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GENERALIZED JUNCTION CONDITIONS FOR DEGENERATE
PARABOLIC EQUATIONS

CYRIL IMBERT AND VINH DUC NGUYEN

ABSTRACT. We are interested in the study of parabolic equations on a multi-dimensional
gunction (Imbert, Monneau (2014)), i.e. the union of a finite number of copies of a half-
hyperplane of R%*t! whose boundaries are identified. The common boundary is referred
to as the junction hyperplane. The parabolic equations on the half-hyperplanes are in
non-divergence form, fully non-linear and possibly degenerate, and they do degenerate
along the junction hyperplane, i.e. along the junction hyperplane the nonlinearities do
not depend on second order derivatives. The parabolic equations are supplemented with
a generalized junction condition (or boundary condition of Neumann type), which is com-
patible with the maximum principle. Our main result states that, in the case where
the non-linearities at the junction have convex sublevel sets with respect to the gradi-
ent variable, then these general junction conditions can be classified: they are equivalent
to junction conditions of control type. This classification extends the one obtained by
Imbert and Monneau for Hamilton-Jacobi equations on networks and multi-dimensional
junctions. We give two applications of this classification result. On the one hand, we
give the first complete answer to an open question about these equations: we prove in the
two-domain case that the vanishing viscosity limit associated with quasi-convex Hamilton-
Jacobi equations coincides with the maximal Ishii solution identified by Barles, Briani and
Chasseigne (2012). On the other hand, we give a short and simple PDE proof of a large
deviation results of Boué, Dupuis and Ellis (2000).
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2 CYRIL IMBERT AND VINH DUC NGUYEN

1. INTRODUCTION

1.1. Degenerate parabolic equations on junctions. Multi-dimensional junctions are
introduced in [14]:

N d+1
J={r=(2,z;): 2 e R z; >0} ~RY"

J=JJ with to= (@) = y R
hat JinJ;=T~R* for i#j.

Given T € [0, +o0], we consider a general degenerate parabolic equation posed on a junc-

tion,
(11) u; + Fi(x, Du, D*u) = 0 (t,) € (0,T) x Jri=1,...,N,
' L(—uy, u, ..., 0yu,2',D'u) =0 (t,xz) € (0,T) xT

where J denotes J; \ T, u; denotes the time derivative, Du and D?u respectively denote
the gradient and the Hessian of u with respect to z, and for x € I', d;u(z) denotes the
derivative of u;(x) = ul, () with respect to x; (recall x = (2/,x;)) and D'u denotes the
derivative with respect to z’. We make the following assumptions on each F;.
Assumption (F).

e F; continuous and degenerate elliptic;

e for all R > 0, there exists C; g > 0 such that for all y = (v/,y;), all p € R all

B € Sg11(R) and all A >0

{|yz| <1, |?//| <R, ’B| < R} = ‘Fi(yapaB + Aegr1 ® €d+1) > E(yvpa B) - Ci,R)\’yi\Q;

e forall R >0,

lim  inf Fj(z,p, B) = +o0;
|p|—+o0 (z,B)EBR

e there exists H; : I' x R*™*! — R continuous such that
— for all (z,p, B) € T' x R™! x S41(R), Fi(x,p, B) = Hy(z, p);
— for all x € T, for all A € R, the set {p € R : Hy(z,p) < A} is convex.
In the assumption above, ez.1 denotes the unit vector orthogonal to I' and pointing
inside J;.

Example 1.1 (First order case). The first example we give is the one coming from [15, 14].
It reduces to deal with Fj(z,p, B) = H;(x,p) for any = € J; (and not only z € T') and
p € R? with H; continuous, coercive in p uniformly in z, with convex sublevel sets (in p).

Example 1.2 (The model case). Our results apply to the model case where F;(z,p, B) =
H;(x,p) — Trace(o;(z)o! (x)B) with H; is as in Example 1.1 and where the (d+ 1) x m real
matrix o; is such that o; = 0 on I' and the (d + 1)-th line 7™ of o; satisfies |07 (y)| <
Cilyasr1|. Remark that this latter condition holds true if o; = 0 on I' and o; is Lipschitz
continuous.

We recall that Fj(x,p, A) is degenerate elliptic if it is non-increasing with respect to A
(where the set of symmetric matrices Sqy1(R) is equipped with the usual partial order).
The function H; appearing in (F) is referred to as the Hamiltonian from the branch J;. As
far as the junction function L is concerned, we assume
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Assumption (L).

e the function L is continuous;
e L(po,...,pn,2',p’) is non-increasing in p; for i =0,..., N;
i E|20 : {VZ,pZ S qi and Dig % QZO} = L<p07 s 7pN7'T,7p,) > L(QOv s 7QN7x/7p/)
e inf L(pg,...,pn,2',p)) — 400 as min p; — —o0;
x,’p/ Z: PARRS
e sup L(pg,...,pn, 2", p') = —00 as max p; — +o0.
o i=0,...,N

Example 1.3 (Kirchoff conditions). A model for L is

N
=1

with 8= (B1,...,8x) € RV \ {0}. Such a condition is called a Kirchoff condition.

Example 1.4 (Flux-limited junction conditions). An second important example of junc-
tion functions L is the one related to flux-limited solutions [15, 14]. Given a fluz-limiter

A:T x RY — R continuous
v

for all 2/ € REN € R, {p' € RY: A(2/,p') < A} convex
we consider the associated junction condition L4 defined by
(12) LA(p07 ..., PN, Z'/,p/) = —Po + maX(A(x/,p/), max h'g_(x/7p/7pi))

where h; (x,p', p;) denotes the non-increasing part of p; — h;(2,p', p;) := H;((2,0), (p', p;))
[14): if p; — hi(2/, 9, p;) reaches its minimum at 79 (2’, p’), which is the minimal minimizer,
then

hi "y [ if Z'< 9 /7/
Wt p) = 4 1) e S TP
hi(zapaﬂi (Zlf,p)) lfpz Z U (l’,p)

The appropriate notion of weak solutions for Hamilton-Jacobi equations is the one intro-
duced by Crandall and Lions [10, 11], namely viscosity solutions. It is explained in [15, 14]
that two notions of viscosity solutions are needed in the study of Hamilton-Jacobi equa-
tions on networks, depending on the type of junction conditions we impose. We will see
that it is also the case for the degenerate parabolic equations we consider in this work. For
general junction functions L in (1.1), the junction condition has to be understood in the
“viscosity sense”: either the junction condition L = 0 or one of the equations u; + F; =0
is satisfied. We refer to such (viscosity) solutions as relazed solutions (see Definition 2.2
below). But for the special junction conditions L4 (see (1.2)), relaxed solutions satisfy
the junction condition in a stronger sense (made precise in Definition 2.8 below): such
(viscosity) solutions are referred to as fluz-limited solutions.

The main result of this article is about the classification of generalized junction condi-
tions. Roughly speaking, we prove that imposing a general junction condition (in a relaxed
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sense, see Definition 2.2) amounts to imposing one of the type L4 presented above for some
A only depending on the junction function L (see 4.1 for a formula).

Theorem 1.5 (Classification of generalized junction conditions). Assume (F), (L). Then
there exists a continuous function Ay : T x R* — R such that

lim Ap(2',p) =+

p'|—=+o0
and such that any L-relaxed sub-solution (resp. super-solution) of (1.1) is a Ap-fluz-limited
sub-solution (resp. super-solution) of (1.1). Moreover, if
{p € RY: L(po,p1,...,pn, 2", 0) < A} is convex
for all py,...,pn, A € R and all ' € R?, then
{p e R A2/, p') < A} is convex
for all X € R and ' € RY.

Remark 1.6 (The definition of the effective flux limiter). Some notation is needed. Let

AW . ) / ’o
A0<:E 7p) - Z:Hﬁa}nglelﬁ Hz<<x 70)7 (p 7p2)>'

Let p) > 7?(2’,p’) be minimal such that
hi(x/ap/api) = Hi((x/7 0)7 (p,7pz)) = AO(x/7p/>'
For all (2, p’), the real number Ay (z',p') is defined as follows: if

L(A()(x/ap/)ap(l)u s 7p5)\[7 Z‘l,p/) < 07
then Ap(2,p') = Ao(a,p), else Ap(a’,p’) is the only real number A > Ay(2’,p’) such that
there exists p; > p! with

hi(z',p',pf) =X and L\ p{,...,pk,2,p)=0.

This definition is equivalent to (4.1) where ;" is defined in (1.6) below. We note that even
if A\ is unique (thanks to (L)), the p; are not (in general). See the example in the center
of Figure 1 in Example 1.8.

Remark 1.7. Such a classification can also be obtained for stationary problems. In this
case, the proof is even easier.

1.2. Comments on the main result. Our main result, Theorem 1.5, deals with the clas-
sification of generalized junction conditions: we show that imposing a generalized junction
condition L (in a relaxed sense) reduces to imposing a junction condition L4 of control-type
(in a stronger sense). It extends the results contained in [15, 14] in two directions: first,
we can deal with Kirchoff conditions (see Example 1.3), second we can deal with second
order terms (but degenerating along the junction).

As in [15, 14], the classification is quite a straightforward consequence of the following
important result (Theorem 3.2): in order to check that a function is a flux-limited sub-
and super-solution, it is enough to use a reduced set of test functions ¢ whose normal
derivatives d;¢p have specific slopes along I'. For instance, these slopes equal ;" (p/, A(p'))
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FIGURE 1. In the three cases, the plain black curve represents the Hamil-
tonian H and the plain red curve represents the limited-flux function Fj
associated with the Neumann condition. Depending on the position of the
graph of H and the line {p = 0}, the effective flux limiter A associated with
the Neumann condition varies. On the left, the line {p = 0} intersects the
graph of H in its increasing part. On the center, the line {p = 0} intersects
the graph of H in the increasing part, but on a flat part. On the right, the
line {p = 0} intersects the graph of H in its decreasing part, which implies
that the flux limiter coincides with Ag = min H.

if the Hamiltonian has no flat parts and does not depend on z’. We recall that, roughly
speaking, 7" is the inverse function of the non-decreasing part of H;, see (1.6) below.

Example 1.8 (The Neumann problem in the case (d, N) = (0, 1)). We illustrate our result
on the simplest example:

ug + H(ug) — 2%uge =0, x>0,
Uy = 0, z=0

where H is a quasi-convex function as illustrated in Figure 1.

A first version of this paper contained a comparison principle for (1.1) (under stronger
assumptions on F). On the one hand, the proof was quite difficult, relying on the vertex
test function introduced in [15, 14], for which C? regularity was to be proved in the multi-
dimensional setting (following ideas developed in [13]). On the other hand, new and simpler
techniques now emerge to attack this problem, see for instance [4, 12, 20, 21]. In particular,
it is explained in [4] that the equations considered in the present work can be handled in
the two-domain case. For these two reasons, we decided to restrict ourselves to the core of
the work, that is to say the classification result.

1.3. Comments on assumptions. Before presenting the application to the vanishing
viscosity problem we would like now to make a few comments about assumptions (F) and
(L). We recall that our goal is to classify generalized junction conditions for degenerate
parabolic equations. In particular, we want to understand what are the effective junction
conditions that are imposed at the junction. From this point of view, it seems interesting
to consider degenerate parabolic equations which actually degenerate at I'. This is exactly
the third condition appearing in (F). We also assume that the Hamiltonians have convex
sublevel sets, see the fourth condition in (F'). This condition can probably be relaxed but
until the two very recent contributions [21, 12], the non-convex case was out of reach.
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As far as the second condition in (F) is concerned, it implies that the Hamiltonians are
coercive. It is used in order to derive the “weak continuity” of subsolutions (see Lemma 2.3
below). The first condition in (F) is used in an essential way when proving that the set
of test functions can be reduced (see the proof of Lemma 3.4 below). Remark that this
condition is (much) weaker than the one which is needed in order to prove uniqueness, see
9, Condition (3.14)].

1.4. An application: the vanishing viscosity limit. Because we are able to deal with
Kirchoff conditions, we are in position to adress an open problem about Hamilton-Jacobi
equations from “regional control” problem: the identification of the vanishing viscosity
limit.

We study the limit as € — 0 of the equation posed in (0, +o00) x RI*+!

vy + ]:Il(x, Dv®) = eAv®, x441 <0,t>0
(1.3) v 4 Hy(z, Dv°) = eAv®, 2441 > 0,1 >0
v¥(0, ) = vo(x), r € R

where = (2/,24,1) € R¥! In the previous equation, we do not need to impose any
condition since the Laplacian is strong enough to ensure the existence of C' functions
despite the discontinuity of the first order term. In particular, the following condition
holds at 441 =0,

(1.4) Opy V5 (2, 04) = Oy, , 07 (', 0—).

In this specific singular perturbation problem, the limit is identified by remarking that
(1.4) is a Kirchoff condition and that consequently we can pass to the limit using relaxed
solutions; more precisely, the limit of v* corresponds to a relaxed solution associated with
this specific generalized junction condition. But the classification theorem tells us that
the limit thus corresponds to a flux-limited solution associated with a flux-limiter A that
is explicitly given by a formula (see Remark 1.6). Looking closely at this formula, we
can prove that it corresponds to the maximal Ishii solution of the limit equation recently
identified by Barles, Briani and Chasseigne [2, 3].

Theorem 1.9 (The vanishing viscosity limit selects the maximal Ishii solution). Assume

ZEIZ- continuous
Ve = (2/,0) € R™ VA e R, {p € R*' : Hi(z,p) < \} convex

lim inf Hi(z,p) = +oc0

|p| =400 2=(2’,0)€Rd+1

and vy 1s uniformly continuous. Then any solution v¢ of (1.3) converges towards the
mazimal Ishii solution v of

(1.5) {UtJrﬁl(x,Dv):O, Tg1 < 0,6>0

vy + ﬁg(a:, Dv) =0, x4y >0,t>0
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subject to the initial condition
v(0,z) = vy(z), 2 € R,

Remark 1.10. The function v is associated with the unique A} -flux-limited solution u of the
previous Hamilton-Jacobi equation for some flux limiter A; (2, p). Precisely, v(t,2', z411) =
u(t, 2, |xas1]), see Theorem 5.7 in Section 5.

1.5. Review of literature. Semi-linear uniformly parabolic equations on compact net-
works were studied in [25, 28, 18, 22] where uniqueness, existence, strong maximum prin-
ciple among other results were proved to be true.

The first results for Hamilton-Jacobi equations on networks were obtained in [23] for
eikonal equations. Some years later, the results were extended in [24, 1, 16]. Many new
results were obtained since then, see for instance [15, 14] and references therein.

In [2, 3], the authors study regional control, i.e. control with dynamics and costs which
are regular on either side of a hyperplane but with no compatibility or continuity assump-
tion along the hyperplane. They identify the maximal and minimal Ishii solutions as value
functions of two different optimal control problems. They also use the vanishing viscos-
ity limit on a 1D example in order to prove that the two Ishii solutions can be different.
Moreover, the authors ask about the vanishing viscosity limit in the general case.

In [8], the authors study the vanishing viscosity limit associated with Hamilton-Jacobi
equations posed on a junction (the simplest network, see above). The main difference
with our results is that the authors impose some compatibility conditions on Hamiltoni-
ans. In particular, this allows them to construct viscosity solutions which satisfy Kirchoff
conditions in a strong sense. We proceed in a different setting and in a different way: no
compatibility conditions on Hamiltonians are imposed, and Kirchoff conditions are under-
stood in a relaxed sense, which is stable under local uniform convergence (and even relaxed
semi-limits). We then use the general classification theorem 1.5 to prove that imposing
Kirchoff conditions reduce to the study of a flux-limited problem (for which uniqueness
holds true).

In his lectures at College de France [19], Lions also treats problems related to Hamilton-
Jacobi equations with discontinuities. After posting a first version of this paper, Lions and
Souganidis [20] wrote a note about a new approach for Hamilton-Jacobi equations posed
on junctions with coercive Hamiltonians that are possibly not convex.

Also after the first post of this work, two articles [12, 21] about classification in the
non-convex cases were written independently. In [12], the author studies the case N = 1
in the 1D setting, which amounts to studying first order Hamilton-Jacobi equations with
nonlinear boundary conditions of Neumann type. In [21], the author can deal with the
multi-dimensional setting and several branches.

To finish with, the link between the theory developed in [2, 3] and flux-limited solutions
from [15, 14] is explored in [4]. In particular, [4] contains alternative proofs in the two-
domain case of the comparison principle from [14] and of the vanishing viscosity limit
obtained in the present work.
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1.6. Organization of the paper. In Section 2, two notions of viscosity solutions are
presented and their properties studied. In Section 3, it is proved that in order to check
that a function is a flux-limited solution, the set of test functions can be reduced. In
Section 4, we prove the main result of this paper, Theorem 1.5. Section 5 is devoted to the
study of the vanishing viscosity limit. The last section is devoted to the proof of a known
result about large deviations using the main result of this work.

1.7. Notation. The Hamiltonian H;(x,p) is defined for z,p € R4, For 2/ € R?, p' € RY,
the function h;(z’,p’, p;) is defined as

hi(a,p', pi) = Hi((@',0), (1, pi)-

The minimal minimizer of h; is denoted by 7¥(z’, p’). The functions h; and h;" are defined
as follows

':E/ap/api) if Di S W?(x/7 /)
! 0(

Y 7p/7 ﬂ?(l’/,p/)) if Di >

h.
hi (', v, p;) = v
;@ mi) {hi

o~

h;
hi

$/>p/>Pi) if Di Z U
xlaplaﬂ-?(x/vp/)) if Di S TA\T,

h;r<x/7p/7pi> - {

~—

For A > miny,cg hi(2',p/, p;), the function ;" is defined by
(1.6) W?(l“ljplj A) = inf{p; : hi(z',p',pi) = hj(p/api) = AL

The function A is defined for 2/, p’ € R¢ as

Aol p) = in (@, 0, i) )
o(@’,p) enax (H;n (o', p p))

The functions p?(2’, p') are defined as

P (', p) = mf (2,0, Ao (2, D).

2. RELAXED AND FLUX-LIMITED SOLUTIONS

2.1. Test functions. In order to define viscosity solutions, the set of test functions has
to be made precise.

Definition 2.1 (Test functions). A function ¢ : (0,7) x J — R is a test function for (1.1)
if it is continuous in (0,7) X J, @l(o.r)xs, is Cpa and |or)xsr is C2.

We classically say that a function ¢ touches another function u at a point (¢,x) from
below (respectively from above) if u < ¢ (respectively u > ¢) in a neighbourhood of (¢, x)
with equality at (¢, x).
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2.2. Relaxed solutions.

Definition 2.2 (L-relaxed solutions). A function u: (0,7) x J — R is an L-relazed sub-
solution (resp. L-relaxed super-solution) of (1.1) if it is upper semi-continuous (resp. lower
semi-continuous) and for all test function ¢ touching u from above (resp. from below) at
(t,xz) € (0,T) x J;, we have
¢ + Fy(x, Do, D*¢) < 0 at (t, )
(vesp.  n + Fi(z, Do, D?6) > 0 at (t,2))
if ¢ T, and

either ¢, + H;(x, D¢) <0 at (¢,x) for some i € {1,..., N},
or L(—¢y, 016, ...,0n¢, D'¢) <0 at (t,x)

res either ¢, + H;(¢,) > 0 at (¢,x) for some i € {1,..., N},
P Yor L(—én, d10,...,0n0, D'é) > 0 at (1, )

ifxel.

The following observation is important for stability and the reduction of the set of test
functions. The proof contained in [15] can be easily extended to generalized junction
conditions. We give a sketch of proof for the reader’s convenience.

Lemma 2.3 (“Weak continuity” of relaxed subsolutions). Assume (F) and (L). Let u :
(0,7)x J — R be a L-relazed subsolution of (1.1). Then for alli € {1,...,N}, andx €T,

u(t,x) = limsup  u(s,y).
(s,y)—=(t,x),yeJ¥

Proof. Since u is upper semi-continuous, we have

u(t,z) > limsup  u(s,y).
(s,y)—=(t,x),yer
In order to prove the reverse inequality, we assume that there exists (t.,z.) € (0,7) x I"
such that
u(te,xe) > limsup  u(s,y).
(8,y) = (tse,4 ),y €SS
Since w is upper continuous, there exists a C' function ¥ defined in (0,7) x " and (g, zo) €
(0,T) x T such that
u(to, o) >  limsup  u(s,y)
(s,y)—=(to,x0),y€J;
and W strictly touches u from above at (t,z) € B,(to,z0) C (0,7) x I'. In particular
U —u > d; > 0in a neighbourhood (respectively to (0,7") x J) of 9B, (ty,zo) C (0,T) x I
We now consider the test function ®(t,z) = V(t,2’) + pa; for © € J;. We now use the
coercivity of the F; (see (F)) to show that for p; > 0 large enough, ® touches u from above
at (to, o). But this implies that

L(_atq)(t07 x0)7p17 ...y PN, 1'6, D,q)(t()u I'())) S 0
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which contradicts the assumption (L) since the p; are arbitrarily large. The proof is now
complete. O

2.3. Stability and existence. The following results related to stability of relaxed sub-
and super-solutions are expected. We recall that the lower semi-continuous envelope of a
function f is the largest semi-continuous function lying below f. We also recall that for
a family of functions (u.)., we can define a upper and lower semi-limit. They were first
introduced by Barles and Perthame [5, 6], see [9] for their definition and their classical use
in the viscosity solution theory.

Proposition 2.4 (Stability of relaxed solutions - I). Assume (F) and (L). If (uq)a i
a family of relaxed sub-solutions (resp. relazed super-solutions) of (1.1) which is locally
uniformly bounded from above (resp. from below), then the upper semi-continuous (resp.
lower semi-continuous) envelope of sup,, u, (resp. inf, uy) is a relazed sub-solution (resp.
relaxed super-solution) of (1.1).

Proof. We only treat the sub-solution case since the super-solution one is similar. Let u
denote the upper semi-continuous envelope of sup, u,. Consider a test function ¢ strictly
touching u from above at (t,2). There then exist a sequence (t,,z,) — (t,z) and «,, such
that ¢ touches u,, from above at (t,,z,). Writing the viscosity inequalities and passing
to the limit yields the desired result. U

Proposition 2.5 (Stability of relaxed solutions - II). Assume (F) and (L). If {u,} is a
sequence of relazed sub-solutions (resp. relaxed super-solutions) of (1.1) which is locally
uniformly bounded from above (resp. from below), then the relazed upper limit (resp. relaxed
lower limit) of {u,} is a relaxed sub-solution (resp. relaxed super-solution) of (1.1).

Proof. We only treat the sub-solution case since the super-solution one is similar. Let u
denote the relaxed upper limit of the sequence {u,}. Consider a test function ¢ strictly
touching u from above at (¢,z). There then exist a sequence (tx,x;) — (¢, ) and ny such
that ¢ touches u,, from above at (tj, z;). Writing the viscosity inequalities and passing to
the limit yields the desired result. U

We now turn to an existence result.

Theorem 2.6 (Existence of discontinuous relaxed solutions). Assume (F) and (L) and
consider uy uniformly continuous. There exists u such that its upper semi-continuous (resp.
lower semi-continuous) envelope is an relazed sub-solution (resp. relazed super-solution)
of (1.1) such that

u(0,z) = ug(x) for x € J.
Remark 2.7. This theorem states the existence of discontinuous solutions in the sense of

Ishii [17].

Proof. In view of the stability results, it is enough to construct a solution for some initial
datum uy € CY(J;) N Lip(J). For such ugy’s, we can construct barriers in the classical
way: u®(t,x) = ug(z) + Ct. For C large enough, u™ is a relaxed supersolution while u~ is
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a relaxed subsolution. We then consider W the set of all functions lying below u* whose
upper semi-continuous envelope is a relaxed subsolution. Then the supremum of w € W is
in W and it is maximal. Let w denote this maximal element. If the lower semi-continuous
envelope is not a relaxed supersolution, there exists a test function ¢ and a point (¢, )
such that ¢ touches w, from below at (t,z) without satisfying the corresponding viscosity
inequality. This implies ¢ < (uy ). in a neighbourdhood of (¢,z) and we can prove that
¢ is a relaxed subsolution in the same neighbourhood. Then we can construct a relaxed
subsolution ws which is not below w, contradicting its maximality. U

2.4. Flux-limited solutions. It is proved in [15] that, in the special case where L = L4
defined in (1.2) and for first order Hamilton-Jacobi equations, relaxed solutions satisfy the
junction condition in a stronger sense, which is made precise in the following definition.

Let Ay be defined by

(2.1) Ao(2',p') = max (min hi(as',p',pi)) :
Py

(3

Definition 2.8 (Flux-limited solutions). Given a function A : T' x R — R such that
A > Ay, a function u: (0,7) x J — R is a A-fluz-limited sub-solution (resp. A-fluz-limited
super-solution) of (1.1) if it is upper semi-continuous (resp. lower semi-continuous) and

for any test function ¢ in the sense of Definition 2.1 touching w from above (resp. from
below) at (t,z) € (0,T) x J;, we have

¢¢ + Fy(x, Do, D*¢) <0 at (t, )
(resp. ¢ + Fi(x, Do, D*¢) > 0 at (t,x))

if x ¢ T, and
La(—=¢1,010,...,0n0,2",D'¢) <0 at (t,)
(resp. La(=¢y, ¢, ...,0n0, 2", D'¢) >0 at (t,:v)>

ifzel.

Remark 2.9. If a flux limiter A is replaced with max(A, Ag), the corresponding flux function
L, is unchanged.

The following proposition asserts that for the special junction functions L4, L4-relaxed
solutions coincide with A-flux-limited solutions. It was proved in [15, 14] in the case of
first order equations. We point out that the multidimensional proof of [14] applies without
any change to degenerate parabolic equations satisfying (F).

Proposition 2.10 (L 4-relaxed solutions are A-flux-limited solutions — [14]). Assume (F)
and (L). Then any La-relazed sub-solution (resp. super-solution) of (1.1) is an A-fluz-
limited sub-solution (resp. super-solution) of (1.1).
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3. REDUCED SET OF TEST FUNCTIONS FOR FLUX-LIMITED SOLUTIONS

In this section, we explain why it is sufficient to consider a reduced set of test functions
in order to check that a function is a flux-limited (sub/super)solutions of (1.1). Such a
result is used in an essential way when proving the first main result of the paper, namely
the classification theorem 1.5.

This result generalizes the one contained in [15]. In order to state it, we need to consider
the equation away from the junction hyperplane I', and more precisely on each (open)
branch ¢:

(3.1) uy + Fy(x, Du, D*u) =0, (t,x) € (0,T) x J;.

We recall that A is defined in (2.1).
In order to introduce the reduced set of test functions (or reduced test functions for
short), we need the following definition

hilalai .fz’>(’)/7/

W) = ) 2T
hi(a!,p/ mi (', p')) i p < (2, p).

We recall that h;(2/,p',p;) = H;((2',0), (p/,p;)) and p; — h;(2',p/, p;) reaches its minimum

at 70(z’,p'), which is minimal.

Definition 3.1 (Reduced test functions). Consider a flux limiter A > Aj (see Remark 2.9).
A function ¢ : (0,7) x J — R is a reduced test function for (1.1) if there exists a function
¢ € CH(0,T) x RY) and ¢y € C(R) such that for x = (2/, ;) € J;,

p(t,x) = o(t,2") + ¢i(w:)
and for all t € (0,7, (2/,0) € T, p; = ¢(t,2') and p' = D'¢(t, x) satisfy
hi(a',p',pi) = hi (2", ', pi) = A, ).
We can now state and prove the following theorem.

Theorem 3.2 (Reducing the set of test functions). Assume (F) and consider a function
A:T xR — R such that A > Ag. Given a function u : (0,T) x J — R, the following
properties hold true.

i) If u is a sub-solution of (3.1) and for alli and (t,z) € (0,T) x T,
(3.2) u(t,z) = limsup wu(s,y),

s—t,y—x,ycJ’

then u is a Ag-fluz limited sub-solution of (1.1).
ii) If u is a sub-solution of (3.1) satisfying (3.2) and if for any reduced test function ¢
in the sense of Definition 5.1 touching u from above at (t,x) € (0,T) x I', we have

oi(t, ) + A(x', D'p(t,x)) <0,

then w is a A-fluz-limited sub-solution at (to,0).
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ii1) If u is a super-solution of (3.1) and if for any reduced test function ¢ in the sense of
Definition 3.1 touching u from below at (t,z) we have

oi(t,x) + A(x, D'p(t,z)) > 0,
then u is a A-fluz-limited super-solution at (tg,0).
Proof. The proof of the corresponding result in [15] applies here without any change after
proving the two lemmas 3.3 and 3.4 about so-called critical slopes. Indeed, with such

technical results in hands, the proof focuses on what happens on I' and second derivatives
do not appear any more. OJ

Lemma 3.3 (Super-solution property for the critical slope on each branch). Let i €
{1,...,N} be fized. Let u : (0,T) x J; — R be a lower semi-continous super-solution
of (3.1). Let ¢ be a test function touching u from below at some point (ty,zo) € (0,7) x I.
We consider

pi=sup{p € R:3r > 0,¢(t,z) + pr; < u(t,x) for (t,z) € B((to,x0),r) N (0,T) x J;}.
If pi < 400, then we have
o+ Hi(D'¢p,0;0+Di) >0 at(to,xo) withp; > 0.
Lemma 3.4 (Sub-solution property for the critical slope on each branch). Let u : (0,7) x

Ji = R be a sub-solution of (3.1). Let ¢ be a test function touching u from above at some
point (to, zo) € (0,T) x I'. For eachi=1,...,N, let us consider

pi = inf{p € R: 3r > 0,¢(t,z) + pr; > u(t,x) for (t,z) € B((to,z0),r) N (0,T) x J;}.

If u satisfies

ulto,z0) = limsup  u(s,y),
s—to,y—xo,y€J]

then p; > —oo; moreover, we have in this case
¢y + Hi(D'), e +pi) <0 at (to,0) with p; <O0.
We first prove Lemma 3.3.

Proof of Lemma 5.5. The proof follows the same lines of [Lemma 2.8, [15]].
From the definition of p;, for all € > 0 small enough, there exists § = §(¢) € (0,¢) such
that

u(s,y) > o(s,y) + (p; —e)y for all (s,y) € B((to,0),0) C R x J;
and there exists (t.,x.) € Bs/a(to,0) such that
u(te, xe) < ¢(te, x) + (7 + ). .
We choose a smooth function W : R4*2 — [—1,0] such that

U — 0 in Bl/g(to, J]())
—1  outside By (to, zo).
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We define
pi+e¢ ifyeJ,
s,y) = 6(s,y) + 20Ws(s,y) + 4 LT Ly
0 if not
with Ws(Y) = 6¥ (%) . Now, we have

O(s,y) < o(s,y) < uls,y) for (s,y) € Bs(to, xo) and y & J;

and
{(D(S>y) = ¢(57y) —2ed + (E“— €)y < u(s>y) for (S7y) € (885(150,.%0)) n (R X Jl)a
O(s,x) < @(s,z) < uls,x) for (s,x) € (to —d,to+0) x I’
and

O(te,x.) = d(te, ) + (Pi + €)xe > ulte, ).
We conclude that there exists a point (¢.,7z) € Bs(to, o) N (R x J) such that u— ® reaches
a minimum in Bj(t,0) N (R x J;,). We thus can write the viscosity inequality

O, + Fy(z, D®, D*®) >0 at (%.,77)

which means that

Gu(te, T2) + 2e(Ws)(te, T2)
+F (T2, (D' ¢p+eD'V4) (1, 72), 0:9(Te, T2 ) +20; V5 (T2, T2 ) +Pit+e, D*¢p+2e D* Vs (1, 77)) > 0.

So we can send € — 0 in the above inequality to obtain the desired inequality. The proof
is now complete. Il

We now turn to the proof of Lemma 3.4

Proof of Lemma 3.4. The main difference with the previous lemma is the claim that the
critical slope is finite. This is the reason why we only explain this point. Here again, we
follow closely [15].

Assume that p; = —oo. This implies that there exists p, — —oo and r, > 0 such
that ¢ + pp,z > w in B, = B, (to,r9) N R x J;. Remark first that, replacing ¢ with
¢+ (t —to)? + |r — mo|* if necessary, we can assume that

(3.3) u(t,z) < ¢(t, x) + ppa; if (¢, x) # (to, zo).

In particular, there exits d,, > 0 such that ¢ + p,z > u+ 6, on 9B, \ T.

Since u satisfies (3.2), there exists (t.,x.) — (to,xo) such that z. € J; and u(ty, xg) =
lim, o u(t., x.).

We now introduce the following perturbed test function

U(t,2) = Ot ) + poi + -

7

where n = 7n(e) is a small parameter to be chosen later. Let (s.,y.) realizing the infimum
of ¥ —u in B,. In particular,

(3.4) (P+pnxi—u)(Se,ye) < V(se,ye) —u(se,ye) < U(te,xe) —u(te,z:) =0 as e—0



GENERALIZED JUNCTION CONDITIONS 15

as soon as 1(g) = o(x’) with z. = (z.,2"). In particular, in view of (3.3), this implies that

(Se,ye) = (to, xg) as € — 0. Since u is a subsolution of (3.1), we know that

2n
be(se,ye) + Fi(ye, D'd(se,y.), 0i0(se, ye ) + P — ﬁy D*¢(s., ye) + WedJrl ®eq1) <0

(where (eq,...,eqs1) is an orthonormal basis of R¥*! and eq,; is orthogonal to I'). Use
now (F) in order to get

¢t(557 ye) + E(y67 D,QS(SEJ ys); ai¢<567 ye) + Pn —

n 2 n
5 D Sey Ye < 201—
(yL)? Pz i) yi

Remark now that (3.4) together with the choice of 1 implies

n =0
;— 6(1)'

{2

€
In particular, the coercivity of F; (see (F)) implies that p, — # is bounded as ¢ — 0.
Hence we can pass to the limit as € — 0 in the viscosity inequality and get

di(to, zo) + Hi(xo, D'd(to, x0), ;9 (to, 0) 4 p)) < 0
where pC € (—o0,0] is any accumulation point of p, — ﬁ as ¢ — 0. The previous
inequality implies in particular that p® is bounded from below by a constant C' which only

depends on H;, ¢, Do at (tg,zp). But this also implies that p, > C which is the desired
contradiction. The proof of the finiteness of p; is now complete. U

4. PROOF OF THE MAIN THEOREM

This section is devoted to the proof of the first main result, Theorem 1.5.
In order to prove it, we recall the following notation

W;r(l'/,p/, )‘) = lnf{pz : hi(xlaplapi> = h;r(p/apz) = )\}
where we recall that h;(z',p', p;) = H;((2',0),(p/,p:;)) and h; its non-decreasing part. In
the remainder of this section, we do not systematically write the (z', p’) dependence of flux

limiters in order to unclutter formulas.
We now prove the main theorem.

Proof of Theorem 1.5. Let Ap be defined as in Remark 1.6. Since Ay > Ay, the coercivity
is clear. The proof of the continuity of A; and the convexity of sublevel sets is the same
as in [14, Proof of Theorem 2.13].

In the remainder of the proof, we do not systematically write the dependance of 2’ and
p’ for the sake of clarity.

Let us first deal with the sub-solution case.

If A, = Ap, then Lemma 2.3 and Theorem 3.2 imply that any L-relaxed sub-solution is
a Ag-flux limited solution.

We thus now consider the case where A;, > Ay. We remark that the definition of Ay,
given in Remark 1.6 can be put into the following form

(4.1) Ap, = max(Ag,sup{\: L\, 7 (A), ..., 75(\) > 0}).
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In particular if L(Ag,pY,...,p%) > 0, then

(4.2) Ap =sup{\: L\, 7 (N), ..., 7% (N) > 0}.
Remark that the set is not empty since it contains Ag. It is bounded from above since L is
“semi-coercive” i.e. L(pg,...,pn) — +00 as max; max(0, —p;) — 400 and 7, (\) — +o00

+

)

as A\ — +oo. Consequently, Ag < Ap < +oo. Remark also that A — =
decreasing and lower semi-continuous. In particular,

(4.3) L(Ap, 7t (AL, ..., mh(AL)) > 0.

Let u be a L-relaxed sub-solution and let us prove that it is an (A — ¢)-flux-limited
sub-solution for all € > 0. In view of Lemma 2.3 and Theorem 3.2, we only have to consider
a reduced test function ¢ touching u from above at (¢, zo) € (0,7) x I'. We recall that

o(t,z) = ¢(t, ) + ¢(x:)
with ¢}(29) = 7 (AL — €) where p) = D'¢(ty, z,). By definition of relaxed solutions, we
have
(4.4) either L\, 7 (A —¢),...,75(AL —¢€)) <0
(4.5) or —A+ (AL —¢) <0
with A = =0 (to, zo).

We claim that (4.5) always holds true. We argue by contradiction by assuming that
(Ap —¢) > A. In view of (L), L is strictly decreasing in p,, for some iq € {0,..., N}.

(\) is non-

L(AL,WT(AL), . ,W]—;(AL)) < L()\, ’ﬂ'i_(AL — 5), R ,WE(AL — 5)) <0
which contradicts (4.3).
We conclude the proof by remarking that (4.5) yields

LAL—€(_8tSD7 61(,0, BRI 8N90a "L‘{b DISD) = at¢<t0’ xO)
- atqb(t()a .’I]O)
where the derivatives of ¢ in the left hand side are computed at (to,z¢) and the function
7t are computed at (zf, pp, Ar(x), pj)) in the right hand side.
As far as the super-solution case is concerned, we define

w0, A) = sup{p; + hi(@', ' pi) = B (1, i) = A}
and we remark that, if L(Ag,p?,...,p%) > 0, then
Ap = inf{A: LOL AT, 7H(V) < 0.

+ max(Ag(zg, py) — €, max hy (zy, py, T))

%

+ Ap(zg,pp) —€ <0

In particular,
L(Ap,7af (AL), ..., 7% (AL)) <0.
If now L(Ag,p?,...,p%) <0 then Ay = Ay and the previous inequality still holds true.

We can follow the reasoning from the sub-solution case and prove that L-relaxed super-
solutions are Ap-flux limited super-solutions. The proof is now complete. [l
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5. THE VANISHING VISCOSITY LIMIT

This section is devoted to the study of the limit (as e — 0) of the solution u® of the
following Hamilton-Jacobi equation posed on a multi-dimensional junction .J,

{ us + H;(x, Du®) = e Auf (t,x) € (0,T) x J},

5.1
(5.1) L(—uf,01us, ..., 0yus, 2’ D'u®) =0 (t,xz) € (0,T) xT

subject to the initial condition

(5.2) u(0,2) = ug(x), =z €.

At leat formally, the solutions u® converge towards the solution of

{ u; + Hi(x, Du) =0 (t,x) € (0,T) x Jf,

5.3
(5:3) L(—ut, Oyu, ..., 0nu,a’, D'u) =0 (t,x) € (0,T) x {0}.

The first result applies to general junction functions.
Theorem 5.1 (Vanishing viscosity limit). Assume (L) and

H; continuous
Vee '\ e R {H;(z,p) <A} convex
limyp|—s 400 infper H; (2, ) = +o00.

Let ug be uniformly continuous in J. Assume there ezists a relaxed solution u® of (5.1),
(5.2). Then u® converges locally uniformly towards the unique relaxed solution u of (5.3),
(5.2).

Remark 5.2. Even if we will not discuss it, the existence of solutions whose restriction to
J; are CHH(J;) NC?(J}) is expected in the case of (5.1). Some results are proved in [26, 27]
on compact junctions and some others are announced in [20].

Remark 5.3. As we previously mentioned it, a special case of the theorem is proved in [8].

Proof of Theorem 5.1. By discontinuous stability, the relaxed upper limit @ of u® is a L-
relaxed subsolution of (5.3), i.e. a Ap-flux-limited subsolution of (5.3). The relaxed lower
limit u is a L-relaxed super-solution of (5.3), i.e. a Ap-flux-limited super-solution of (5.3).
Moreover, u(0,z) < wug(x) < u(0,z). By the comparison principle proved in [14], we
conclude that u < u which yields the local uniform convergence towards the unique Ap-
flux-limited solution of (5.3), (5.2) which coincides with u as defined in the statement. [

Problem (1.3) can be translated into the junction framework as follows,

u§ + H;(z, Du®) = e Auf, reJf ~(0,+00), 1=1,2
—0u(t,0) — Ohus(t,0) =0,
u®(0, z) = up(z), reJ
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with Hl(xaplapd+1) = gl(%]?/,_pd—i-l) and HZ(ajvplvpd—‘rl) = ﬁ?(xvplvpd—‘rl)- In view of
Theorem 5.1, u® converges towards the relaxed solution

(5.4) w + Hi(z,u,) =0, z€JF
u(0,z) = up(x), reJ
associated with the generalized flux function

Le(p07p17p27'r/7p/) = —P1 — P2
Corollary 5.4 (The vanishing viscosity limit for the Kirchoff condition). The function u®
converges towards the Ae-fluz-limited solution of (5.4) where A, is determined as follows:
if T2, p') + 732 p') > 0 then A, = Ay; else A. = A(2',p') is the unique X > Aqy such
that there exists p¢ > 7% and p3° > p3 such that
hi(@', ', p ) = A fori=1,2, p[“+py;© =0,

Remark 5.5. If H; and Hs has no flat parts and #{(2/,p') + 79(2’,p') < 0, then A, is the
only A such that 7} (', p/, A) + 7 (2/,p/, A) = 0.

We now recall the result about maximal and minimal Ishii solutions from [14].

Proposition 5.6 (Maximal and minimal Ishii solutions are flux-limited — [14]). The mazx-
imal (respectively the minimal) Ishii solution of (1.5) corresponds to the A} (respectively

A} ) fluz-limited solution of (5.4) with
A7 (@', p) = max(Ag (', p), A* (2", p'))
A-‘r / / - ~0 / /
A;(x’,p’) _ 1 (:L; 713) Z.f]zg(x,,p,)
Ao(@',p')  if Py, D)

where

A*<x/ap/) = max (min(H2($/7p/7pd+l)7Hl(-r,ap,apd—&-l))

pa+1€1(z’.p’)
and I(x',p") = [min(p{(2’, p'), py(2’, p')), max(p (2’ p"), p5 (', p"))] with py minimal mini-
mizer of Hy and pS mazimal minimizer of H,.

We now prove the following theorem, which is equivalent to Theorem 1.9.
Theorem 5.7 (The vanishing viscosity limit selects the maximal Ishii solution). Assume

H; continuous
H;(2',0,+) quasi-convex

H;(x,+) coercive uniformly in x.
Then the u® of (5.1), (5.2) converges towards the unique Aj -fluz-limited solution of

u + Hi(x,Du) =0, z € JF
u(0, ) = up(x), x € J.



GENERALIZED JUNCTION CONDITIONS 19

Proof. In view of Theorem 5.1, we only have to prove that A, = A;.

Let p? denote pd(z',p'), i = 1,2. We forget about the dependance in (z’,p’) in order to
simplify the presentation.

If p{ + p3 > 0, then we know from Proposition 5.6 that A7 = Ag. Moreover we have in
this case that 7, (Agy) + m5 (Ag) > 0; on the one hand, Lemma 5.4 implies that A, = A,.
We thus conclude that A, = Ay = A} in this case.

We now assume that p := —p{ > pJ. In particular, Proposition 5.6 implies that

A7 = A7 = max(Ay, A")
with
A" = max min(H,(—q), H2(q)).

a€ [P35}
We distinguish three cases. .
First case: if Ho(p?) > Hi(pY) and Hy(p3) < Hy(pY) then

Ay < A] = A" = H(qr) = Hi(—ar).
Since q; > pY, g1 = 7 (A}) and since ¢; < —p?, then —q; = 7 (A}). Consequently,
m (A7) + 3 (A7) =0
which implies that A, = A} = Ar.
Second case: if Ho(p)) < Hi(p?) = A; then Ag = A; and A* = Hy(p?) < Ap. In turn,
A = AF = A,
But in this case, w5 (4g) = w5 (A1) > p? = —7; (Ag) which implies A, = Ay (see Theo-
rem 5.1).

Third case: if Hy(p)) > Hy(p9) then Ag = Ay > A; and A* < Ag and 7 (Ag) + 75 (Ag) >
0. Hence, AT = A7 = Ay = A.. The proof is now complete. O

6. A LARGE DEVIATION PROBLEM

In [7], the authors study large deviation problems related to diffusion processes whose
drift is smooth on either side of a hyperplane. Their proofs rely on probability tools and
ideas. Our goal in this section is to propose an analytical/PDE proof. Furthermore, by
using the results of previous sections, the rate function is related to the maximal Ishii
solution of a Hamilton-Jacobi equation.

Consider the stochastic differential equation in R4*!,
(6.1)  dX=(t) = b(X(t))dt + 2o (X (t))dW (1), X(0)==mz, 0<t<1
with
b() = {bl(aj) %f Tgp1 <0
bo(x) if xge1 >0

and

o(z) = o1(x) %f Tay1 <0
oo(z) ifxg >0
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In order to introduce the rate function, we have to define first Hamiltonians and La-
grangians. Hamiltonians are defined in [7] by

~ 1
Hy(x,p) = Slai(@)p,p) = bi(x)p, x.p €
with a; = o0l . Corresponding Lagrangians L, and L, are related to Hamiltonians H;
and Hs by the following formula [7]

]Rd+1 )

Hi(x,p) = sup {—pq— Li(z,q)}.

qeRd+1

Set ) = R? x (—00,0),Qy = R? x (0, +00), H = R4 x {0}.
Ly(z,p), =€,

(6.2) L(z,p) = { La(z,p)
io(x,p)

x € Qo,
r €H,

where Ly is defined by

i L i A€ 0,1],q1 > 0,¢2 <0,
LﬂxJﬂQ):ﬂnf{ALﬂLPC%)+(1—mﬂLﬂxJﬂqﬂ7{ [0,1], &1 %@ }.

AMp+ (1= N)g2 =g¢

Call 33, the set of all absolutely continuous function ¢ € C([0, 1], R4™!) satisfying ¢(0) =
xg. For any ¢ € ¥, we define the rate function I(¢) as follows,

(6.3) To(6) = / L(6(s), d(s)) ds

where L is defined as in (6.2). We first state the Laplace principle as presented in [7]

Definition 6.1. Let {Y*(¢),e > 0,0 < ¢t < 1} with Y¢(0) = 2 be a family of random
variables taking values in a Polish space ) and let I be a rate function defined as in (6.3).
We say that {Y¢} satisfies a Laplace principle with the rate function I if for every bounded
continuous function h mapping ) into R, and for any absolutely continuous function ¢ €

C([0, 1], R+ satisfying ¢(0) = xg, we have

h(YE)]} = — inf {h(6(1)) + L, ()}

(6.4) l_l_r% elnE,, {exp [ — — R

In [7], the following large deviation result is proved using probabilistic arguments. We
will give a PDE proof.

Theorem 6.2 ([7]). Assume that
b; is continuous,
o is continuous and uniformly elliptic, i.e. oo’ > ¢I with ¢ > 0,
(6.1) has a unique strong solution.

Then the family {X¢ e > 0} satisfies the Laplace principle in C([0,1], R*Y) with the rate
function I as defined in (6.3).
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Proof. Given a function h, let h. denote exp(_?h). The function u,. given by
ue(t,x) = Ey(he (X°(1)))

is a solution of

Qus — £ Trace(a(z)D*u.) + b(z)Du., te€ (0,1),2 € QU

ot

%(%Hug(t,x’,O*) = %8d+1u5(t, 2,07), zeH

UE(O,CU) :hE(x)a IEQIUQZ
(where a = o) The function v, = —eIn(u.) satisfies

Qe — £ Trace(a(z)D?v.) — ${a(x)Dv., Dv.) + b(z)Dv., t € (0,1),z € Q% JQ

ot
%(?dﬂve(t,:z:’, 0f) = %&Hlvs(t, x',0), reH
v:(0, ) = h(x), x e Q.

Moreover, in view of the definition of u. and v., we have
—h(Xe(t
ve(t,z) = —eInE, {exp {A} } :

€
Hence, our goal is to prove that
lim e (1,2) = inf {A(6(1)) + L(6)}

for any ¢ € ¥, and [ is defined in (6.3).
We know from Theorem 1.9 that v. converges locally uniformly towards the maximal
Ishii solution U™ of

(65) {%;+ﬁmuDUU:Q reQ, te(0,1)
U*(0,z) = h(x), x e Q Q.

It thus remains to prove that

(6.6) U*(1,2) = inf {h(6(1)) + L.(¢)}-

PNz

. In view of the definition of Lagrangians and Hamiltonians from [7] recalled above, we
have

Hy(z,p) = sup {pg—li(z,q)} with Iz, —q) = Li(z,q),

qeRdJrl
here [; corresponds to the running costs considered in [15, Section 6]. In view of the
definition of Ly recalled above, we have

(. . 0<A<,
LO(I’ q/’ O) = inf {/\Ll('xv q/a Q1) + (1 - )\)LQ("L‘7 qu qQ)v { }

1 >0, <0, g1 +(1—=XN)g2=0

0<A<1
:inf{)\ll(x,q',vl)+(1—)\)lg(:n,q',vg),{ - =7 }

U1 SO,UQ ZO,)\Ul"’(l_)\)UQ:O
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Hence, the formula of U™ given in [14, 4] coincides with (6.6). The proof is now complete.

g
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