoch. We denote by F the suffix of the execution that starts with
Σ . Assume that λ hears from at least two quorums during its epoch σ . Let Q0, Q f be the first and last quorums
respectively whose messages are processed by the proposer λ during σ . For each processor α in Q0 (resp. Q f ), we
denote by e0(α) (resp. e f (α)) the event that corresponds to α sending to λ a message received in the phase that
corresponds to Q0 (resp. Q f ).

The zone observed by λ during the epoch σ , namely Z(F,λ ,σ), is the set of acceptation scenarios relatively
to F described as follows. An acceptation scenario relatively to F belongs to Z(F,λ ,σ) if and only if it ends with
a real acceptation (or decision) event (relatively to F) that does not happen after the end of σ and it contains a
real simple acceptation scenario U = (ρ,S,v, t) (β ,v, t, p) such that there exists an acceptor α in S∩Q0∩Q f at
which the event e0(α) happens before the event e that corresponds to sending a p1b message in U, and the event
e happens before the event e f (α) (cf. Figure 2).

Fig. 2. Scenario (ρ,S,v, t) (β ,v, t, p) in Z(F,λ ,σ) - Time flows downward, straight lines are local executions, curves are
send/receive events, arrows represent messages.

The observed zone models a globally defined time period during which we will prove, under specific assump-
tions, the safety property (cf. Theorem 3).

Lemma 3 (Epoch and Cycle of Labels). Consider an execution E. Let λ be a processor and consider a subex-
ecution Σ such that the local execution σ = Σ(λ ) is an epoch at λ . We denote by F the suffix of the execution E
that starts with Σ . Consider a processor ρ and a finite subexecution G in F as follows: G starts in Σ and induces a
local execution G(ρ) at ρ such that it starts and ends with the first valid entry of the tag vρ being equal to µσ and
containing the label lσ , and the label field in the entry vρ [µσ ] undergoes a cycle of labels during G(ρ). Assume
that, if µσ < λ , the processor µσ does not produce any label during G. Then µσ = λ and the last event of σ

happens before the last event of G(ρ).

Proof. By Lemma 1, since the entry vρ [λ ] remains valid after the readoption of the label l at the end of G(ρ),
the proposer µσ must have produced some label l′ during G (hence µσ = λ ) that was received by ρ during G.
Necessarily, the production of l′ happens after the last event of σ at λ , thus the last event of G(ρ) at ρ also happens
after the last event of σ at λ . ut

Theorem 2 (Safety - Weak Version). Consider an execution E. Let λ be a processor and let Σ be a subexecution
such that the local execution σ = Σ(λ ) at λ is an h-safe epoch. We denote by F the suffix of the execution that



starts with Σ . Consider the two simple scenarios U1 = ρ1
p1a−−→ (S1,v1, t1) ρ1

p2a−−→ (Q1,v1, t1, p1)
p2b−−→ ρ1

dec−−→
(α1,v1, t1, p1) and U2 =(ρ2,S2,v2, t2) (α2,v2, t2, p2) with characteristics (µσ , lσ , t1) and (µσ , lσ , t2) respectively.

We denote by ei the acceptation event (αi,vi, ti, pi). Assume that the events e1 and e2 occur in F and that
h ≤ t1 ≤ t2. In addition, assume that, if µσ < λ , then the processor µσ does not produce any label during F. We
then have two cases: (a) If t1 = t2, then either p1 @ p2, or p2 @ p1, or the last event of σ happens before one of the
event e1 or e2. (b) If t1 < t2, then p1 @ p2 or the last event of σ happens before one of the event e1 or e2.

Proof (Sketch). We assume that both events e1 and e2 do not happen after the last event of σ and we prove the
result. We denote by γ∗ the configuration right before the subexecution Σ . We prove the result by induction on the
value of t2.

(Bootstrapping). We first assume that t2 = t1. Recall the ballot integers include the identifiers of the proposer,
hence ρ1 = ρ2. If p1 6@ p2 and p2 6@ p1, then ρ1 has sent two p2a messages with different proposals and the same
ballot. Let e and f be the events corresponding to these two sendings. None of the events e and f occurs in the
execution prefix A, otherwise, since e1 and e2 occur in F , the configuration γ∗ would contain a ballot (x, t) with
x[µσ ].l = lσ and t ≥ h; this is a contradiction since σ is h-safe. We will refer to this argument as the safe epoch
argument. Hence, e and f occur in F . The fact that p1 6@ p2 and p2 6@ p1 implies that there must be a cycle of labels
in the entry vρ1 [µσ ] between the e and f . By Lemma 3, this implies that the last event of σ happens before the
event e1 or e2; this is a contradiction. We will refer to this argument as the cycle of label argument. Hence, p1 @ p2
or p2 @ p1.

(Induction). Now, t1 < t2 and we assume the result holds for every value t such that t1 ≤ t < t2. Pick some
acceptor β in Q1 ∩ S2. From its point of view, there are two events f1 and f2 at β that respectively correspond to
the acceptation of the proposal (v1, t1, p1) in the scenario U1 (reception of a p2a message), and the adoption of the
ballot (v2, t2) in the scenario U2 (reception of a p1a message).

First, the events f1 and f2 occur in the suffix F (same argument as in bootstrapping). Since t1 < t2, by the
cycle of labels argument, f1 happens before f2. The p1b message the acceptor β has sent contains a non-null lastly
accepted proposal (t, p) such that t1 ≤ t < t2 and p1 @ p. Otherwise, the cycle of labels argument would show
(again) a contradiction.

Now, the proposer ρ2 receives a set of proposals from the acceptors of the quorum S2, including at least one
non-null proposal from β . Then, it selects among the replies, the accepted proposal (tc, pc) with the highest ballot
integer, and highest request sequence length (lexicographical order). Since ρ2 has received the proposal (t, p) from
β , we then have h≤ t1 ≤ t ≤ tc < t2 and (t, |p|)≤ (tc, |pc|) (lexicographically).

Let βc be the proposer in S2 which has sent to ρ2 the proposal (tc, pc) in the p1b message. By the safe epoch
argument, there is an event fc in F that corresponds to βc accepting the proposal (tc, pc). Consider the simple
acceptation scenario Vc that ends with fc, and let char(Vc) = (µc, lc, tc) be its characteristic. Since fc is the last
acceptation event before βc replies to ρ2 (with a p1a message), we must have (µc, lc) = (µσ , lσ ); otherwise, the
accepted variable acceptedβc would have been cleared (epoch change at βc), and βc would have not sent the non-
null proposal (tc, pc) to ρ2. Because of the safe epoch argument, Vc cannot be a fake simple acceptation scenario;
thus Vc is a real simple acceptation scenario.

By applying the induction hypothesis to Vc, and since fc cannot happen after the last event of σ (otherwise e2
would also happen after it), we have two cases. The case (A) t1 = tc. Then p1 @ pc or pc @ p1. But, the fact that
(t, |p|) ≤ (tc, |pc|) (lexicographically) and p1 @ p implies that |pc| ≥ |p| ≥ |p1|, and thus p1 @ pc. The case (B)
t1 < tc. But then p1 @ pc.

In all cases, we have p1 @ pc. But, we also have pc @ p2 (scenario U2), hence p1 @ p2. ut

Corollary 1. Consider an execution E. Let λ be a processor and let Σ be a subexecution such that the local
execution σ = Σ(λ ) at λ is an h-safe epoch. We denote by F the suffix of the execution that starts with Σ .

Consider two decision events ei = (αi,vi, ti, pi), i = 1,2, such that χ(vi) = µσ , vi[µσ ].l = lσ and ti ≥ h. Assume
that both events e1 and e2 are real decision events relatively to F. In addition, assume that, if µσ < λ , then the
processor µσ does not produce any label during F. Then either p1 @ p2, p2 @ p1 or the last event of σ happens
before one of the event e1 or e2.

Theorem 3 (Safety). Consider an execution E, a proposer λ proposer and a subexecution Σ such that the local
execution σ = Σ(λ ) at λ is a h-safe epoch for some bounded integer h. We denote by F the suffix of execution
that starts with Σ . Assume that the observed zone Z(F,λ ,σ) is defined and that, if µσ < λ , then the processor µσ



does not produce any label during F. Consider two scenarios U1 and U2 in Z(F,λ ,σ) ending with acceptation
events e1 = (α1,v1, t1, p1) and e2 = (α2,v2, t2, p2). Let µi = χ(vi) and li = vi[µi], i = 1,2, and assume that µσ ≤
min(µ1,µ2) and t1, t2 ≥ h. Then (µ1, l1) = (µ2, l2) = (µσ , lσ ), and p1 @ p2 or p2 @ p1.

Proof (Sketch). The definition of the observed zone imply that (µ1, l1) = (µ2, l2) = (µσ , lσ ) because the corre-
sponding scenarios has been “seen” by λ during its epoch. Then the previous corollary applies. ut

In the case µσ < λ , assuming that µσ does not produce any label during F means that the proposer λ should
be the live processor with the lowest identifier. To deal with this issue, one can use a failure detector.

6 Self-Stabilizing Failure Detector

Liveness in Paxos is not guaranteed unless there is a unique proposer. The original Paxos algorithm assumes that the
choice of a distinguished proposer is done through an external module. In the sequel, we present an implementation
of a self-stabilizing failure detector that works under a partial synchronism assumption. Note that this assumption
is strong enough to implement an eventual perfect failure detector, but such a failure detector is not mandatory for
our tag system to stabilize. This brief section simply explains how a self-stabilizing implementation can be done;
which is, although not difficult, not obvious either. Each processor α has a vector Lα indexed by the processor
identifiers; each entry Lα [µ] is an integer whose value is comprised between 0 and some predefined maximum
constant W . Every processor α keeps broadcasting a hearbeat message 〈hb,α〉 containing its identifier (e.g., by
using [6,7]). When the processor α receives a heartbeat from processor β , it sets the entry Lα [β ] to zero, and
increments the value of every entry Lα [ρ], ρ 6= β that has value less than W . The detector output at processor α is
the list Fα of every identifier µ such that Lα [µ] = W . In other words, the processor α assesses that the processor β

has crashed if and only if Lα [β ] = W .
(Interleaving of Heartbeats). For any two live processors α and β , between two receptions of heartbeat 〈hb,β 〉

at processor α , there are strictly less than W receptions of heartbeats from other processors. Under this condition,
for every processor α , if the processor β is alive, then eventually the identifier β does not belong to the list Fα . A
distinguished proposer ρ can be defined as follows: ρ = min(µ; Lρ [µ] < W ).
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