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GENERALIZED JUNCTION CONDITIONS FOR DEGENERATE
PARABOLIC EQUATIONS

CYRIL IMBERT AND VINH DUC NGUYEN

Abstract. We are interested in the study of parabolic equations on a multi-dimensional
junction (Imbert, Monneau (2014)), i.e. the union of a finite number of copies of a half-
hyperplane of Rd+1 whose boundaries are identified. The common boundary is referred
to as the junction hyperplane. The parabolic equations on the half-hyperplanes are in
non-divergence form, fully non-linear and possibly degenerate, and they do degenerate
along the junction hyperplane, i.e. along the junction hyperplane the nonlinearities do
not depend on second order derivatives. The parabolic equations are supplemented with
a generalized junction condition (or boundary condition of Neumann type), which is com-
patible with the maximum principle. Our main result states that, in the case where
the non-linearities at the junction have convex sublevel sets with respect to the gradi-
ent variable, then these general junction conditions can be classified: they are equivalent
to junction conditions of control type. This classification extends the one obtained by
Imbert and Monneau for Hamilton-Jacobi equations on networks and multi-dimensional
junctions. We give two applications of this classification result. On the one hand, we
give the first complete answer to an open question about these equations: we prove in the
two-domain case that the vanishing viscosity limit associated with quasi-convex Hamilton-
Jacobi equations coincides with the maximal Ishii solution identified by Barles, Briani and
Chasseigne (2012). On the other hand, we give a short and simple PDE proof of a large
deviation results of Boué, Dupuis and Ellis (2000).
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1. Introduction

1.1. Degenerate parabolic equations on junctions. Multi-dimensional junctions are
introduced in [14]:

J =
N⋃
i=1

Ji with

{
Ji = {x = (x′, xi) : x′ ∈ Rd, xi ≥ 0} ' Rd+1

+

Ji ∩ Jj = Γ ' Rd for i 6= j.

Given T ∈ [0,+∞], we consider a general degenerate parabolic equation posed on a junc-
tion, {

ut + Fi(x,Du,D
2u) = 0 (t, x) ∈ (0, T )× J∗i , i = 1, . . . , N,

L(−ut, ∂1u, . . . , ∂Nu, x
′, D′u) = 0 (t, x) ∈ (0, T )× Γ

(1.1)

where J∗i denotes Ji \ Γ, ut denotes the time derivative, Du and D2u respectively denote
the gradient and the Hessian of u with respect to x, and for x ∈ Γ, ∂iu(x) denotes the
derivative of ui(x) = u|Ji(x) with respect to xi (recall x = (x′, xi)) and D′u denotes the
derivative with respect to x′. We make the following assumptions on each Fi.
Assumption (F).

• Fi continuous and degenerate elliptic;
• for all R > 0, there exists Ci,R > 0 such that for all y = (y′, yi), all p ∈ Rd+1, all
B ∈ Sd+1(R) and all λ > 0

{|yi| ≤ 1, |y′| ≤ R, |B| ≤ R} ⇒ Fi(y, p, B + λed+1 ⊗ ed+1) ≥ Fi(y, p, B)− Ci,Rλ|yi|2;

• for all R > 0,
lim
|p|→+∞

inf
(x,B)∈BR

Fi(x, p, B) = +∞;

• there exists Hi : Γ× Rd+1 → R continuous such that
– for all (x, p, B) ∈ Γ× Rd+1 × Sd+1(R), Fi(x, p, B) = Hi(x, p);
– for all x ∈ Γ, for all λ ∈ R, the set {p ∈ Rd+1 : Hi(x, p) ≤ λ} is convex.

In the assumption above, ed+1 denotes the unit vector orthogonal to Γ and pointing
inside Ji.

Example 1.1 (First order case). The first example we give is the one coming from [15, 14].
It reduces to deal with Fi(x, p, B) = Hi(x, p) for any x ∈ Ji (and not only x ∈ Γ) and
p ∈ Rd with Hi continuous, coercive in p uniformly in x, with convex sublevel sets (in p).

Example 1.2 (The model case). Our results apply to the model case where Fi(x, p, B) =
Hi(x, p)−Trace(σi(x)σTi (x)B) with Hi is as in Example 1.1 and where the (d+1)×m real
matrix σi is such that σi ≡ 0 on Γ and the (d + 1)-th line σd+1

i of σi satisfies |σd+1
i (y)| ≤

ci|yd+1|. Remark that this latter condition holds true if σi ≡ 0 on Γ and σi is Lipschitz
continuous.

We recall that Fi(x, p, A) is degenerate elliptic if it is non-increasing with respect to A
(where the set of symmetric matrices Sd+1(R) is equipped with the usual partial order).
The function Hi appearing in (F) is referred to as the Hamiltonian from the branch Ji. As
far as the junction function L is concerned, we assume
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Assumption (L).

• the function L is continuous;
• L(p0, . . . , pN , x

′, p′) is non-increasing in pi for i = 0, . . . , N ;
• ∃i0 : {∀i, pi ≤ qi and pi0 6= qi0} ⇒ L(p0, . . . , pN , x

′, p′) > L(q0, . . . , qN , x
′, p′)

• inf
x′,p′

L(p0, . . . , pN , x
′, p′)→ +∞ as min

i=0,...,N
pi → −∞;

• sup
x′,p′

L(p0, . . . , pN , x
′, p′)→ −∞ as max

i=0,...,N
pi → +∞.

Example 1.3 (Kirchoff conditions). A model for L is

L(p0, . . . , pN) = −
N∑
i=1

−βipi

with β = (β1, . . . , βN) ∈ RN \ {0}. Such a condition is called a Kirchoff condition.

Example 1.4 (Flux-limited junction conditions). An second important example of junc-
tion functions L is the one related to flux-limited solutions [15, 14]. Given a flux-limiter
A,

(A)

{
A : Γ× Rd → R continuous

for all x′ ∈ Rd, λ ∈ R, {p′ ∈ Rd : A(x′, p′) ≤ λ} convex

we consider the associated junction condition LA defined by

(1.2) LA(p0, . . . , pN , x
′, p′) = −p0 + max(A(x′, p′),max

i
h−i (x′, p′, pi))

where h−i (x, p′, pi) denotes the non-increasing part of pi 7→ hi(x
′, p′, pi) := Hi((x

′, 0), (p′, pi))
[14]: if pi 7→ hi(x

′, p′, pi) reaches its minimum at π0
i (x
′, p′), which is the minimal minimizer,

then

h−i (x′, p′, pi) =

{
hi(x

′, p′, pi) if pi ≤ π0
i (x
′, p′)

hi(x
′, p′, π0

i (x
′, p′)) if pi ≥ π0

i (x
′, p′).

The appropriate notion of weak solutions for Hamilton-Jacobi equations is the one intro-
duced by Crandall and Lions [10, 11], namely viscosity solutions. It is explained in [15, 14]
that two notions of viscosity solutions are needed in the study of Hamilton-Jacobi equa-
tions on networks, depending on the type of junction conditions we impose. We will see
that it is also the case for the degenerate parabolic equations we consider in this work. For
general junction functions L in (1.1), the junction condition has to be understood in the
“viscosity sense”: either the junction condition L = 0 or one of the equations ut + Fi = 0
is satisfied. We refer to such (viscosity) solutions as relaxed solutions (see Definition 2.2
below). But for the special junction conditions LA (see (1.2)), relaxed solutions satisfy
the junction condition in a stronger sense (made precise in Definition 2.8 below): such
(viscosity) solutions are referred to as flux-limited solutions.

The main result of this article is about the classification of generalized junction condi-
tions. Roughly speaking, we prove that imposing a general junction condition (in a relaxed



4 CYRIL IMBERT AND VINH DUC NGUYEN

sense, see Definition 2.2) amounts to imposing one of the type LA presented above for some
A only depending on the junction function L (see 4.1 for a formula).

Theorem 1.5 (Classification of generalized junction conditions). Assume (F), (L). Then
there exists a continuous function AL : Γ× Rd → R such that

lim
|p′|→+∞

AL(x′, p′) = +∞

and such that any L-relaxed sub-solution (resp. super-solution) of (1.1) is a AL-flux-limited
sub-solution (resp. super-solution) of (1.1). Moreover, if

{p′ ∈ Rd : L(p0, p1, . . . , pN , x
′, p′) ≤ λ} is convex

for all p0, . . . , pN , λ ∈ R and all x′ ∈ Rd, then

{p′ ∈ Rd : A(x′, p′) ≤ λ} is convex

for all λ ∈ R and x′ ∈ Rd.

Remark 1.6 (The definition of the effective flux limiter). Some notation is needed. Let

A0(x′, p′) = max
i=1,...,N

min
pi∈R

Hi((x
′, 0), (p′, pi)).

Let p0
i ≥ π0

i (x
′, p′) be minimal such that

hi(x
′, p′, pi) := Hi((x

′, 0), (p′, pi)) = A0(x′, p′).

For all (x′, p′), the real number AL(x′, p′) is defined as follows: if

L(A0(x′, p′), p0
1, . . . , p

0
N , x

′, p′) < 0,

then AL(x′, p′) = A0(x′, p′), else AL(x′, p′) is the only real number λ ≥ A0(x′, p′) such that
there exists p+

i ≥ p0
i with

hi(x
′, p′, p+

i ) = λ and L(λ, p+
1 , . . . , p

+
N , x

′, p′) = 0.

This definition is equivalent to (4.1) where π+
i is defined in (1.6) below. We note that even

if λ is unique (thanks to (L)), the p+
i are not (in general). See the example in the center

of Figure 1 in Example 1.8.

Remark 1.7. Such a classification can also be obtained for stationary problems. In this
case, the proof is even easier.

1.2. Comments on the main result. Our main result, Theorem 1.5, deals with the clas-
sification of generalized junction conditions: we show that imposing a generalized junction
condition L (in a relaxed sense) reduces to imposing a junction condition LA of control-type
(in a stronger sense). It extends the results contained in [15, 14] in two directions: first,
we can deal with Kirchoff conditions (see Example 1.3), second we can deal with second
order terms (but degenerating along the junction).

As in [15, 14], the classification is quite a straightforward consequence of the following
important result (Theorem 3.2): in order to check that a function is a flux-limited sub-
and super-solution, it is enough to use a reduced set of test functions ϕ whose normal
derivatives ∂iϕ have specific slopes along Γ. For instance, these slopes equal π+

i (p′, A(p′))
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Figure 1. In the three cases, the plain black curve represents the Hamil-
tonian H and the plain red curve represents the limited-flux function FA
associated with the Neumann condition. Depending on the position of the
graph of H and the line {p = 0}, the effective flux limiter A associated with
the Neumann condition varies. On the left, the line {p = 0} intersects the
graph of H in its increasing part. On the center, the line {p = 0} intersects
the graph of H in the increasing part, but on a flat part. On the right, the
line {p = 0} intersects the graph of H in its decreasing part, which implies
that the flux limiter coincides with A0 = minH.

if the Hamiltonian has no flat parts and does not depend on x′. We recall that, roughly
speaking, π+

i is the inverse function of the non-decreasing part of Hi, see (1.6) below.

Example 1.8 (The Neumann problem in the case (d,N) = (0, 1)). We illustrate our result
on the simplest example: {

ut +H(ux)− x2uxx = 0, x > 0,

ux = 0, x = 0

where H is a quasi-convex function as illustrated in Figure 1.
A first version of this paper contained a comparison principle for (1.1) (under stronger

assumptions on F ). On the one hand, the proof was quite difficult, relying on the vertex
test function introduced in [15, 14], for which C2 regularity was to be proved in the multi-
dimensional setting (following ideas developed in [13]). On the other hand, new and simpler
techniques now emerge to attack this problem, see for instance [4, 12, 20, 21]. In particular,
it is explained in [4] that the equations considered in the present work can be handled in
the two-domain case. For these two reasons, we decided to restrict ourselves to the core of
the work, that is to say the classification result.

1.3. Comments on assumptions. Before presenting the application to the vanishing
viscosity problem we would like now to make a few comments about assumptions (F) and
(L). We recall that our goal is to classify generalized junction conditions for degenerate
parabolic equations. In particular, we want to understand what are the effective junction
conditions that are imposed at the junction. From this point of view, it seems interesting
to consider degenerate parabolic equations which actually degenerate at Γ. This is exactly
the third condition appearing in (F). We also assume that the Hamiltonians have convex
sublevel sets, see the fourth condition in (F). This condition can probably be relaxed but
until the two very recent contributions [21, 12], the non-convex case was out of reach.



6 CYRIL IMBERT AND VINH DUC NGUYEN

As far as the second condition in (F) is concerned, it implies that the Hamiltonians are
coercive. It is used in order to derive the “weak continuity” of subsolutions (see Lemma 2.3
below). The first condition in (F) is used in an essential way when proving that the set
of test functions can be reduced (see the proof of Lemma 3.4 below). Remark that this
condition is (much) weaker than the one which is needed in order to prove uniqueness, see
[9, Condition (3.14)].

1.4. An application: the vanishing viscosity limit. Because we are able to deal with
Kirchoff conditions, we are in position to adress an open problem about Hamilton-Jacobi
equations from “regional control” problem: the identification of the vanishing viscosity
limit.

We study the limit as ε→ 0 of the equation posed in (0,+∞)× Rd+1

(1.3)


vεt + H̃1(x,Dvε) = ε∆vε, xd+1 < 0, t > 0

vεt + H̃2(x,Dvε) = ε∆vε, xd+1 > 0, t > 0

vε(0, x) = v0(x), x ∈ Rd+1

where x = (x′, xd+1) ∈ Rd+1. In the previous equation, we do not need to impose any
condition since the Laplacian is strong enough to ensure the existence of C1 functions
despite the discontinuity of the first order term. In particular, the following condition
holds at xd+1 = 0,

(1.4) ∂xd+1
vε(x′, 0+) = ∂xd+1

vε(x′, 0−).

In this specific singular perturbation problem, the limit is identified by remarking that
(1.4) is a Kirchoff condition and that consequently we can pass to the limit using relaxed
solutions; more precisely, the limit of vε corresponds to a relaxed solution associated with
this specific generalized junction condition. But the classification theorem tells us that
the limit thus corresponds to a flux-limited solution associated with a flux-limiter A that
is explicitly given by a formula (see Remark 1.6). Looking closely at this formula, we
can prove that it corresponds to the maximal Ishii solution of the limit equation recently
identified by Barles, Briani and Chasseigne [2, 3].

Theorem 1.9 (The vanishing viscosity limit selects the maximal Ishii solution). Assume
H̃i continuous

∀x = (x′, 0) ∈ Rd+1,∀λ ∈ R, {p ∈ Rd+1 : H̃i(x, p) ≤ λ} convex

lim
|p|→+∞

inf
x=(x′,0)∈Rd+1

H̃i(x, p) = +∞

and v0 is uniformly continuous. Then any solution vε of (1.3) converges towards the
maximal Ishii solution v of

(1.5)

{
vt + H̃1(x,Dv) = 0, xd+1 < 0, t > 0

vt + H̃2(x,Dv) = 0, xd+1 > 0, t > 0
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subject to the initial condition

v(0, x) = v0(x), x ∈ Rd+1.

Remark 1.10. The function v is associated with the unique A−I -flux-limited solution u of the
previous Hamilton-Jacobi equation for some flux limiterA−I (x′, p′). Precisely, v(t, x′, xd+1) =
u(t, x′, |xd+1|), see Theorem 5.7 in Section 5.

1.5. Review of literature. Semi-linear uniformly parabolic equations on compact net-
works were studied in [25, 28, 18, 22] where uniqueness, existence, strong maximum prin-
ciple among other results were proved to be true.

The first results for Hamilton-Jacobi equations on networks were obtained in [23] for
eikonal equations. Some years later, the results were extended in [24, 1, 16]. Many new
results were obtained since then, see for instance [15, 14] and references therein.

In [2, 3], the authors study regional control, i.e. control with dynamics and costs which
are regular on either side of a hyperplane but with no compatibility or continuity assump-
tion along the hyperplane. They identify the maximal and minimal Ishii solutions as value
functions of two different optimal control problems. They also use the vanishing viscos-
ity limit on a 1D example in order to prove that the two Ishii solutions can be different.
Moreover, the authors ask about the vanishing viscosity limit in the general case.

In [8], the authors study the vanishing viscosity limit associated with Hamilton-Jacobi
equations posed on a junction (the simplest network, see above). The main difference
with our results is that the authors impose some compatibility conditions on Hamiltoni-
ans. In particular, this allows them to construct viscosity solutions which satisfy Kirchoff
conditions in a strong sense. We proceed in a different setting and in a different way: no
compatibility conditions on Hamiltonians are imposed, and Kirchoff conditions are under-
stood in a relaxed sense, which is stable under local uniform convergence (and even relaxed
semi-limits). We then use the general classification theorem 1.5 to prove that imposing
Kirchoff conditions reduce to the study of a flux-limited problem (for which uniqueness
holds true).

In his lectures at Collège de France [19], Lions also treats problems related to Hamilton-
Jacobi equations with discontinuities. After posting a first version of this paper, Lions and
Souganidis [20] wrote a note about a new approach for Hamilton-Jacobi equations posed
on junctions with coercive Hamiltonians that are possibly not convex.

Also after the first post of this work, two articles [12, 21] about classification in the
non-convex cases were written independently. In [12], the author studies the case N = 1
in the 1D setting, which amounts to studying first order Hamilton-Jacobi equations with
nonlinear boundary conditions of Neumann type. In [21], the author can deal with the
multi-dimensional setting and several branches.

To finish with, the link between the theory developed in [2, 3] and flux-limited solutions
from [15, 14] is explored in [4]. In particular, [4] contains alternative proofs in the two-
domain case of the comparison principle from [14] and of the vanishing viscosity limit
obtained in the present work.
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1.6. Organization of the paper. In Section 2, two notions of viscosity solutions are
presented and their properties studied. In Section 3, it is proved that in order to check
that a function is a flux-limited solution, the set of test functions can be reduced. In
Section 4, we prove the main result of this paper, Theorem 1.5. Section 5 is devoted to the
study of the vanishing viscosity limit. The last section is devoted to the proof of a known
result about large deviations using the main result of this work.

1.7. Notation. The Hamiltonian Hi(x, p) is defined for x, p ∈ Rd+1. For x′ ∈ Rd, p′ ∈ Rd,
the function hi(x

′, p′, pi) is defined as

hi(x
′, p′, pi) = Hi((x

′, 0), (p′, pi)).

The minimal minimizer of hi is denoted by π0
i (x
′, p′). The functions h−i and h+

i are defined
as follows

h−i (x′, p′, pi) =

{
hi(x

′, p′, pi) if pi ≤ π0
i (x
′, p′)

hi(x
′, p′, π0

i (x
′, p′)) if pi ≥ π0

i (x
′, p′)

h+
i (x′, p′, pi) =

{
hi(x

′, p′, pi) if pi ≥ π0
i (x
′, p′)

hi(x
′, p′, π0

i (x
′, p′)) if pi ≤ π0

i (x
′, p′).

For λ ≥ minpi∈R hi(x
′, p′, pi), the function π+

i is defined by

(1.6) π+
i (x′, p′, λ) = inf{pi : hi(x

′, p′, pi) = h+
i (p′, pi) = λ}.

The function A0 is defined for x′, p′ ∈ Rd as

A0(x′, p′) = max
i∈{1,...,N}

(
min
pi

hi(x
′, p′, pi)

)
.

The functions p0
i (x
′, p′) are defined as

p0
i (x
′, p′) = π+

i (x′, p′, A0(x′, p′)).

2. Relaxed and flux-limited solutions

2.1. Test functions. In order to define viscosity solutions, the set of test functions has
to be made precise.

Definition 2.1 (Test functions). A function φ : (0, T )× J → R is a test function for (1.1)
if it is continuous in (0, T )× J , φ|(0,T )×Ji is C1,1

t,x and φ|(0,T )×J∗i is C2
x.

We classically say that a function φ touches another function u at a point (t, x) from
below (respectively from above) if u ≤ φ (respectively u ≥ φ) in a neighbourhood of (t, x)
with equality at (t, x).
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2.2. Relaxed solutions.

Definition 2.2 (L-relaxed solutions). A function u : (0, T ) × J → R is an L-relaxed sub-
solution (resp. L-relaxed super-solution) of (1.1) if it is upper semi-continuous (resp. lower
semi-continuous) and for all test function φ touching u from above (resp. from below) at
(t, x) ∈ (0, T )× Ji, we have

φt + Fi(x,Dφ,D
2φ) ≤ 0 at (t, x)

(resp. φt + Fi(x,Dφ,D
2φ) ≥ 0 at (t, x))

if x /∈ Γ, and {
either φt +Hi(x,Dφ) ≤ 0 at (t, x) for some i ∈ {1, . . . , N},
or L(−φt, ∂1φ, . . . , ∂Nφ,D

′φ) ≤ 0 at (t, x)(
resp.

{
either φt +Hi(φx) ≥ 0 at (t, x) for some i ∈ {1, . . . , N},
or L(−φt, ∂1φ, . . . , ∂Nφ,D

′φ) ≥ 0 at (t, x)

)
if x ∈ Γ.

The following observation is important for stability and the reduction of the set of test
functions. The proof contained in [15] can be easily extended to generalized junction
conditions. We give a sketch of proof for the reader’s convenience.

Lemma 2.3 (“Weak continuity” of relaxed subsolutions). Assume (F) and (L). Let u :
(0, T )×J → R be a L-relaxed subsolution of (1.1). Then for all i ∈ {1, . . . , N}, and x ∈ Γ,

u(t, x) = lim sup
(s,y)→(t,x),y∈J∗i

u(s, y).

Proof. Since u is upper semi-continuous, we have

u(t, x) ≥ lim sup
(s,y)→(t,x),y∈J∗i

u(s, y).

In order to prove the reverse inequality, we assume that there exists (t∗, x∗) ∈ (0, T ) × Γ
such that

u(t∗, x∗) > lim sup
(s,y)→(t∗,x∗),y∈J∗i

u(s, y).

Since u is upper continuous, there exists a C1 function Ψ defined in (0, T )×Γ and (t0, x0) ∈
(0, T )× Γ such that

u(t0, x0) > lim sup
(s,y)→(t0,x0),y∈J∗i

u(s, y)

and Ψ strictly touches u from above at (t, x) ∈ Br(t0, x0) ⊂ (0, T ) × Γ. In particular
Ψ− u ≥ δ1 > 0 in a neighbourhood (respectively to (0, T )× J) of ∂Br(t0, x0) ⊂ (0, T )×Γ.
We now consider the test function Φ(t, x) = Ψ(t, x′) + pixi for x ∈ Ji. We now use the
coercivity of the Fi (see (F)) to show that for pi > 0 large enough, Φ touches u from above
at (t0, x0). But this implies that

L(−∂tΦ(t0, x0), p1, . . . , pN , x
′
0, D

′Φ(t0, x0)) ≤ 0
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which contradicts the assumption (L) since the pi are arbitrarily large. The proof is now
complete. �

2.3. Stability and existence. The following results related to stability of relaxed sub-
and super-solutions are expected. We recall that the lower semi-continuous envelope of a
function f is the largest semi-continuous function lying below f . We also recall that for
a family of functions (uε)ε, we can define a upper and lower semi-limit. They were first
introduced by Barles and Perthame [5, 6], see [9] for their definition and their classical use
in the viscosity solution theory.

Proposition 2.4 (Stability of relaxed solutions - I). Assume (F) and (L). If (uα)α is
a family of relaxed sub-solutions (resp. relaxed super-solutions) of (1.1) which is locally
uniformly bounded from above (resp. from below), then the upper semi-continuous (resp.
lower semi-continuous) envelope of supα uα (resp. infα uα) is a relaxed sub-solution (resp.
relaxed super-solution) of (1.1).

Proof. We only treat the sub-solution case since the super-solution one is similar. Let u
denote the upper semi-continuous envelope of supα uα. Consider a test function φ strictly
touching u from above at (t, x). There then exist a sequence (tn, xn)→ (t, x) and αn such
that φ touches uαn from above at (tn, xn). Writing the viscosity inequalities and passing
to the limit yields the desired result. �

Proposition 2.5 (Stability of relaxed solutions - II). Assume (F) and (L). If {un} is a
sequence of relaxed sub-solutions (resp. relaxed super-solutions) of (1.1) which is locally
uniformly bounded from above (resp. from below), then the relaxed upper limit (resp. relaxed
lower limit) of {un} is a relaxed sub-solution (resp. relaxed super-solution) of (1.1).

Proof. We only treat the sub-solution case since the super-solution one is similar. Let u
denote the relaxed upper limit of the sequence {un}. Consider a test function φ strictly
touching u from above at (t, x). There then exist a sequence (tk, xk)→ (t, x) and nk such
that φ touches unk

from above at (tk, xk). Writing the viscosity inequalities and passing to
the limit yields the desired result. �

We now turn to an existence result.

Theorem 2.6 (Existence of discontinuous relaxed solutions). Assume (F) and (L) and
consider u0 uniformly continuous. There exists u such that its upper semi-continuous (resp.
lower semi-continuous) envelope is an relaxed sub-solution (resp. relaxed super-solution)
of (1.1) such that

u(0, x) = u0(x) for x ∈ J.

Remark 2.7. This theorem states the existence of discontinuous solutions in the sense of
Ishii [17].

Proof. In view of the stability results, it is enough to construct a solution for some initial
datum u0 ∈ C1,1(Ji) ∩ Lip(J). For such u0’s, we can construct barriers in the classical
way: u±(t, x) = u0(x)±Ct. For C large enough, u+ is a relaxed supersolution while u− is
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a relaxed subsolution. We then consider W the set of all functions lying below u+ whose
upper semi-continuous envelope is a relaxed subsolution. Then the supremum of w ∈ W is
in W and it is maximal. Let w denote this maximal element. If the lower semi-continuous
envelope is not a relaxed supersolution, there exists a test function φ and a point (t, x)
such that φ touches w∗ from below at (t, x) without satisfying the corresponding viscosity
inequality. This implies φ < (u+)∗ in a neighbourdhood of (t, x) and we can prove that
φ is a relaxed subsolution in the same neighbourhood. Then we can construct a relaxed
subsolution wδ which is not below w, contradicting its maximality. �

2.4. Flux-limited solutions. It is proved in [15] that, in the special case where L = LA
defined in (1.2) and for first order Hamilton-Jacobi equations, relaxed solutions satisfy the
junction condition in a stronger sense, which is made precise in the following definition.
Let A0 be defined by

(2.1) A0(x′, p′) = max
i∈{1,...,N}

(
min
pi

hi(x
′, p′, pi)

)
.

Definition 2.8 (Flux-limited solutions). Given a function A : Γ × Rd → R such that
A ≥ A0, a function u : (0, T )×J → R is a A-flux-limited sub-solution (resp. A-flux-limited
super-solution) of (1.1) if it is upper semi-continuous (resp. lower semi-continuous) and
for any test function φ in the sense of Definition 2.1 touching u from above (resp. from
below) at (t, x) ∈ (0, T )× Ji, we have

φt + Fi(x,Dφ,D
2φ) ≤ 0 at (t, x)

(resp. φt + Fi(x,Dφ,D
2φ) ≥ 0 at (t, x))

if x /∈ Γ, and

LA(−φt, ∂1φ, . . . , ∂Nφ, x
′, D′φ) ≤ 0 at (t, x)(

resp. LA(−φt, ∂1φ, . . . , ∂Nφ, x
′, D′φ) ≥ 0 at (t, x)

)
if x ∈ Γ.

Remark 2.9. If a flux limiter A is replaced with max(A,A0), the corresponding flux function
LA is unchanged.

The following proposition asserts that for the special junction functions LA, LA-relaxed
solutions coincide with A-flux-limited solutions. It was proved in [15, 14] in the case of
first order equations. We point out that the multidimensional proof of [14] applies without
any change to degenerate parabolic equations satisfying (F).

Proposition 2.10 (LA-relaxed solutions are A-flux-limited solutions – [14]). Assume (F)
and (L). Then any LA-relaxed sub-solution (resp. super-solution) of (1.1) is an A-flux-
limited sub-solution (resp. super-solution) of (1.1).
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3. Reduced set of test functions for flux-limited solutions

In this section, we explain why it is sufficient to consider a reduced set of test functions
in order to check that a function is a flux-limited (sub/super)solutions of (1.1). Such a
result is used in an essential way when proving the first main result of the paper, namely
the classification theorem 1.5.

This result generalizes the one contained in [15]. In order to state it, we need to consider
the equation away from the junction hyperplane Γ, and more precisely on each (open)
branch i:

(3.1) ut + Fi(x,Du,D
2u) = 0, (t, x) ∈ (0, T )× J∗i .

We recall that A0 is defined in (2.1).
In order to introduce the reduced set of test functions (or reduced test functions for

short), we need the following definition

h+
i (x′, p′, pi) =

{
hi(x

′, p′, pi) if pi ≥ π0
i (x
′, p′)

hi(x
′, p′, π0

i (x
′, p′)) if pi ≤ π0

i (x
′, p′).

We recall that hi(x
′, p′, pi) = Hi((x

′, 0), (p′, pi)) and pi 7→ hi(x
′, p′, pi) reaches its minimum

at π0
i (x
′, p′), which is minimal.

Definition 3.1 (Reduced test functions). Consider a flux limiter A ≥ A0 (see Remark 2.9).
A function ϕ : (0, T )× J → R is a reduced test function for (1.1) if there exists a function
φ ∈ C1((0, T )× Rd) and φ0 ∈ C1(R) such that for x = (x′, xi) ∈ Ji,

ϕ(t, x) = φ(t, x′) + φi(xi)

and for all t ∈ (0, T ), (x′, 0) ∈ Γ, pi = φ′0(t, x′) and p′ = D′φ(t, x′) satisfy

hi(x
′, p′, pi) = h+

i (x′, p′, pi) = A(x′, p′).

We can now state and prove the following theorem.

Theorem 3.2 (Reducing the set of test functions). Assume (F) and consider a function
A : Γ × Rd → R such that A ≥ A0. Given a function u : (0, T ) × J → R, the following
properties hold true.

i) If u is a sub-solution of (3.1) and for all i and (t, x) ∈ (0, T )× Γ,

(3.2) u(t, x) = lim sup
s→t,y→x,y∈J∗i

u(s, y),

then u is a A0-flux limited sub-solution of (1.1).
ii) If u is a sub-solution of (3.1) satisfying (3.2) and if for any reduced test function ϕ

in the sense of Definition 3.1 touching u from above at (t, x) ∈ (0, T )× Γ, we have

ϕt(t, x) + A(x′, D′ϕ(t, x)) ≤ 0,

then u is a A-flux-limited sub-solution at (t0, 0).
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iii) If u is a super-solution of (3.1) and if for any reduced test function ϕ in the sense of
Definition 3.1 touching u from below at (t, x) we have

ϕt(t, x) + A(x,D′ϕ(t, x)) ≥ 0,

then u is a A-flux-limited super-solution at (t0, 0).

Proof. The proof of the corresponding result in [15] applies here without any change after
proving the two lemmas 3.3 and 3.4 about so-called critical slopes. Indeed, with such
technical results in hands, the proof focuses on what happens on Γ and second derivatives
do not appear any more. �

Lemma 3.3 (Super-solution property for the critical slope on each branch). Let i ∈
{1, . . . , N} be fixed. Let u : (0, T ) × Ji → R be a lower semi-continous super-solution
of (3.1). Let φ be a test function touching u from below at some point (t0, x0) ∈ (0, T )×Γ.
We consider

pi = sup{p ∈ R : ∃r > 0, φ(t, x) + pxi ≤ u(t, x) for (t, x) ∈ B((t0, x0), r) ∩ (0, T )× Ji}.
If pi < +∞, then we have

φt +Hi(D
′φ, ∂iφ+ pi) ≥ 0 at (t0, x0) with pi ≥ 0.

Lemma 3.4 (Sub-solution property for the critical slope on each branch). Let u : (0, T )×
Ji → R be a sub-solution of (3.1). Let φ be a test function touching u from above at some
point (t0, x0) ∈ (0, T )× Γ. For each i = 1, . . . , N, let us consider

pi = inf{p ∈ R : ∃r > 0, φ(t, x) + pxi ≥ u(t, x) for (t, x) ∈ B((t0, x0), r) ∩ (0, T )× Ji}.

If u satisfies

u(t0, x0) = lim sup
s→t0,y→x0,y∈J∗i

u(s, y),

then pi > −∞; moreover, we have in this case

φt +Hi(D
′φ, φx + pi) ≤ 0 at (t0, 0) with pi ≤ 0.

We first prove Lemma 3.3.

Proof of Lemma 3.3. The proof follows the same lines of [Lemma 2.8, [15]].
From the definition of pi, for all ε > 0 small enough, there exists δ = δ(ε) ∈ (0, ε) such

that

u(s, y) ≥ φ(s, y) + (pi − ε)y for all (s, y) ∈ B((t0, x0), δ) ⊂ R× Ji
and there exists (tε, xε) ∈ Bδ/2(t0, 0) such that

u(tε, xε) < φ(tε, xε) + (pi + ε)xε .

We choose a smooth function Ψ : Rd+2 → [−1, 0] such that

Ψ =

{
0 in B1/2(t0, x0)

−1 outside B1(t0, x0).
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We define

Φ(s, y) = φ(s, y) + 2εΨδ(s, y) +

{
(pi + ε)y if y ∈ Ji
0 if not

with Ψδ(Y ) = δΨ
(
Y
δ

)
. Now, we have

Φ(s, y) ≤ φ(s, y) ≤ u(s, y) for (s, y) ∈ Bδ(t0, x0) and y /∈ Ji
and{

Φ(s, y) = φ(s, y)− 2εδ + (pi + ε)y ≤ u(s, y) for (s, y) ∈ (∂Bδ(t0, x0)) ∩ (R× Ji),

Φ(s, x) ≤ φ(s, x) ≤ u(s, x) for (s, x) ∈ (t0 − δ, t0 + δ)× Γ

and
Φ(tε, xε) = φ(tε, xε) + (pi + ε)xε > u(tε, xε).

We conclude that there exists a point (tε, xε) ∈ Bδ(t0, x0)∩(R×J∗i ) such that u−Φ reaches

a minimum in Bδ(t0, 0) ∩ (R× Ji0). We thus can write the viscosity inequality

Φt + Fi(x,DΦ, D2Φ) ≥ 0 at (tε, xε)

which means that

φt(tε, xε) + 2ε(Ψδ)t(tε, xε)

+Fi(xε, (D
′φ+εD′Ψδ)(tε, xε), ∂iφ(tε, xε)+2ε∂iΨδ(tε, xε)+pi+ε,D

2φ+2εD2Ψδ(tε, xε)) ≥ 0.

So we can send ε→ 0 in the above inequality to obtain the desired inequality. The proof
is now complete. �

We now turn to the proof of Lemma 3.4

Proof of Lemma 3.4. The main difference with the previous lemma is the claim that the
critical slope is finite. This is the reason why we only explain this point. Here again, we
follow closely [15].

Assume that pi = −∞. This implies that there exists pn → −∞ and rn > 0 such
that φ + pnx ≥ u in Bn = Brn(t0, x0) ∩ R × Ji. Remark first that, replacing φ with
φ+ (t− t0)2 + |x− x0|2 if necessary, we can assume that

(3.3) u(t, x) < φ(t, x) + pnxi if (t, x) 6= (t0, x0).

In particular, there exits δn > 0 such that φ+ pnx ≥ u+ δn on ∂Bn \ Γ.
Since u satisfies (3.2), there exists (tε, xε) → (t0, x0) such that xε ∈ J∗i and u(t0, x0) =

limε→0 u(tε, xε).
We now introduce the following perturbed test function

Ψ(t, x) = φ(t, x) + pnxi +
η

xi

where η = η(ε) is a small parameter to be chosen later. Let (sε, yε) realizing the infimum
of Ψ− u in Bn. In particular,

(3.4) (φ+pnxi−u)(sε, yε) ≤ Ψ(sε, yε)−u(sε, yε) ≤ Ψ(tε, xε)−u(tε, xε)→ 0 as ε→ 0
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as soon as η(ε) = o(xiε) with xε = (x′ε, x
i
ε). In particular, in view of (3.3), this implies that

(sε, yε)→ (t0, x0) as ε→ 0. Since u is a subsolution of (3.1), we know that

φt(sε, yε) + Fi(yε, D
′φ(sε, yε), ∂iφ(sε, yε) + pn −

η

(yiε)
2
, D2φ(sε, yε) +

2η

(yiε)
3
ed+1 ⊗ ed+1) ≤ 0

(where (e1, . . . , ed+1) is an orthonormal basis of Rd+1 and ed+1 is orthogonal to Γ). Use
now (F) in order to get

φt(sε, yε) + Fi(yε, D
′φ(sε, yε), ∂iφ(sε, yε) + pn −

η

(yiε)
2
, D2φ(sε, yε)) ≤ 2Ci

η

yiε
.

Remark now that (3.4) together with the choice of η implies
η

yiε
= oε(1).

In particular, the coercivity of Fi (see (F)) implies that pn − η
(yiε)2

is bounded as ε → 0.

Hence we can pass to the limit as ε→ 0 in the viscosity inequality and get

φt(t0, x0) +Hi(x0, D
′φ(t0, x0), ∂iφ(t0, 0) + p0

n) ≤ 0

where p0
n ∈ (−∞, 0] is any accumulation point of pn − η

(yiε)2
as ε → 0. The previous

inequality implies in particular that p0
n is bounded from below by a constant C which only

depends on Hi, φt, Dφ at (t0, x0). But this also implies that pn ≥ C which is the desired
contradiction. The proof of the finiteness of pi is now complete. �

4. Proof of the main theorem

This section is devoted to the proof of the first main result, Theorem 1.5.
In order to prove it, we recall the following notation

π+
i (x′, p′, λ) = inf{pi : hi(x

′, p′, pi) = h+
i (p′, pi) = λ}

where we recall that hi(x
′, p′, pi) = Hi((x

′, 0), (p′, pi)) and h+
i its non-decreasing part. In

the remainder of this section, we do not systematically write the (x′, p′) dependence of flux
limiters in order to unclutter formulas.

We now prove the main theorem.

Proof of Theorem 1.5. Let AL be defined as in Remark 1.6. Since AL ≥ A0, the coercivity
is clear. The proof of the continuity of AL and the convexity of sublevel sets is the same
as in [14, Proof of Theorem 2.13].

In the remainder of the proof, we do not systematically write the dependance of x′ and
p′ for the sake of clarity.

Let us first deal with the sub-solution case.
If AL = A0, then Lemma 2.3 and Theorem 3.2 imply that any L-relaxed sub-solution is

a A0-flux limited solution.
We thus now consider the case where AL > A0. We remark that the definition of AL

given in Remark 1.6 can be put into the following form

(4.1) AL = max(A0, sup{λ : L(λ, π+
1 (λ), . . . , π+

N(λ)) > 0}).
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In particular if L(A0, p
0
1, . . . , p

0
N) > 0, then

(4.2) AL = sup{λ : L(λ, π+
1 (λ), . . . , π+

N(λ)) > 0}.
Remark that the set is not empty since it contains A0. It is bounded from above since L is
“semi-coercive” i.e. L(p0, . . . , pN) → +∞ as maxi max(0,−pi) → +∞ and π+

i (λ) → +∞
as λ → +∞. Consequently, A0 < AL < +∞. Remark also that λ 7→ π+

i (λ) is non-
decreasing and lower semi-continuous. In particular,

(4.3) L(AL, π
+
1 (AL), . . . , π+

N(AL)) ≥ 0.

Let u be a L-relaxed sub-solution and let us prove that it is an (AL − ε)-flux-limited
sub-solution for all ε > 0. In view of Lemma 2.3 and Theorem 3.2, we only have to consider
a reduced test function ϕ touching u from above at (t0, x0) ∈ (0, T )× Γ. We recall that

ϕ(t, x) = φ(t, x′) + φi(xi)

with φ′i(x
0
i ) = π+

i (AL − ε) where p′0 = D′φ(t0, x
′
0). By definition of relaxed solutions, we

have

either L(λ, π+
1 (AL − ε), . . . , π+

N(AL − ε)) ≤ 0(4.4)

or −λ+ (AL − ε) ≤ 0(4.5)

with λ = −∂tφ(t0, x0).
We claim that (4.5) always holds true. We argue by contradiction by assuming that

(AL − ε) > λ. In view of (L), L is strictly decreasing in pi0 for some i0 ∈ {0, . . . , N}.

L(AL, π
+
1 (AL), . . . , π+

N(AL)) < L(λ, π+
1 (AL − ε), . . . , π+

N(AL − ε)) ≤ 0

which contradicts (4.3).
We conclude the proof by remarking that (4.5) yields

LAL−ε(−∂tϕ, ∂1ϕ, . . . , ∂Nϕ, x
′
0, D

′ϕ) = ∂tφ(t0, x0) + max(AL(x′0, p
′
0)− ε,max

i
h−i (x′0, p

′
0, π

+
i ))

= ∂tφ(t0, x0) + AL(x′0, p
′
0)− ε ≤ 0

where the derivatives of ϕ in the left hand side are computed at (t0, x0) and the function
π+
i are computed at (x′0, p

′
0, AL(x′0, p

′
0)) in the right hand side.

As far as the super-solution case is concerned, we define

π̂+
i (x′, p′, λ) = sup{pi : hi(x

′, p′, pi) = h+
i (p′, pi) = λ}

and we remark that, if L(A0, p
0
1, . . . , p

0
N) > 0, then

AL = inf{λ : L(λ, π̂+
1 (λ), . . . , π̂+

N(λ)) < 0}.
In particular,

L(AL, π̂
+
1 (AL), . . . , π̂+

N(AL)) ≤ 0.

If now L(A0, p
0
1, . . . , p

0
N) ≤ 0 then AL = A0 and the previous inequality still holds true.

We can follow the reasoning from the sub-solution case and prove that L-relaxed super-
solutions are AL-flux limited super-solutions. The proof is now complete. �
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5. The vanishing viscosity limit

This section is devoted to the study of the limit (as ε → 0) of the solution uε of the
following Hamilton-Jacobi equation posed on a multi-dimensional junction J ,

(5.1)

{
uεt +Hi(x,Du

ε) = ε∆uε (t, x) ∈ (0, T )× J∗i ,
L(−uεt , ∂1u

ε, . . . , ∂Nu
ε, x′, D′uε) = 0 (t, x) ∈ (0, T )× Γ

subject to the initial condition

(5.2) u(0, x) = u0(x), x ∈ J.

At leat formally, the solutions uε converge towards the solution of

(5.3)

{
ut +Hi(x,Du) = 0 (t, x) ∈ (0, T )× J∗i ,
L(−ut, ∂1u, . . . , ∂Nu, x

′, D′u) = 0 (t, x) ∈ (0, T )× {0}.

The first result applies to general junction functions.

Theorem 5.1 (Vanishing viscosity limit). Assume (L) and
Hi continuous

∀x ∈ Γ, λ ∈ R, {Hi(x, p) ≤ λ} convex

lim|p|→+∞ infx∈Γ Hi(x, ·) = +∞.

Let u0 be uniformly continuous in J . Assume there exists a relaxed solution uε of (5.1),
(5.2). Then uε converges locally uniformly towards the unique relaxed solution u of (5.3),
(5.2).

Remark 5.2. Even if we will not discuss it, the existence of solutions whose restriction to
Ji are C1,1(Ji)∩C2(J∗i ) is expected in the case of (5.1). Some results are proved in [26, 27]
on compact junctions and some others are announced in [20].

Remark 5.3. As we previously mentioned it, a special case of the theorem is proved in [8].

Proof of Theorem 5.1. By discontinuous stability, the relaxed upper limit ū of uε is a L-
relaxed subsolution of (5.3), i.e. a AL-flux-limited subsolution of (5.3). The relaxed lower
limit u is a L-relaxed super-solution of (5.3), i.e. a AL-flux-limited super-solution of (5.3).
Moreover, ū(0, x) ≤ u0(x) ≤ u(0, x). By the comparison principle proved in [14], we
conclude that ū ≤ u which yields the local uniform convergence towards the unique AL-
flux-limited solution of (5.3), (5.2) which coincides with u as defined in the statement. �

Problem (1.3) can be translated into the junction framework as follows,
uεt +Hi(x,Du

ε) = ε∆uε, x ∈ J∗i ' (0,+∞), i = 1, 2

−∂1u
ε(t, 0)− ∂2u

ε(t, 0) = 0,

uε(0, x) = u0(x), x ∈ J
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with H1(x, p′, pd+1) = H̃1(x, p′,−pd+1) and H2(x, p′, pd+1) = H̃2(x, p′, pd+1). In view of
Theorem 5.1, uε converges towards the relaxed solution

(5.4)

{
ut +Hi(x, ux) = 0, x ∈ J∗i
u(0, x) = u0(x), x ∈ J

associated with the generalized flux function

Le(p0, p1, p2, x
′, p′) = −p1 − p2.

Corollary 5.4 (The vanishing viscosity limit for the Kirchoff condition). The function uε

converges towards the Ae-flux-limited solution of (5.4) where Ae is determined as follows:
if π0

1(x′, p′) + π0
2(x′, p′) > 0 then Ae = A0; else Ae = Ae(x

′, p′) is the unique λ ≥ A0 such
that there exists p+,e

1 ≥ π0
1 and p+,e

2 ≥ p0
2 such that

hi(x
′, p′, p+,e

i ) = λ for i = 1, 2, p+,e
1 + p+,e

2 = 0.

Remark 5.5. If H1 and H2 has no flat parts and π0
1(x′, p′) + π0

2(x′, p′) ≤ 0, then Ae is the
only A such that π+

1 (x′, p′, A) + π+
2 (x′, p′, A) = 0.

We now recall the result about maximal and minimal Ishii solutions from [14].

Proposition 5.6 (Maximal and minimal Ishii solutions are flux-limited – [14]). The max-
imal (respectively the minimal) Ishii solution of (1.5) corresponds to the A−I (respectively
A+
I ) flux-limited solution of (5.4) with

A+
I (x′, p′) = max(A0(x′, p′), A∗(x′, p′))

A−I (x′, p′) =

{
A+
I (x′, p′) if p̃0

2(x′, p′) ≤ p̃0
1(x′, p′)

A0(x′, p′) if p̃0
2(x′, p′) ≥ p̃0

1(x′, p′)

where

A∗(x′, p′) = max
pd+1∈I(x′,p′)

(
min(H̃2(x′, p′, pd+1), H̃1(x′, p′, pd+1)

)
and I(x′, p′) = [min(p̃0

1(x′, p′), p̃0
2(x′, p′)),max(p̃0

1(x′, p′), p̃0
2(x′, p′))] with p̃0

2 minimal mini-
mizer of H̃2 and p̃0

1 maximal minimizer of H̃1.

We now prove the following theorem, which is equivalent to Theorem 1.9.

Theorem 5.7 (The vanishing viscosity limit selects the maximal Ishii solution). Assume
Hi continuous

Hi(x
′, 0, ·) quasi-convex

Hi(x, ·) coercive uniformly in x.

Then the uε of (5.1), (5.2) converges towards the unique A−I -flux-limited solution of{
ut +Hi(x,Du) = 0, x ∈ J∗i
u(0, x) = u0(x), x ∈ J.
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Proof. In view of Theorem 5.1, we only have to prove that Ae = A−I .
Let p0

i denote p0
i (x
′, p′), i = 1, 2. We forget about the dependance in (x′, p′) in order to

simplify the presentation.
If p0

1 + p0
2 ≥ 0, then we know from Proposition 5.6 that A−I = A0. Moreover we have in

this case that π+
1 (A0) + π+

2 (A0) ≥ 0; on the one hand, Lemma 5.4 implies that Ae = A0.
We thus conclude that Ae = A0 = A−I in this case.

We now assume that p̃0
1 := −p0

1 ≥ p0
2. In particular, Proposition 5.6 implies that

A−I = A+
I = max(A0, A

∗)

with
A∗ = max

q∈[p02,p̃
0
1]

min(H1(−q), H2(q)).

We distinguish three cases.
First case: if H2(p̃0

1) ≥ H̃1(p̃0
1) and H2(p0

2) ≤ H̃1(p0
2) then

A0 ≤ A+
I = A∗ = H2(qI) = H1(−qI).

Since qI ≥ p0
2, qI = π+

2 (A+
I ) and since qI ≤ −p0

1, then −qI = π+
1 (A+

I ). Consequently,

π+
1 (A+

I ) + π+
2 (A+

I ) = 0

which implies that Ae = A+
I = A−I .

Second case: if H2(p̃0
1) ≤ H̃1(p̃0

1) = A1 then A0 = A1 and A∗ = H2(p̃0
1) ≤ A0. In turn,

A−I = A+
I = A0.

But in this case, π+
2 (A0) = π+

2 (A1) ≥ p̃0
1 = −π+

1 (A0) which implies Ae = A0 (see Theo-
rem 5.1).

Third case: if H2(p0
2) ≥ H̃1(p0

2) then A0 = A2 > A1 and A∗ ≤ A0 and π+
1 (A0)+π+

2 (A0) ≥
0. Hence, A+

I = A−I = A0 = Ae. The proof is now complete. �

6. A large deviation problem

In [7], the authors study large deviation problems related to diffusion processes whose
drift is smooth on either side of a hyperplane. Their proofs rely on probability tools and
ideas. Our goal in this section is to propose an analytical/PDE proof. Furthermore, by
using the results of previous sections, the rate function is related to the maximal Ishii
solution of a Hamilton-Jacobi equation.

Consider the stochastic differential equation in Rd+1,

dXε(t) = b(Xε(t))dt+ ε1/2σ(Xε(t))dW (t), Xε(0) = x0, 0 ≤ t ≤ 1(6.1)

with

b(x) =

{
b1(x) if xd+1 < 0

b2(x) if xd+1 > 0

and

σ(x) =

{
σ1(x) if xd+1 < 0

σ2(x) if xd+1 > 0
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In order to introduce the rate function, we have to define first Hamiltonians and La-
grangians. Hamiltonians are defined in [7] by

H̃i(x, p) =
1

2
〈ai(x)p, p〉 − bi(x)p, x, p ∈ Rd+1.

with ai = σiσ
T
i . Corresponding Lagrangians L̃1 and L̃2 are related to Hamiltonians H̃1

and H̃2 by the following formula [7]

H̃i(x, p) = sup
q∈Rd+1

{−pq − L̃i(x, q)}.

Set Ω1 = Rd × (−∞, 0),Ω2 = Rd × (0,+∞), H = Rd × {0}.

(6.2) L̃(x, p) =


L̃1(x, p), x ∈ Ω1,

L̃2(x, p), x ∈ Ω2,

L̃0(x, p), x ∈ H,

where L̃0 is defined by

L̃0(x, p′, q) = inf

{
λL̃1(x, p′, q1) + (1− λ)L̃2(x, p′, q2),

{
λ ∈ [0, 1], q1 ≥ 0, q2 ≤ 0,

λq1 + (1− λ)q2 = q

}
.

Call Σx0 the set of all absolutely continuous function φ ∈ C([0, 1],Rd+1) satisfying φ(0) =
x0. For any φ ∈ Σx0 , we define the rate function I(φ) as follows,

(6.3) Ix0(φ) =

∫ 1

0

L̃(φ(s), φ̇(s)) ds

where L̃ is defined as in (6.2). We first state the Laplace principle as presented in [7]

Definition 6.1. Let {Y ε(t), ε > 0, 0 ≤ t ≤ 1} with Y ε(0) = x0 be a family of random
variables taking values in a Polish space Y and let I be a rate function defined as in (6.3).
We say that {Y ε} satisfies a Laplace principle with the rate function I if for every bounded
continuous function h mapping Y into R, and for any absolutely continuous function φ ∈
C([0, 1],Rd+1) satisfying φ(0) = x0, we have

lim
ε→0

ε lnEx0
{

exp
[
− h(Y ε)

ε

]}
= − inf

φ∈Σx0

{h(φ(1)) + Ix0(φ)}.(6.4)

In [7], the following large deviation result is proved using probabilistic arguments. We
will give a PDE proof.

Theorem 6.2 ([7]). Assume that
bi is continuous,

σ is continuous and uniformly elliptic, i.e. σσT ≥ cI with c > 0,

(6.1) has a unique strong solution.

Then the family {Xε, ε > 0} satisfies the Laplace principle in C([0, 1],Rd+1) with the rate
function I as defined in (6.3).
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Proof. Given a function h, let hε denote exp(−h
ε

). The function uε given by

uε(t, x) = Ex(hε(Xε(t)))

is a solution of
∂uε
∂t

= ε
2

Trace(a(x)D2uε) + b(x)Duε, t ∈ (0, 1), x ∈ Ω1

⋃
Ω2

1
2
∂d+1uε(t, x

′, 0+) = 1
2
∂d+1uε(t, x

′, 0−), x ∈ H
uε(0, x) = hε(x), x ∈ Ω1

⋃
Ω2

(where a = σσT ) The function vε = −ε ln(uε) satisfies
∂vε
∂t

= ε
2

Trace(a(x)D2vε)− 1
2
〈a(x)Dvε, Dvε〉+ b(x)Dvε, t ∈ (0, 1), x ∈ Ω1

⋃
Ω2

1
2
∂d+1vε(t, x

′, 0+) = 1
2
∂d+1vε(t, x

′, 0), x ∈ H
vε(0, x) = h(x), x ∈ Ω1

⋃
Ω2.

Moreover, in view of the definition of uε and vε, we have

vε(t, x) = −ε lnEx
{

exp

[
−h(Xε(t))

ε

]}
.

Hence, our goal is to prove that

lim
ε→0

vε(1, x) = inf
φ∈Σx

{h(φ(1)) + Ix(φ)}

for any φ ∈ Σx and I is defined in (6.3).
We know from Theorem 1.9 that vε converges locally uniformly towards the maximal

Ishii solution U+ of

(6.5)

{
∂U+

∂t
+ H̃i(x,DU

+) = 0, x ∈ Ωi, t ∈ (0, 1)

U+(0, x) = h(x), x ∈ Ω1

⋃
Ω2.

It thus remains to prove that

(6.6) U+(1, x) = inf
φ∈Σx

{h(φ(1)) + Ix(φ)}.

. In view of the definition of Lagrangians and Hamiltonians from [7] recalled above, we
have

H̃i(x, p) = sup
q∈Rd+1

{pq − li(x, q)} with li(x,−q) = L̃i(x, q),

here li corresponds to the running costs considered in [15, Section 6]. In view of the
definition of L̃0 recalled above, we have

L̃0(x, q′, 0) = inf

{
λL̃1(x, q′, q1) + (1− λ)L̃2(x, q′, q2),

{
0 ≤ λ ≤ 1,

q1 ≥ 0, q2 ≤ 0, λq1 + (1− λ)q2 = 0

}

= inf

{
λl1(x, q′, v1) + (1− λ)l2(x, q′, v2),

{
0 ≤ λ ≤ 1,

v1 ≤ 0, v2 ≥ 0, λv1 + (1− λ)v2 = 0

}
.
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Hence, the formula of U+ given in [14, 4] coincides with (6.6). The proof is now complete.
�
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