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Abstract
Coherent x-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions

within a crystal to be imaged at nanometer-scale spatial resolutions in three dimensions (3D). While this

capability can be used to resolve structure-property relationships at the nanoscale under working conditions,

strict data measurement requirements can limit the application of current approaches. Here, we introduce

an efficient method of imaging 3D nanoscale lattice behavior and strain fields in crystalline materials with

a new methodology: 3D Bragg projection ptychography (3DBPP). This method enables 3D image recon-

struction of a crystal volume from a series of two dimensional x-ray Bragg coherent intensity diffraction

patterns measured at a single incident beam angle. Structural information about the sample is encoded

along two reciprocal space directions normal to the Bragg diffracted exit beam, and along the third dimen-

sion in real space by the scanning beam. We present our approach with an analytical derivation, a numerical

demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic

prototype device.
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INTRODUCTION

Hard x-ray coherent diffraction microscopy methods based on inversion of Bragg diffraction

intensities enable the sensitivity of x-rays to crystalline distortions in materials to be leveraged in

order to reveal the interplay between structure and properties without disturbing environmental

boundary conditions [1–5]. Such inversion-based approaches require that coherent diffraction pat-

terns be numerically inverted into real space by determining the phase of the diffracted field, which

is not measured experimentally. As was noted by Sayre [6] and experimentally demonstrated by

Miao et al. [7], the phase and amplitude of x-ray scattering can be determined from redundant

information contained in an oversampled diffraction intensity pattern. The resulting images con-

tain quantitative information that encodes local physical parameters such as density and atomic

displacement at sub-beam-size spatial resolutions. This principle has inspired the development of

phase-retrieval-based coherent x-ray diffraction imaging approaches in recent decades that rely on

iterative numerical methods to determine the sample structure [8].

The development of ptychography [9, 10] as a technique to determine the phase of scattering

from an extended object has greatly expanded the range of samples that can be studied using

coherent x-ray diffraction imaging. In ptychography, the structural information about the sample

is encoded by measuring a series of diffraction patterns at a set of overlapping beam positions

[11, 12]. The information obtained from the hundreds of overlapping diffraction patterns measured

in a typical ptychography experiment greatly overdetermines the structure of the sample and leads

to very robust reconstructions used to image a wide variety of samples [13, 14]. Moreover, the

information redundancy is so large that additional parameters can simultaneously be retrieved,

e.g., the initial probe and positions [15], mode structure [16], multiple sample planes [17]. Thus,

identifying new ways of leveraging the overdetermined nature of a ptychographic measurement

can enable additional, unexpected components of a scattering system to be determined.

In this article, we exploit the information content of a set of 2D coherent diffraction patterns

measured at a crystalline Bragg peak in order to reconstruct a 3D strain-sensitive image of an

extended sample using a new technique, 3D Bragg Projection Ptychography (3DBPP). 3DBPP is

a hybrid real / reciprocal space technique that uses the raster motion of a focused x-ray beam in

combination with 2D Bragg diffraction intensity patterns measured at each position, eliminating

the need to change the sample angle. The central concept underpinning our approach is shown

in Figure 1. The projected structural profile within a column defined by the shape of the incident

2



x-ray beam can be determined from a Bragg diffraction intensity pattern, presuming the phases are

known, via a Fourier transformation. At a given Bragg angle, translating the beam in two dimen-

sions (into/out of the page and towards/away from the detector) results in diffraction patterns that

yield structure profiles within different columns of the 3D crystal. With a set of structural profiles

from overlapping beam positions, the known translational relationship of those profiles can be

used to reconstruct the 3D morphology and strain of the crystal. In other words, each 2D diffrac-

tion pattern contains information regarding a projection of the 3D sample structure illuminated by

the beam. When two or more projections are considered from beam positions that overlap, the 3D

sample structure that is simultaneously consistent with the observed diffraction is constrained. To

first order, as the beam size decreases and (to a certain extent) overlap increases, the reconstructed

3D structure is increasingly constrained and necessarily approaches the true structure. This 3D

reconstruction concept is unique in that two dimensions of the problem are encoded in reciprocal

space by the diffraction in the detector, and the third dimension is encoded in real space by the

displacement of the beam towards the detector. In this way, our approach exploits the high angle

of separation between the incident and diffracted wave vectors, as has been demonstrated in other

work for 3D imaging from a single view [18, 19].

In 3DBPP, the localized columnar illumination of the beam intersecting the sample at a given

position in the Bragg geometry connects the real and reciprocal space information. In practice,

the phases of each diffraction pattern must also be determined. In this work, we show that this is

possible, by exploiting the large information redundancy contained in a Bragg ptychography data

set. As such, 3DBPP introduces a new avenue by which to unlock the information contained in

a set of far-field coherent x-ray diffraction patterns that will enable materials phenomena to be

visualized in 3D in working environments with simplified experimental requirements.

BACKGROUND

3DBPP features concepts utilized in other reconstruction-based microscopy methods, specifi-

cally, from Bragg coherent diffraction imaging, ptychography, and tomography. Bragg coherent

diffraction imaging is based on the measurement of the far-field intensity distribution in the vicinity

of a Bragg peak via the Bragg rocking curve (changing the sample angle relative to the incoming

beam and combining successive 2D slices into a 3D Bragg intensity pattern) [20]. A 3D image of a

diffracting crystal can then be numerically retrieved from the measured intensity distribution using
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FIG. 1. Encoding 3D structure at a single Bragg angle. The sample shown here is a film with a thickness
of 65 nm, corresponding to the thickness of the SiGe filmed measured in the experimental demonstration
(Figures 3-5). For simplicity, the geometry shown depicts the 2D scattering plane and is used as the basis
of the analytical derivation. Here, the area detector contains the r

x

, r

y

direction vectors, and measures
reciprocal space coherent diffraction intensity patterns I

j

(q
x

, q

y

) at each beam position (j = 0, 1, 2, ...).
The r

z

direction corresponds to the exit beam direction of the Bragg condition. The focused x-ray beam
scan consists of displacing the beam normal to its propagation direction. The essence of 3DBPP is that
structural information about the sample along r

x

, r

y

is encoded in the coherent diffraction patterns measured
with the area detector (I

j

(q
x

, q

y

)), and the structure along r

z

is probed directly by the scanning the beam
with component of displacement along that direction. The r reference frame sets the orientation of the
voxels of the 3D reconstruction and of the resolution element. As shown, the edges of the voxels and the
resolution elements do not line up with surface of the film. Thus, for convenience, we introduce a second
reference frame (x, y, z) that is used to in our discussion of the structural features of the thin film. In the
experimental demonstration, this reference frame corresponds to low-index crystallographic directions in
the SiGe crystal: x||[110], y||[�110], and z||[001].

iterative algorithms with a constraint based on the rough dimensions of the sample [21]. Similar

imaging capabilities can be realized for extended crystals (e.g. thin films) via ptychography ap-

plied to Bragg coherent diffraction patterns [14, 22–27]. However, for 3D Bragg ptychography,

the requirement of full rocking curve measurements at each overlapping beam position results in

long measurement times and uncertainties with regard to registration. 3DBPP avoids measuring

the full angular rocking curve of the Bragg peak by exploiting the fact that a 2D far-field Bragg

diffraction pattern is related to the Fourier transform of a 2D projection of the illuminated sample

volume [28]. This relationship enables 3D imaging from 2D diffraction patterns by incorporating

projection and back-projection operations utilized in computed tomography [29, Sec. 6.3.3] [30,
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Sec. 6.2] into an iterative x-ray phase retrieval strategy. Thus, we relate a set of 2D high-angle

Bragg coherent diffraction patterns measured at a fixed angle to a 3D real-space sample structure.

PRINCIPLES OF 3D BRAGG PROJECTION PTYCHOGRAPHY

Due to the geometry of a crystalline Bragg condition, the angular diversity central to other 3D

imaging modalities can be replaced by translational diversity of a localized beam. At a Bragg

condition, the incident and scattered wavevectors are not collinear but, in the hard x-ray regime,

are typically separated by tens of degrees. As a result, the spatial information that is collapsed

along the exit beam direction in any individual 2D projection can be encoded in the data set by

translating a localized x-ray beam in overlapping steps in the plane normal to ki, the propagation

direction of the incident beam (Figure 2(a, b)).

In 3DBPP, the inversion procedure is based on the description of the beam/crystal interaction in

the Bragg geometry. At a given beam position, the intensity pattern recorded by the x-ray camera

in the far field is the squared amplitude of the diffracted wave field  
j

:

hI
j

i = | 
j

|2, (1)

where I

j

is the intensity pattern corresponding to the j-th beam position. The intensity pattern

recorded in the detector is subject to counting statistics, and so Equation 1 defines an expectation

value hI
j

i. We adopt the convention [31] that in a coherent Bragg diffraction imaging experiment,

the origin of reciprocal space (q

x

= 0, q

y

= 0, q

z

= 0) corresponds to a Bragg condition denoted

by the reciprocal space vector GHKL for a given HKL-index Bragg reflection. At a Bragg condi-

tion, the diffracted wave 
j

is related to the 3D diffracting crystal ⇢ and the beam P

j

(also referred

to as the probe) according to [28, 32]:

 

j

= FRP

j

⇢, (2)

where F is the (bidimensional) Fourier transform, R is the (3D) x-ray projection operator along

the exit beam direction [30, Sec. II.2]. In this Equation, P
j

and ⇢ are complex-valued three

dimensional quantities. The phase and amplitude of ⇢ are related to the Bragg structure factor

[27], which is sensitive to atomic-scale structure in the material. Reconstructing ⇢ thereby enables

local distortions of the crystal lattice to be imaged and quantified.
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FIG. 2. The principles of 3DBPP: a) A 3D strain free crystal was generated (⇢) containing two internal
voids, and a 3DBPP experimental geometry was simulated (b) using a focussed gaussian beam profile at a
high angle Bragg condition defined by the ki and kf incident and exit beam vectors. We define real space
axes (r

x

, r

y

, r

z

) such that kf || r
z

and (r
x

, r

y

) lie in the detector plane, conjugate to (q
x

, q

y

) in the far
field. In order to calculate diffraction patterns, projections along kf of the illuminated crystal (RP

j

⇢) in the
(r

x

, r

y

) plane are determined (c) at beam positions that intersect the two voids in ⇢. The far-field diffraction
amplitudes | 

j

| determined by Fourier transforming the projections are shown in d). The inverse process is
shown in e) where, starting from the far-field diffraction  

j

, the inverse Fourier transform again yields the
2D projections of the illuminated crystal. The operator critical to 3DBPP is the backprojection (R†) of the
quantity F�1 

j

along the kf direction. The backprojection “stretches” the 2D projections along kf within
a 3D support. In this case, the support is made of a pair of planes that limit the extent of the reconstruction in
the z direction. Here, the backprojection intersects the probe at an oblique angle, effectively localizing the
scattering volume. With 3DBPP, ⇢ was reconstructed (f,g) using these operators from a set of 2D coherent
Bragg diffraction intensity patterns (See Methods for details).
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For 3DBPP phase retrieval, a ptychographic inversion algorithm is used to reconstruct ⇢ from a

set of J intensity patterns {I
j

}J�1
j=0 . The numerical approaches that have successfully been used in

transmission geometry ptychography experiments (i.e., difference MAP [12, 33], ordered-subset

(OS) / Ptychographic Iterative Engine algorithm (PIE) [11, 34, 35] or gradient-type iterations [35–

37]) can be adapted to accommodate 3DBPP by incorporating a new gradient based on the cost

function Q(⇢):

Q(⇢) =

J�1X

j=0

Q
j

(⇢) with Q
j

(⇢) := || | 
j

(⇢)|�
p
I

j

||2. (3)

In 3DBPP, this cost function yields the following gradient @
j

for each probe position:

@

j

= P

⇤
j

R†F�1

✓
 

j

�
p
I

j

 

j

| 
j

|

◆
, j = 0 · · · J � 1, (4)

where ’⇤’ is the conjugate operator and R† is the adjoint (i.e. backprojection) operator [30, Eq.

2.31] associated with the forward-projection operator R. In this work, we incorporated the gra-

dient (Equation 4) into an iterative OS/PIE algorithm [38] that progressively lowered the cost

function Q and reconstructed an image of the diffracting crystal ⇢ (see Methods).

Thus, a successful 3DBPP reconstruction must retrieve the three-dimensional spatial compo-

nents encoded in a measured set of Bragg diffraction patterns. Conceptually, the 3D reconstruction

is enabled by two factors. First, each individual intensity pattern, when phased, gives access to

the projected scattering volume for each beam position (the quantity F�1
 

j

in Figure 2). Sec-

ond, the backprojection of this quantity is localized to a specific volume of the crystal because

the relative probe positions are known and the angle between the incident and exit angle of the

Bragg condition is non-zero. 3DBPP extracts this 3D information by utilizing overlapping probe

positions in order to recover the relative phases of the diffraction patterns and a 3D reconstruction

of ⇢. The thin film reconstructions featured in this work were further constrained with a support

that confined the extent of the object along the surface-normal direction (as shown in Figure 2).

For other samples, different position-referencing constraints may be implemented that serve the

same function. We also note that probe reconstruction has not been implemented in this study due

to the fact that as stated in Refs [23, 25], retrieving both a 3D probe and 3D crystal in a Bragg

ptychography experiment has been seen to adversely affect the reconstruction quality due to the

lack of constraints along the propagation direction. In this work, the wavefunction of the probe at
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the sample is known or determined a-priori and is not further refined during image reconstruction.

A numerical demonstration of 3DBPP is featured in Figure 2. We define a 3D thin-film object

of uniform density, and introduce two cubic voids in the center of the film. A numerical set of 2D

coherent diffraction patterns was generated using Equation 2 by scanning a purely real gaussian

beam through the central region of the film in overlapping steps (probe profile shown in Sup.

Figure S5). Using 3DBPP implemented with an OS/PIE inversion algorithm, the 3D internal

structure of the film in the scanned field of view was successfully reconstructed from this set of

2D patterns (Figure 2(f, g)). (See Methods for more details on this numerical test, and Sup. Figure

S12 for additional images of the reconstruction.)

We also emphasize that, as opposed to previous 3D Bragg ptychography approaches [23–25],

this 3DBPP method is not one of pure Fourier synthesis in which the properties of the 3D recon-

struction depend strictly on the measurement and sampling of a 3D volume of reciprocal space.

3DBPP is also distinct from multi-slice reconstruction methods [17], as it does not rely on higher

order interactions between the beam and the sample. The following derivation highlights the

means in which 3D spatial information is encoded in a scanning probe Bragg ptychography mea-

surement at a single sample angle.

For the sake of simplicity, we assume that the scanning probe moves in the direction of the exit

beam (kf ), with a regular step-size � (Figure 1 and Supplemental Figure S1). In this case, the

complex-valued diffracted field  
j

(q

x

, q

y

) at the j-th probe position illuminating a 3D sample can

be expressed as:

 

j

(q

x

, q

y

) =

ZZ

r

x

,r

y

g(r

x

, r

y

, r

z

= j�)e

�i(r
x

q

x

+r

y

q

y

)dr
x

dr
y

⇥ 1

(2⇡)

2
(5)

where

g(r

x

, r

y

, r

z

) := (⇢⌦
r

z

P

0
)(r

x

, r

y

, r

z

).

In this expression, ⌦
r

z

is a 1D convolution operator that acts solely along the backprojection

direction r

z

, and the probe is written as P 0
(r

x

, r

y

, r

z

) := P (r

x

, r

y

,�r

z

). This expression (5) shows

that, as expected for an area detector measurement,  
j

depends on two orthogonal reciprocal

space directions q

x

and q

y

that encode structure along r

x

and r

y

. However, Equation (5) also

clearly demonstrates that a series of Bragg diffraction patterns measured with a scanning beam

also encodes sample structure along r

z

— the direction to which any single diffraction pattern is

insensitive. The unique capability of 3DBPP stems from its ability to exploit the dependence of
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j

on the sample structure along r

z

without requiring angular diversity.

Under appropriate conditions, our OS/PIE 3DBPP approach can in principle reach sub-beam-

size resolution along r

x

, r

y

, r

z

because the 3DBPP inversion algorithm inherently deconvolves the

object from the probe along the direction of backprojection. This deconvolution comes about

because diffracted intensities (| 
j

|2) are measured, and a non-linear iterative phase retrieval algo-

rithm must be invoked that relates | 
j

|2 directly to the sample estimate ⇢ (as opposed to g). This

approach provides a momentum-transfer-limited resolution limit in r

x

, r

y

(as is typical in 2D pty-

chography), and it “builds-in” a degree of probe deconvolution along the backprojection direction

r

z

. While sub-beam resolution is in principle obtainable, the extent to which the deconvolution in

r

z

is realized depends on spatial sampling and the signal to noise ratio of the data.

In the absence of noise, three conditions must be satisfied in order to enable a reconstruction

with sub-beam-size resolution in three dimensions: 1) the sampling in the area detector is at least

twice the Nyquist rate (as in typical coherent diffraction methods), 2) the spatial sampling rate

� (the probe scan step size) along r

z

fulfills twice the Shannon-Nyquist condition with respect

to the spectral bandwidth of the probe in that direction, and 3) the probe spectrum is non-zero

over a wide range of spatial frequencies (e.g., spectral tails that damp but do to extinguish high

frequency terms). When noisy intensity patterns are considered, the maximum extent in q-space

to which photons are detected from the central Bragg peak position limits the resolution along the

r

x

and r

y

directions. The resolution along the third direction, r
z

, depends on the ability to observe

differences between intensity patterns from two overlapping probe positions displaced by a small

�. Typically, these differences manifest themselves in the weakly scattering high-q regions of the

diffraction patterns. Thus, the resolution along r

z

also depends on the SNR of the measurement.

With simulated data, we demonstrated sub-beam-size resolution along r

z

with noise-free and noisy

data (Figure 2, Sup Figure S2). However, under actual experimental conditions, we expect modest

gains in r

z

resolution beyond the probe size, as shown in our results in the next section. In addition,

we expect the uniqueness of the 3DBPP reconstruction to be similar to other CDI experiments that

are appropriately oversampled [39]. We also note that the nature of 3DBPP is such that there are

no fundamental restrictions on the morphology or shape of the sample so long as the kinematic

scattering approximation holds.
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FIG. 3. Experimental geometry. (a) A schematic of the device architecture is shown featuring the embed-
ded SiGe stressor geometry. For 3DBPP, coherent diffraction patterns were measured at the specular 004
SiGe Bragg peak at a set of beam positions that effectively overlapped in a series of spiral patterns. The
diffraction patterns from all 707 positions were phased simultaneously with 3DBPP. (b,c) Prior to diffracting
from the eSiGe, the beam wavefront was reconstructed using Fresnel ptychography of a test pattern in the
transmission geometry. (d-e) Examples of 004 coherent Bragg intensity patterns used for 3DBPP imaging
are shown from different regions of the stressor indicated in (a). Patterns (d-e) correspond to the positions
indicated with blue dots in (a) from left to right. See Methods and Ref [40] for more details.

EXPERIMENTAL DEMONSTRATION

To demonstrate 3DBPP, we imaged the internal lattice displacement field within a sub-micron-

scale crystalline component of a semiconductor prototype device (Figure 3). The device struc-

ture consisted of periodic embedded SiGe (eSiGe) crystals 460 nm in width that were epitaxially

grown to a thickness of 65 nm interstitially between 60-nm-wide linear silicon-on-insulator (SOI)

channels (shown in Figure 3(a)). This sample design and processing (see Methods) resulted in a

complex internal stress state and an accompanying strain field that evolves within the eSiGe stres-

sors in the x (in-plane) and z (out-of-plane) directions, and is self-similar along the other in-plane

direction, y [40]. In particular, the variation of the eSiGe strain field as a function of depth – vari-

ations to which 2D BPP is insensitive [40] – has a direct impact on the electron mobility within

the SOI channels in this system and is a critical parameter for nanoscale device engineering.
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Coherent nanodiffraction patterns were measured from several adjacent eSiGe stressor crystals

with a zone-plate-focused hard x-ray beam at a symmetric 004 Bragg condition in which the angle

between ki and kf was about 60� (see Methods and Figure 3). We note here that the experimental

data collection methodology of 3DBPP is exactly the same as that of previously reported 2D

BPP experiments [14, 26, 27, 40]. However, using our new imaging concept, 3D images can

now be reconstructed from data that previously yielded 2D projection images [41]. Using these

Bragg diffraction patterns, a 3DBPP reconstruction was generated using an iterative algorithm that

incorporated the gradient in Equation 4 into an ordered subset / PIE framework [34, 35]. Because

the coherent diffraction observed in the vicinity of the eSiGe 004 Bragg condition (denoted by

the reciprocal space vector G004) was well separated from scattering from the other components

of the device (i.e. SOI and substrate), the reconstruction represents only the stressor structures.

To aid in the determination of the relative phase relationship of the intensity patterns, a 90-nm-

thick support that confined the extent of the reconstruction along z was incorporated into the

reconstruction. This support constrained the intersection of each backprojection and respective

probe function to within a physically realistic pair of parallel planes surrounding the 65-nm-thick

film (see Methods). To describe the reconstruction, we adopted a coordinate system (x, y, z) such

that the top surface of the stressor lies in the x, y plane, and z is the out-of-plane direction. This

convention is distinct from the coordinate system of the reconstruction voxels (r
x

, r

y

, r

z

) that are

defined by the orientation of the area detector, as noted in the previous sections.

As expected for strained crystals, the resulting reconstructed 3D sample ⇢ is a complex-valued

function, ⇢ = |⇢| exp i�. The amplitude |⇢| is directly related to the electron density of the crystal

and the phase � is sensitive to a component of the displacement field in the crystal given by

� = G004 · u, where u is the crystalline displacement field relative to an arbitrary crystalline

reference [20].

The external shape of the reconstructed amplitude is shown in Figure 4b as an iso-surface cor-

responding to 27% of the maximum amplitude value. The reconstructed shape shows the eSiGe

features expected of this prototype device, including the two missing strips in amplitude corre-

sponding to the positions of SOI channels. The internal structure of the reconstructed stressors is

shown in Figure 4(c,d). The vertical cuts through the reconstruction show that the amplitude is

mostly homogeneous with well defined in-plane edges where the eSiGe meets the SOI. For this

stressor, the displacement of the crystal lattice along the [001] direction, u001, was derived from

the phase of the 3DBPP reconstruction and is shown in Figure 4(d). As expected for this device

11



b)   3DBPP reconstruction

250 30050 100 150 200
100.1

100.3

100.5

Iteration number

100.7
a)

3
D

B
P

P
 c

o
s
t 
fu

n
c
ti
o

n

eSiGe stressors

SOI Channel Locations

Scan points

x [110]

y [-110]

z [001]

(a.u.)0 1

(Å)0 -1

cut-plane A
cut-plane B

3DBPP Amplitude

[001] lattice displacement

SOI Channel Locations

60 nm

c)

d)

central stressor

Amplitude

isosurface

100 nm

cut-plane A

r
y

r
z

r
x

FIG. 4. 3D Bragg projection ptychography experimental results Coherent diffraction patterns measured
at the 004 SiGe Bragg peak were phased using 300 iterations of the OS/PIE algorithm adapted for 3DBPP.
(a) The cost function, Q(⇢), is shown as a function of iteration number. (b) The isosurface of the amplitude
of the resulting reconstruction, showing gaps at the positions of the SOI channels. The internal structure
of the SiGe material in the field of view is revealed by way of cuts through the isosurface depicting the
amplitude of the reconstruction, which is closely related to the material density (c), as well as the crystal
lattice displacement along the [001] direction (d) which is derived from the phase of the reconstruction.

architecture, u001 varies in the (x, z) plane. The key capability of 3DBPP is demonstrated by the

fact that out-of-plane lattice distortions in this cross-section that require a 3D reconstruction were

resolved with a fixed-angle scanning probe diffraction measurement.

A crucial issue in this study is the quantification of the resolution obtained in the reconstruc-

tion, as this will dictate the utility of 3DBPP in the measurement of lattice distortions in different

nanoscale crystalline systems. We used the Fourier shell correlation (FSC) method as detailed in

Refs [42, 43]. FSC is based on a spectral comparison of two independent reconstructions of ⇢
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generated, in this case, by splitting the 3DBPP data into half-data sets that were phased seperately

(see Methods). Because FSC uses two half-data sets, the resolution estimates tend to be conser-

vative. Using FSC, the spatial resolution along r

x

, r

y

, r

z

were estimated to be 12, 29, and 35 nm

respectively. In this experimental reconstruction, we achieved modest gains in spatial resolution

beyond the probe size in the r

z

direction (FWHM
probe

= 46 nm). With a higher signal-to-noise

ratio and better knowledge of probe positions, we expect further gains (see Supplemental).

The structural fidelity of the method was evaluated by comparing a cross-section of the recon-

struction with a linear elastic boundary element method (BEM) model of the eSiGe stressor under

the nominal mechanical boundary conditions of the device [44]. Figure 5 (a-c) shows the ampli-

tude, phase, and displacement field maps from an (x, z) cross-section of the central reconstructed

stressor (cut-plane A in Figure 4) alongside those of the corresponding BEM model. In Figure 5

(b,e), the phase of ⇢ is shown as a color map superimposed on the amplitude distributions shown

in (a,d). The BEM model shows that the out-of-plane component of the displacement field u001

evolves within the (x, z) plane, increasing at the top corners to a value of approximately �2.5 Å

relative to the center (Figure 5 (f)) and an out-of-plane strain value, ✏
zz

, of �0.0015 relative to the

center. This variation in u001 is the result of an elastic response of the SiGe lattice due to a change

from a near-biaxially stressed state at the center of the stressor to a more uniaxially stressed state

at the eSiGe / SOI interface. This BEM model was used to generate model diffraction patterns at a

series of positions in the stressor corresponding to experimental observations (Figure 3(d,e)). This

comparison is an alternative means by which to verify the sensitivity of Bragg coherent diffraction

to both morphology and strain in a crystal. In addition, the uncertainty in the reconstructed dis-

placement field under these experimental conditions can be estimated by considering the standard

deviation of displacement within a 115 ⇥ 17 ⇥ 24 nm3 volume consisting of 240 voxels in the

center of the reconstruction where the displacement field varies slowly. In this region we find an

uncertainty (one standard deviation) of �u001 = 0.02 Å, and an uncertainty in out-of-plane strain

(�d/d) of ��d/d

= 0.0002.

To evaluate the impact of noise in our reconstruction, the model u001 displacement was con-

verted to a complex crystal density ⇢
BEM

calculated for the 004 Bragg diffraction condition, and a

Fourier filter consistent with our experimental signal level was applied (see Methods) to determine

phase and amplitude distributions (⇢filt
BEM

). The calculated BEM cross-section (⇢
BEM

) is shown

in the left half of Figure 5(d,e), and ⇢filt
BEM

is shown in the right half. As seen in Figure 5(d),

the Fourier filter modified the rectangular cross-section of the amplitude because high-spatial-
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FIG. 5. Comparison with linear elastic model: A cut through the eSiGe stressor reconstruction is shown
as both amplitude (a) and phase (b), with the edges of the 90-nm-thick support planes indicated. The cross
section shown corresponds to cut-plane A in Figure 4(c). In (c), the phases in (b) were converted to units of
lattice displacement along the [001] direction (u001) confined within an envelope representing the nominal
edges of the 65-nm-thick film. For comparison, a boundary element method (BEM) linear elastic model of
u001 in the stressor (f) was converted to the complex density expected for 004 Bragg diffraction, ⇢

BEM

.
The amplitude and phase of ⇢

BEM

and ⇢

filt

BEM

are shown in (a,b) before and after application of a low-
bandpass Fourier filter that replicates the experimental signal level. ⇢

BEM

and ⇢

filt

BEM

are shown on the left
and right halves respectively of (d,e). Panels (g,h) show the experimental and model displacement fields
converted to units of out-of-plane strain ✏

zz

relative to center of the stressor.

frequency components not experimentally observed in our measurement were filtered out [35].

In the center of ⇢filt
BEM

, the amplitude remains homogeneous, but the amplitude envelope falls off

near the top corners where the internal displacement field of the crystal is expected to vary more

rapidly. As a result of this displacement field, the phase evolves by ⇠ 2⇡ in the top corners of the

stressor before the amplitude envelope drops off. These features in ⇢filt
BEM

, which come about from

the predicted internal lattice behavior of the stressor as well as the limited dynamical range in the

measured intensity, are all observed in the experimental 3DBPP reconstruction (Figure 5a,b).

DISCUSSION & CONCLUSION

Our experimental results demonstrate that 3D images of strained crystals can be reconstructed

without angular diversity at resolutions appropriate for nanoscale imaging. However, certain fac-

tors must be considered for a successful experiment. In particular, the effectiveness of localizing
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sample structure along the beam propagation direction (via the P
j

and R† operators) is maximized

when kf is perpendicular to ki (i.e. 2✓ = 90�) and vanishes when kf is parallel to ki (i.e. 2✓ = 0�

or 180�). In addition, because the method involves successive backprojections, the reconstruction

is susceptible to noise amplification that degrades the image at high iteration numbers in a manner

analogous to computed tomography reconstructions with noisy data (see Supplemental).

Efficient three dimensional microscopy of strain fields in targeted regions of nanoscale crystals

under balanced, undisturbed boundary conditions will enable powerful new studies of in-situ mate-

rials behavior. By utilizing an inversion strategy that efficiently uses Bragg diffracted photons from

a simpler experiment, 3DBPP is a significant step in the development of 3D x-ray microscopy, es-

pecially in cases where sample rotation is prohibitive. As compared to Bragg ptychography with

rocking curves, 3D images of crystals can be reconstructed using single-angle diffraction patterns

measurements at a series of points. Furthermore, our approach simplifies the experimental require-

ments such that 3DBPP can be implemented on a wide range of coherent synchrotron x-ray beam-

lines, potentially using a variety of different focusing optics including pinholes and mirrors. In

this capacity, the environmental compatibility and flexible field of view of 3DBPP is complemen-

tary to 3D atomic-resolution electron tomography of extremely small volumes of material [45].

More broadly, the integration of projection and backprojection operations into a phase retrieval

algorithm can potentially be applied to address challenges in transmission geometry computed

tomography, including the alignment of radial projections with incoherent computed tomography

and potentially enabling global 3D inversion of tomographic far-field coherent diffraction patterns.
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METHODS

Numerical 3DBPP demonstration: A numerical sample in the shape of a rectangular cuboid

(Figure 1) was generated that was 40 ⇥ 30 ⇥ 190 pixels in dimension with two cubic voids in

the sample with respective edge lengths of 7 and 17 pixels. The numerical object (denoted as ⇢)

was purely real and had a uniform density outside of the voids. Figure 1(a) shows a cross-section

through the middle of ⇢, showing the two voids in density. The isosurfaces in Figure 1(b,c,f) all

depict the density from one outside edge of the object to the central cross-sectional plane shown in

(a). Though the entire numerical object is not depicted in the isosurfaces, this visualization helps

emphasize and clarify the position and shape of the voids before and after 3DBPP reconstruction.

The object is symmetric about the plane in (a).

The numerical probe used for this example was purely real with a gaussian amplitude profile

with a full width at half max of 4 pixels. To simulate a high-angle Bragg condition similar to

the eSiGe experiment, the incident angle of the probe and the angle of the exit beam (ki and

kf ) were both set to 30� with respect to the top surface of the object. In order to generate a

simulated data set, the position of the probe was scanned through the object in a 5 ⇥ 61 point

grid with a two pixel step size. At each point j, coherent Bragg intensity patterns were calculated

according to hI
j

i = |FRP

j

⇢|2. The resulting noise-free intensity patterns were phased using the

OS/PIE 3DBPP algorithm described in the text to generate a reconstruction. The support used

in the reconstruction (yellow surfaces in Figure 1) consisted of parallel planes separated by 40

pixels, matching the dimension of the original object in the z direction. This support acted only to

constrain the top and bottom surfaces of the object, as in the experimental eSiGe reconstruction.

The final reconstruction in Figure 1(g) was generated after 200 iterations of the 3DBPP algorithm.

The resolution of this reconstruction along kf was found to be 2.6 pixels, demonstrating sub-beam-

size resolution of 3DBPP along the projection direction (see Supplemental).

Sample preparation: The sample was a lithographically prepared prototype device [46], con-

sisting of a series of 460-nm wide trenches etched into a silicon-on-insulator (SOI) wafer. The

trenches were subsequently filled with epitaxial embedded Si0.8Ge0.2 (eSiGe) stressors that were

65 nm thick, as confirmed by transmission electron microscopy. The geometry and mechanical

boundary conditions of these epitaxial device components are such that strain gradients are ex-

pected to build up near the vertical interface between the eSiGe and SOI channel regions. The

device SOI/eSiGE architecture shown in Figure 4(a) repeats for > 100 periods in the x direction,
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and is invariant and self-similar in the y direction for tens of microns.

Data collection: The coherent diffraction measurements were done at the Hard X-ray Nanoprobe

beamline [47–49]. A Fresnel zone plate was used to focus 9 keV energy x-rays with wavelength

� = 0.137 nm to a 46 nm diameter focal spot (FWHM intensity of the central focus peak). Prior to

collecting nanodiffraction patterns from the eSiGe stressors, the complex wavefront of the beam

was determined in the focal plane with transmission-geometry Fresnel ptychography using a test

object [50], (Figure 3(b-c)). Using wavefront propagation, the wave field of the beam about the fo-

cus was calculated in order to determine the 3D probe function in the Bragg geometry. The depth

of focus of this zone plate optic was ⇠ 30 µm, and the focal plane was determined experimentally

within ± 5 µm. Thus, during 3DBPP phase retrieval, we assume that the eSiGe crystal lies in the

focus of the lens and that the uncertainty of the focal plane can be neglected due to the long depth

of focus. Similarly, we assume that changing the position of the beam along the y direction by

< 2 µm does not significantly modify the probe profile at the sample.

For 3DBPP imaging, coherent nanodiffraction patterns were measured with an area detector at

the 004 eSiGe Bragg condition with 10 second exposures. In this symmetric diffraction geometry

the incident and exit wave vectors, ki and kf , were separated by 59.5�. The beam was scanned

normal to ki in a series of spiral-like patterns with an effective step size of ⇠13 nm separating

adjacent points, defining an effective field of view of ⇠ 900 ⇥ 200 nm on the surface of the

device. In total, 707 coherent Bragg diffraction patterns were phased, covering a sample area

shown in Figure 3(a). Examples of coherent Bragg diffraction patterns from this data set measured

at different positions of a single stressor are shown in Figure 3(d-f). Further details can be found

in Ref [40], especially with regard to our implementation of the spiral patterns employed in order

to mitigate beam damage.

Inversion procedure: In this work, we adapted the OS/PIE (Ordered-Subset / Ptychographic

Iterative Engine) algorithm that was originally described in Ref [11] and further investigated in Ref

[35]. Our 3DBPP phase-retrieval iteration is a variation of this algorithm that can be implemented

by modifying the relationship between the probe, the object, and the sample exit wavefield. Thus,

equations 2 and 6 in Ref [11] change from:

 

j

= P

j

⇢, and, ˆ

 

j

= F�1

✓p
I

j

 

j

| 
j

|

◆
, (6)

21



to, respectively:

 

j

= RP

j

⇢, and, ˆ

 

j

= R†F�1
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j

 

j

| 
j

|

◆
. (7)

(Note that variables in the above equations were slightly changed from those in Rodenburg and

Faulkner such that they correspond to the nomenclature of the current manuscript.) As described in

the manuscript, R and R† are projection and backprojection operators. These operators transform

dimensions from 3D to 2D and vice-versa, and they allow a phase retrieval approach originally

designed for 2D imaging (such as the PIE) to be adapted for 3D imaging. In addition, a (real-space)

support constraint consisting of two parallel planes separated by 90 nm was applied to each new

update of ⇢ such that amplitude outside the volume between the planes was set to zero. A pseudo-

code of the OS/PIE 3DBPP phasing algorithm is given in the Supplemental. The reconstruction

from experimental data was obtained with a total of 300 iterations performed by this OS/PIE

3DBPP phasing algorithm, the iteration being started with a 3D estimate ⇢(0) consisting of random

real values. The beam wavefront reconstructed from test pattern data (Figure 3(b)) was used to

generate a 3D incident focused-beam probe P that is invariant apart from spatial shifts (P
j

(r) =

P (r� r
j

) with r
j

the j-th probe position). We note also that this probe estimate P was not further

refined during the OS/PIE 3DBPP phase retrieval. The constant step-size parameter � was set to

0.8 during all the OS/PIE iterations [34], but an additional multiplicative scalar factor of the form

1/max(|P |2) was used to aid in the convergence of the inversion [35].

Estimation of the spatial resolution. In order to estimate the spatial resolution of our experi-

mental 3DBPP reconstruction, we follow a Fourier shell correlation (FSC) approach similar to that

outlined by van Heel and Schatz for cryo-TEM tomography [42] and that has recently been uti-

lized for small-angle ptychography [43]. In this approach, the spectra of two independent images

of the same object are compared. The correlation of the spectra from the two images as a function

of spatial frequency provides a means of estimating image resolution. One variant of FSC used in

cryo-TEM requires that the data set be “split” into independent data sets. Both half-data sets are

independently reconstructed and compared. Here, we split our data set into even and odd-indexed

spiral positions. As shown in Supplemental Figure S6, two half-data sets were created consisting

of alternating beam position indices along the spirals.

In 3DBPP reconstructions, spatial resolution varies directionally. To accommodate this, we

modify the FSC approach to be sensitive to azimuthal direction. This is done by performing FSC

on spatial frequencies filtered by a cylindrical mask that passes through the origin in Fourier space.
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Changing the orientation of the cylindrical mask enables the spatial resolution along different

azimuthal directions to be estimated. (Details of this analysis are given in the Supplemental.)

The results of our direction-sensitive FSC analysis are shown in Sup. Figure S9, applying a

1/2-bit resolution criterion as in [42, 43]. The resolution was estimated along the (r
x

, r

z

), (r
y

, r

z

),

and (r

x

, r

y

) planes through the SiGe reconstruction. The spatial resolution of the reconstruction

was found to depend on direction, and is highest along the surface normal of the film. From this

analysis, we estimate that along the r
x

, r

y

, r

z

directions, the spatial resolution is 12, 29, and 35 nm

respectively.

Fourier filtered BEM model: At an exposure time of 10 seconds, the experimental Bragg

coherent diffraction signal from the eSiGe stressors fell below the noise level of the detector at a

signal level of ⇠0.25% of the maximum observed intensity, below which diffracted signal was not

detected. This effectively removed high-frequency components of the diffracted Bragg peak mea-

surement at each position. Because of the finite measured signal, our experimental reconstruction

can be thought of as a low-bandpass filtered version of the reconstruction that would have been

obtained with noise-free high-dynamic-range data.

In order to compare the results of the linear elastic model with our experimental reconstruction,

a comparable low-bandpass filter was utilized. The BEM model, when converted to ⇢
BEM

for

the 004 Bragg condition (Figure 4(d,e)), contains high spatial frequency features (sharp edges,

rapidly varying phase ramps) that would not all be detected at the signal level corresponding to

our experiment. To represent ⇢
BEM

in a manner that was consistent with the finite experimental

signal, frequency components of the Fourier transform of ⇢
BEM

that fell below 0.25% of the

maximum intensity of the FT were zeroed. The inverse Fourier transform of this quantity yielded

⇢

filt

BEM

, which is an estimate of a 3DBPP reconstruction of the BEM model that is consistent with

the signal-to-noise ratio of our experiment. In thresholding to zero at high spatial frequencies,

Poisson noise effects were neglected. However, thresholding served as a first-order approximation

of the low-bandpass filtering effect of low signal at high q.

Data availability The experimental data that supports the plots within this paper and other

findings of this study are hosted at Argonne National Laboratory and can be accessed by contacting

the corresponding author.

Code availability Matlab routines for implementing 3DBPP image reconstruction from an

example numerical data set are available for download by visiting: http://XXX
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