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Abstract. In this paper, a new formulation of patch-based adaptive
mathematical morphology is addressed. In contrast to classical
approaches, the shape of structuring elements is not modified but adap-
tivity is directly integrated into the definition of a patch-based complete
lattice. The manifold of patches is learned with a nonlinear bijective map-
ping, interpreted in the form of a learned rank transformation together
with an ordering of vectors. This ordering of patches relies on three steps:
dictionary learning, manifold learning and out of sample extension. The
performance of the approach is illustrated with innovative examples of
patch-based image processing, segmentation and texture classification.

1 Introduction

Mathematical Morphology (MM) is a powerful framework for nonlinear process-
ing of images. Morphological operators are usually defined by using the concept
of Structuring Elements (SEs), small subsets used to explore images. The out-
put of a morphological filtering operation is then obtained by the interaction
between the image and a given SE. This idea has been extended to grey scale
images using the concept of complete lattices (orderings between the elements
to be processed) and MM relies on the application of lattice theory to spatial
structures in images. In classical MM, SEs remain the same for all points in
the image domain, i.e., one single SE is used to process the whole image by
translating it to every point in the image. Adaptive MM refers to morphological
filtering techniques that adjust SEs to the local context of the image. With the
need of more efficient morphological image processing operators, there has been
recently much interest in the development of adaptive mathematical morphology
(see [8] for a recent survey). Roughly, two types of adaptive MM can be consid-
ered [17, 8, 14]: i) location-adaptive MM: the shape of the structuring element
depends on the location x in the image, ii) input-adaptive MM: the shape of
the structuring element depends on local features extracted at the location x. In
the same time, image processing using local patches has become very popular
and was shown to be highly effective [6]. The processing proceeds by operating
on the image patches and exploiting their similarities, making the processing
much more adaptive to the image. Patches being simply feature vectors locally
describing a pixel at a given location in the image, some authors have considered
the use of patches within adaptive morphological operators.



Ta et al. [20–22] were the first to propose the use of patches for MM process-
ing. They have proposed a framework for adapting continuous MM on discrete
graph structures and the adaptivity is input-adaptive at two levels: the shape
of the SE is expressed by the graph topology that depends on a patch nearest
neighbor graph, and the PDE morphological process is also adaptive by incor-
porating weights into it. Other works have followed and considered the algebraic
formulation of MM. In [19], Salembier has introduced flat MM with adaptive
SE obtained from a patch nearest neighbor graph (this is a special case of [20–
22]) and non-flat MM with patch similarities incorporated into the SE. Then,
Velasco-Forero and Angulo [25] have recasted the works of Salembier in the gen-
eral framework of adaptive MM and presented their necessary properties to be
considered as algebraic MM operators. Recently, in [26] Yang and Li have con-
sidered a new type of adaptive SE based on amoeba SE combining local geodesic
distance and non-local patch distance for spatially variant morphological filters.

In this paper we consider a radically different approach for patch-based adap-
tive MM. Indeed, in these patch-adaptive MM approaches the shape of the SE is
classically modified to account for patch similarities. Since MM is based on com-
plete lattices, we can instead integrate the adaptivity directly into the definition
of the complete lattice and therefore define an ordering relationship between
patches. To deal with this difficult objective, we build upon our previous work
[13] that constructs complete lattices in vector spaces as a rank transform learned
through a nonlinear mapping. In the next section we show how complete lattice
construction by learning the patch manifold can be performed. Then we show
the benefit of our approach for patch-based morphological image processing,
segmentation and texture classification.

2 Patch Complete Lattice Learning

2.1 Complete lattice from patches

An image is represented by the mapping f : ⌦ ⇢ Zl ! T ⇢ Rn where l is the
image dimension, n the number of channels, and T is a non-empty set of the im-
age multivariate vectors. To each pixel xi 2 ⌦ of an image is associated a vector
vi = f(xi). We denote as P the vector space of patches of width w associated to
pixels of f , which is represented as the mapping: Fw : ⌦ ⇢ Zl ! P ⇢ Rnw2

. One
has pwi = Fw(xi) =

�
f(xi + t), 8t 2 [�w/2, w/2]2

�T . Performing MM operations
for functions on patch vector spaces therefore requires the definition of a com-
plete lattice (P,) [18] which means that we have to be able to compare patches
to order them. Comparing color vectors to define color complete lattice being
already difficult [3], one easily see that defining a complete lattice for patches’
vectors is much more challenging (a classical lexicographic ordering [2] being ob-
viously of no interest). One way to define an ordering relation between vectors of
a set T is to use the framework of h-orderings [10]. This corresponds to defining
a surjective transform h from T to L where L is a complete lattice equipped
with the conditional total ordering [10]. We refer to h as the h-ordering given



by:

h : T ! L and v ! h(v), 8(vi, vj) 2 T ⇥ T , vi h vj , h(vi)  h(vj) . (1)

Then, T is no longer required to be a complete lattice, since the ordering of T
can be induced upon L by means of h [3]. When h is bijective, this corresponds
to defining a space filling curve [7] or equivalently a rank transform [12]. We
propose to adapt the h-ordering framework to our problem of complete lattice
construction from patches for morphological image processing. Since a unique
patch p

w
i 2 P is associated to a given vector vi 2 T (and vice-versa), a complete

lattice (T ,w
h ) can be directly deduced from a complete lattice of patches (P,w

h
): vi w

h vj , p

w
i w

h p

w
j . This means that vectors of T can be ordered using

a patch comparison and we obtain a patch adaptive complete lattice definition
for all the vectors of the image. We denote by p

w(vi) the patch of width w

associated to a vector vi. We obtain the following patch-based complete lattice
(T ,w

h ) definition:
h

w : T ! L and v ! h(pw(v))

8(pw(vi),pw(vj)) 2 P ⇥ P associated to (vi, vj) 2 T ⇥ T

vi h vj , h

w(pw(vi))  h

w(pw(vj)) . (2)

The question is now on how to construct the mapping h

w to compare patches. It
is obvious that h

w cannot be linear [16] since a distortion of the space topology
is inevitable. As a consequence, we choose to focus our developments on learning
the patch manifold to construct h

w to compare patches.

2.2 Complete Lattice learning

We show how to construct a h

w-ordering for patches extracted from an image.
This is an adaptation of our previous works [13] and we summarize its principle
in the sequel, the whole approach being detailed in the form of an algorithm in
Algorithm 1. The approach consists in learning the manifold of patches with a
non linear mapping from a given image and to define the patch h

w-ordering from
this projection. To learn the manifold of patches, we use Laplacian EigenMaps
(LE), a technique for non-linear dimensionality reduction [11]. Computation-
ally, performing LE on the whole space of patches is not tractable in reasonable
time, so we use a four-step strategy that enables us to construct efficiently a h

w-
ordering. Given an image f : ⌦ ! T ⇢ Rn that provides a set T of m vectors
in Rn, a sampling (both regular and random) is performed on the set P of all m
patches of f to obtain a smaller P 0 (but representative) set of m0 patches. From
P 0, a dictionary D = {x01, · · · , x0p} of p vectors is build by Vector Quantization
[9]. Manifold learning by Laplacian EigenMaps is performed on this dictionary.
One starts by computing a similarity matrix KD that contains the pairwise sim-
ilarities KD(i, j) between all the dictionary vectors x0i. To have a parameter-free
algorithm, � is set to the maximum distance between input vectors. The nor-
malized Laplacian matrix L = I � D

� 1
2

D KDD
� 1

2
D is then computed. Laplacian



Eigenmaps Manifold Learning consists in searching for a new representation Y

obtained by minimizing 1
2

P
ij

��
yi � yj

��
2
KD(i, j) = Tr(YT

LY) under the con-

straint Y

T
DY = I. This cost function encourages nearby sample vectors to be

mapped to nearby outputs. The solution is obtained [5] by finding the eigenvec-
tors �D of L. This obtained projection operator corresponds to constructing a
hD-ordering from the data of the dictionary D and a new representation h

w
D(x

0
i)

is obtained for each element x

0
i of the dictionary:

h

w
D : x0i ! (�1

D(x
0
i), · · · ,�

p
D(x

0
i))

T 2 Rp
. (3)

Such a strategy of modeling the manifold from a patch dictionary was also
explored in [16]. This correspond to the construction of the complete lattice
(D,hw

D
) with a h

w
D-ordering, and this ordering is only valid for the set of patches

of the dictionary. Since we need the complete lattice (P,w
h ), the reduced dic-

tionary lattice is extended to all the patches of the initial lattice P by Nyström
extrapolation [23] of hw

D on P, and the complete lattice (P,w
h ) is obtained as

h

w : pw(vi) ! (�1(pw(vi)), · · · ,�p(pw(vi)))T 2 Rp. From this complete lattice
on patches, is deduced the patch-based complete lattice (T ,w

h ) on the initial
vectors of f .

Algorithm 1 Learning the Patch-based h

w-ordering
Inputs:
Image f : ⌦ ⇢ Zl ! T ⇢ Rn

Set T of m input multivariate vectors v

i

of f
Set P of m patches p

w

(v

i

) extracted from f
Step 1: Patch Sampling
Construct from P, by sampling, a new set P 0

= {x1, . . . , x
m

0} ⇢ P of m0 patches
Step 2: Patch Dictionary Construction
Build from P 0, by VQ, a patch dictionary D = {x01, . . . , x0p} with p ⌧ m0

Step 3: Patch Manifold Learning on the dictionary
Compute the similarity matrix KD between vectors x

0
i

2 D with

KD(i, j) = k(x0
i

, x0
j

) = exp
✓
� kx0

i

�x

0
j

k22
�

2

◆
with � = max

(x0
i

,x

0
j

)2D
kx0

i

� x

0
j

k22

Compute the degree diagonal matrix DD of KD
Compute the eigen-decomposition of the normalized Laplacian

L = I�D

� 1
2

D KDD

� 1
2

D as L = �D⇧D�

T

D
with eigenvectors �D = [�

1
D, · · · ,�p

D] and eigenvalues ⇧D = diag[�1, · · · ,�p

]

Step 4: Extrapolation of the projection �D to all the patches of P
Compute similarity matrices KP on P and KDP between sets D and P
Compute the degree diagonal matrix DDP of KDP
Extrapolate eigenvectors obtained from D to P with

� = D

� 1
2

DPK
T

DPD
� 1

2
D �D(diag[1]�⇧D)

�1

Output:
The projection h

w

: T ⇢ Rn ! L ⇢ Rp is given by � and defines the hw-ordering.



2.3 Patch-based MM operators

Given the patch-based complete lattice (T ,w
h ), we sort all vectors of f according

to w
h (the conditional total ordering on h

w(x)) and obtain a sorted image f

w
h .

This sorted image f

w
h : [1,m] ! Rn defines the ordering of the vectors of f .

This corresponds to a view of the learned complete lattice (T ,w
h ). From this

ordering, we can deduce the rank of a vector on the complete lattice L defined
as r : Rp ! [1,m], and construct a rank image as

fr : ⌦ ! [1,m], with fr(xi) = (r � hw � f)(xi), 8xi 2 ⌦ . (4)

In addition, we have also the definition of the inverse

(hw)�1(xi) = (fw
h � r)(xi), 8xi 2 ⌦ (5)

which is unique. With these elements, the original image f is now represented by
the rank image fr and the ordering of the pixels’ vectors fw

h . The original image
f is recovered exactly since f(xi) = (fw

h �fr)(xi), 8xi 2 ⌦. This shows that each
pixel xi vector is recovered by getting its corresponding vector in the Look-Up-
Table f

w
h with the index fr(xi). Given a specific morphological processing g, the

corresponding processed multivariate image is obtained by

g(f(xi)) = (fw
h � g � fr)(xi), 8xi 2 ⌦ . (6)

We can now formulate the corresponding h

w-erosion ✏hw,B and h

w-dilation �hw,B

of an image f at pixel xi 2 ⌦ by the structuring element B ⇢ ⌦ as:

✏hw,B(f)(xi) = {fw
h (^fr(pj)), pj 2 B(x)} = {fw

h (✏B(fr)(xi))} (7)

and
�hw,B(f)(xi) = {fw

h (_fr(pj)), pj 2 B(x)} = {fw
h (�B(fr)(xi))} (8)

with ✏B and �B the classical erosion and dilation on scalar images. This shows
that the MM operators operate on the ranks fr, and the image is reconstructed
through the sorted vectors fw

h that represent the learned lattice. It is easy to see
that these operators inherit the standard algebraic properties of morphological
operators since they fit into the theory of h-adjunctions [24]. From these basic
operators, we can obtain many morphological filters such as the h

w-openings
and h

w-closings:

�hw,B(f) = �hw,B(✏hw,B(f)) = f

w
h (�B(✏B(fr))) (9)

�hw,B(f) = ✏hw,B(�hw,B(f)) = f

w
h (✏B(�B(fr)) (10)

3 Applications

To illustrate the benefit of the approach, we provide several examples of its use for
morphological image processing, image segmentation and texture classification.
In all the experiments, the number of elements of the dictionary D depends on
the number m0 of vectors sampled from the original image and it is automatically
fixed to p = 2k with k the largest integer value such that 2k 

p
m

0
/8. When

colors are considered instead of patches (in this case w = 1), no sampling is
performed and m

0 = m.
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Fig. 1. Morphological processing of color images with a learned complete lattice from
colors (hw=1) or 3⇥ 3 patches (hw=3). The structuring element is a circle of radius 5.



3.1 Color image processing

To illustrate our approach, we consider a color image f : ⌦ ! T ⇢ R3. The com-
plete lattice is learned from the image and we obtain both rank fr : ⌦ ! [1,m]
and ordering f

w
h : [1,m] ! R3. Then, we compute the following morphological

operators: h

w-erosion ✏hw,B , h

w-dilation �hw,B , h

w-opening �hw,B , h

w-closing
�hw,B(f), hw-morphological gradient rhw,B(f) = �B(fr)�✏B(fr), and h

w-white
top hat. To see the effect of using a patch lattice instead of of color lattice, we
learn the lattice either directly from color vectors (w = 1) or color 3⇥ 3 patches
(w = 3). Figure 1 presents the results. Second line shows the dictionary D and
the extrapolated manifold eigenvectors � (shown on the three first axis). Third
line presents the induced learned lattice illustrated by the rank and the ordering.
As it can be seen, with the learned color lattice, we recover the classical aspects
of MM operators: erosion contracts structures of color far from first color (black)
of the complete lattice. Dilation provides the dual effect and extends structures
of color close to last color (white) of the complete lattice. If we now compare
the results between a color and a patch lattice, with a patch-based ordering,
the simplification effect is less strong and texture is much better preserved and
sharper results are obtained. Meanwhile the patch-based morphological process-
ing still exhibits the dual effect between both opening and closing filters. Finally,
patch-based gradient and white top hat provide much contrasted results than
color ones. Figure 2 presents results of an opening by reconstruction with the
classical lexicographic ordering and our proposed learned complete lattice from
color and patches. The patch-based processing shows again much better results:
the images have been strongly simplified but the color and texture are much
coherent and better preserved than with the other lattices.

Original Image �rec

h

Lex

,B

�rec

h

w=1
,B

�rec

h

w=5
,B

Fig. 2. Opening by reconstruction of color images by lexicographic color lattice (hLex)
or learned complete lattice from color (hw=1) and 5 ⇥ 5 patches (hw=5). The marker
image is obtained from an erosion in the same lattice with a square structuring element
of side 11 pixels.



3.2 Color image segmentation

To further show the interest of a patch-based processing, we consider its appli-
cation for image segmentation. Figure 3 presents such results. From the original
image, morphological gradients are computed with the classical lexicographic or-
dering and our proposed approach from color and patches of different sizes. One
can see (first row of Figure 3) on the patch based gradient images that, in areas
of similar textures no high gradient values are found whereas in the color based
gradients, high gradient values are found at strong color variations. In addition,
the patch-based gradients become smoother as the patch size grows, assessing
the capture of larger texture cues. Then, region seeds are superimposed inter-
actively (second row of Figure 3). Using the gradients and the seeds, a marker
controlled watershed is computed on the considered gradients (last row of Figure
3). The interest of a patch based processing appears then evident since it enables
to obtain a smoother and more precise segmentation.

Original Image r
h

Lex

,B

r
h

w=1
,B

r
h

w=3
,B

r
h

w=7
,B

Seeds hLex Watershed hw=1 Watershed hw=3 Watershed hw=5 Watershed

Fig. 3. Segmentation of a color image with a seeded watershed on a morphological
gradient computed from lexicographic color lattice (hLex) or learned complete lattice
from color (hw=1), 3⇥ 3 patches (hw=3), and 7⇥ 7 patches (hw=7).

Figure 4 presents three additional MM segmentation from seeds. Only large
patches are now considered as they exhibited good results in Figure 3. The results
of the learned color lattice are slightly better than with lexicographic ordering,
but a patch based lattice enables to better delineate the objects’ contours, even
in very difficult images such as the tiger one.



Color image with seeds hLex Watershed hw=1 Watershed hw=7 Watershed

Fig. 4. Color image segmentation with a seed watershed from lexicographic color lattice
(hLex) or learned complete lattice from color (hw=1) and 7⇥ 7 patches (hw=7).



3.3 Color image texture classification

For color image texture classification, we consider the color textures of Outex13
[15]. This set contains 68 textures where every image has been divided into
20 non-overlapping sub-images each of size 128 ⇥ 128, thus providing a total
of 1360 images, which have been evenly divided as training and test sets. We
employ the morphological covariance as a texture descriptor [1]. Morphological
covariance K

0 of an image f is defined as the volume V ol of the image (i.e., the
sum of pixel values), eroded by a pair of points P2,v separated by a vector v

(the SE is composed of only two pixels): K 0(f, P2,v) = V ol(✏P2,v (f)). In practice
K

0 is computed for varying length of v and the normalized version K is used
for measurements: K(f) = V ol(✏P2,v (f))/V ol(f). The covariance based feature
vector that describes a color image texture is computed using four directions
(0�, 45�, 90�, 135�) with distances ranging from 1 to 49 pixels in steps of size two.
So, 25 values are available for the 4 directions on the 3 color channel making a
vector of 300 values to describe an image. We also consider the extended MM
covariance formulation of [4] that consider the concatenated results of three types
of SEs (2 points, a cross, a square) within a 3⇥ 3 square, providing a vector of
900 values. With the obtained feature set, we considered two classifiers: a 1-
nearest neighbor and a SVM. Figure 5 presents the classification accuracies.
For classical covariance that uses SEs of only 2 points, the results are relatively
close but better results are obtained with a learned complete lattice from colors.
In this case there is no strong benefit in the use of patches. However, for the
extended morphological covariance that uses more complex SEs, a significant
gain appears: the learned complete lattice of colors is now much better than
the classical lexicographic lattice and the patch-based learned lattice performs
the best. The gain of using patches for MM texture classification appears now
evident and confirms that the use of higher level cues than simple color in a MM
texture feature extraction enables to obtain better features, and consequently
better classification (whatever the considered classifier).

4 Conclusion

This paper has detailed an approach towards the construction of patch-based
adaptive MM operators. The complete lattice of patches if learned by manifold
learning from images and induces a patch-based learned complete lattice of the
initial vectors of the image. To be efficient a three step strategy based on dictio-
nary learning, manifold learning and out of sample extension has been devised.
Patch-based adaptivity has been highlighted for morphological processing as an
efficient way to preserve fine and repetitive structures for MM processing but
also for image segmentation and texture classification.
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