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Judgment aggregation and agenda manipulation

Franz Dietrich1

December 2015 (�rst version September 2013)

Abstract: When individual judgments (�yes�or �no�) on some propositions are aggre-
gated into collective judgments, outcomes may be sensitive to the choice of propositions
under consideration (the agenda). Such agenda-sensitivity opens the door to manip-
ulation by agenda setters. I de�ne three types of agenda-insensitivity (�basic�, �full�,
and �focal�) and for each type axiomatically characterize the aggregation procedures
satisfying it. Two axioms turn out to be central for agenda-insensitivity: the familiar
independence axiom, requiring propositionwise aggregation, and the axiom of implicit
consensus preservation, requiring the respect of any (possibly implicit) consensus. As
the paper�s second contribution, I prove a new impossibility theorem whereby these two
axioms imply dictatorial aggregation for almost all agendas. JEL Class.: D70, D71.

Keywords: judgment aggregation, multiple issues, description-sensitivity, agenda ma-
nipulation, impossibility theorems, characterization theorems

1 Introduction

Imagine that the board of a central bank has to form collective judgments (�yes�or �no�)
on some propositions about the economy, such as the proposition that prices will rise.
Disagreements on a proposition are resolved by taking a majority vote. The chair of the
board knows that a majority believes prices won�t rise. Nonetheless he wants the board
to form a collective judgment that prices will rise.2 To achieve this goal, he removes the
proposition �prices will rise�from the agenda, while putting two new propositions on the
agenda: �GDP will grow�, and �growth implies in�ation�, i.e., �if GDP will grow, then
prices will rise�. Once it comes to voting, the two new propositions are each approved by

Inflation? Growth? Growth implies inflation?

Member 1 Yes Yes Yes

Member 2 Yes No No

Member 3 No Yes No

Majority No Yes Yes

manipulated agendainitial agenda

Figure 1: An agenda manipulation reversing the collective judgment on in�ation

1Paris School of Economics & CNRS. Email: fd@franzdietrich.net. Web: www.franzdietrich.net.
2The reason might be his belief in imminent in�ation, or his desire for the bank to raise interest

rates (which happens only if the board concludes that there is an in�ation risk). In the �rst case he
cares about the truth of collective judgments. In the second case he cares about consequences (actions)
resulting from collective judgments. This paper leaves open the motivation of agenda setters.

1



a (di¤erent) majority. The chair is pleased, since the collective beliefs in growth and in
growth implying in�ation logically entail a belief in in�ation. This agenda manipulation
has successfully turned an (explicit) �no in�ation�judgment into an (implicit) �in�ation�
judgment. Table 1 illustrates this reversal in the case of a three-member board.

This example shows that majority voting is vulnerable to agenda manipulation.
Which rules (if any) are immune to agenda manipulation? This paper de�nes di¤erent
types of agenda sensitivity, and characterizes the aggregation rules immune to each type.
Two axioms on the aggregation rule turn out to play key roles in ensuring manipulation-
immunity: independence (i.e., the analogue for judgment aggregation of Arrow�s axiom
of independence of irrelevant alternatives for preference aggregation), and implicit con-
sensus preservation (i.e., the principle of respecting unanimity, in a strengthened version
extended to implicit judgments). In a new impossibility theorem, I prove that these two
axioms can almost never be satis�ed by an aggregation rule which is non-dictatorial (as
well as having an unrestricted domain and generating rational collective judgments).
This impossibility theorem is also of interest in its own right, i.e., independently of the
issue of agenda manipulation. Indeed the two axioms need not be motivated by consid-
erations of agenda manipulation. The paper therefore has two main contributions: an
analysis of agenda manipulation, and the proof of a new impossibility theorem.

The present analysis of agenda sensitivity �lls a gap in the literature on judgment
aggregation, in which agenda sensitivity/manipulation is often mentioned informally
and was treated in a semi-formal way by Dietrich (2006).3 Other types of manipulation
have however been much studied. One type is the manipulation of the aggregation rule,
more precisely of the order of priority in which a sequential aggregation rule considers
the propositions in the agenda (List 2004, Dietrich and List 2007c, Nehring, Pivato
and Puppe 2014). Another type of manipulation is strategic voting, in which voters
do not report truthfully their judgments. Strategic voting has been studied using two
di¤erent approaches. One approach focuses on opportunities to manipulate, setting aside
the behavioural question of whether voters take these opportunities or vote truthfully
(e.g., Dietrich and List 2007b, Dokow and Falik 2012). The other approach focuses
on incentives to manipulate, i.e., on actual voting behaviour (e.g., Dietrich and List
2007b, Dokow and Falik 2012, Ahn and Oliveros 2014, Bozbay, Dietrich and Peters
2014, DeClippel and Eliaz 2015; see also Nehring and Puppe 2002). The �rst approach
requires only a basic, preference-free judgment-aggregation setup, whereas the second
approach requires modelling voters�preferences (and their private information, if any).
The present paper studies whether an agenda setter has opportunities to manipulate
via the choice of agenda. I leave open whether he is himself a voter or an external
person, and whether he takes such opportunities or refrains from manipulation. The
latter question depends on his preferences, which are not modelled here. Although
manipulation behaviour is not addressed explicitly, it is overly clear that manipulation
opportunities will lead to manipulation behaviour under many plausible preferential
assumptions.4

The paper�s second contribution �a new impossibility theorem �connects to a series
of impossibility results in the �eld; see for instance List and Pettit (2002), Pauly and van

3The limited overlap of the present paper with Dietrich (2006) is explained in Section 4.
4One such assumption is that the agenda setter holds preferences over outcomes that are totally

independent of votes and voters�information, as in our introductory example where the agenda setter
simply wants a collective judgment of rising prices.
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Hees (2006), Dietrich (2006), Dietrich and List (2007a), Mongin (2008), Nehring and
Puppe (2008), Duddy and Piggins (2013), and papers in the Symposium on Judgment
Aggregation in Journal of Economic Theory (C. List and B. Polak eds., 2010). Of
particular interest to us is a theorem which generalizes Arrow�s Theorem from preference
to judgment aggregation (Dietrich and List 2007a and Dokow and Holzman 2010, both
building on Nehring and Puppe 2010 and strengthening Wilson 1975). The new theorem
shows that if in the generalized Arrow theorem the Pareto-type unanimity condition
is extended towards implicit agreements, then, perhaps surprisingly, the dictatorship
conclusion now holds for almost all agendas, not just agendas of a quite special structure.

I should mention a growing branch of the literature which constructs concrete judg-
ment aggregation rules, and whose attention I hope to draw to agenda manipulation.
Many proposals have been made. Our analysis will imply that almost all proposals are
vulnerable to agenda manipulation, yet in di¤erent ways and to di¤erent degrees.5

The paper is structured as follows. Section 2 de�nes the framework. Section 3
states and explains the impossibility theorem on propositionwise and implicit consensus
preserving aggregation. Sections 4 and 5 address agenda-sensitivity, stating characteri-
zation and impossibility results. Section 6 adds concluding remarks. Appendix A de�nes
an alternative framework (more typical for judgment-aggregation theory) in which all
our results continue to hold. Appendix B contains all proofs.

2 The framework

I now de�ne the judgment-aggregation framework (e.g., List and Pettit 2002 and Diet-
rich 2007, 2014). I de�ne it in a semantic version, which takes propositions to be sets of
possible worlds (�events�) rather than abstract or syntactic objects. The semantic way of
thinking is uncommon in the �eld, but familiar elsewhere in economics, and convenient
in this paper.6 But nothing hinges on using this framework: all formal results in the
main text continue to hold in a general framework which is de�ned in Appendix A.

A group of n individuals, labelled i = 1; :::; n, needs to form yes/no judgments on
some interconnected propositions. We assume that n � 3.7

The agenda. Let 
 be a �xed non-empty set of possible worlds or states. A proposition
or event is a subset p � 
; its negation or complement is denoted p := 
nA. Those
propositions on which judgments (�yes�or �no�) are formed make up the agenda. As
usual, I assume that the agenda is a union of pairs fp; pg, the issues on the agenda.
A board of a central bank might deal with the issues fgrowth, no-growthg, fin�ation,
no-in�ationg, and so on. Formally:

5The proposals include premise- and conclusion-based rules (e.g., Kornhauser and Sager 1986, List
and Pettit 2002, Dietrich 2006), sequential rules (e.g., List 2004, Dietrich and List 2007b), distance-based
rules (e.g., Konieszny and Pino-Perez 2002, Pigozzi 2006, Miller and Osherson 2008, Eckert and Klamler
2009, Lang et al. 2011, Duddy and Piggins 2012), quota rules with well-calibrated acceptance thresholds
and various degrees of collective rationality (e.g., Dietrich and List 2007b; see also Nehring and Puppe
2010), aggregation rules for restricted domains (Dietrich and List 2010, Pivato 2009), relevance-based
aggregation rules (Dietrich 2015), Borda-like and scoring rules (Dietrich 2014, Duddy, Piggins and
Zwicker 2016), and rules which approximate the majority judgment set when it is inconsistent (Nehring,
Pivato and Puppe 2014).

6The notion of the the �scope�of an agenda becomes more concrete.
7All theorems except the �only if�part of Theorems 1 and 5 even hold for n � 2.
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De�nition 1 An agenda is a proposition set X � 2
 which is closed under negation,
i.e., p 2 X , p 2 X, and which (in this paper) is �nite and contains at least one
proposition p 6= 
;?. Each pair fp; pg � X is an issue of the agenda.8

The closure under negation of a proposition set Y is denoted Y � :=
S
p2Y

fp; pg. So

I can conveniently write an m-issue agenda as X = fp1; :::; pmg�, where pi belongs to
the ith issue. An individual�s judgment set is the set of propositions in X he believes.
The following are standard requirements on judgment sets:

De�nition 2 Given an agenda X, a judgment set J � X is consistent if
T
p2J

p 6= ?,

complete if it contains a member of each issue fp; pg � X, and rational if it is both
consistent and complete. The set of rational judgment sets is denoted JX or just J .

As a concrete example, assume 
 = f0; 1g3. In a world (j; k; l) 2 
 the �rst
component j indicates whether it is sunny (1) or not (0), the second one k whether it
is warm (1) or not (0), and the third one l whether it is windy (1) or not (0). Consider
the propositions p = f(j; k; l) 2 
 : j = 1g (it�s sunny), q = f(j; k; l) 2 
 : k = 1g (it�s
warm) and r = f(j; k; l) 2 
 : l = 1g (it�s windy). Here are some potential agendas:

X = fp; q; rg�; X = fp \ q; p \ r; q \ rg�; X = fp; p [ q; p [ rg�: (1)

The �rst of these agendas has no logical interconnections between its issues: all 23 = 8
judgment sets consisting of one proposition from each issue (i.e., fp; q; rg, fp; q; rg,
fp; q; rg, fp; q; rg, ...) are consistent, hence in J . The other two agendas have intercon-
nected issues. For instance, the judgment set fp \ q; p \ r; q \ rg is inconsistent, hence
not in J .

The scope of the agenda. A judgment set J � X typically settles many more propo-
sitions than those it explicitly contains, where �settling a proposition�means entailing
whether it is true or false. For instance, although the �rst agenda in (1) does not con-
tain the proposition p \ q, this proposition is settled by the judgments on p and on q.
In fact, for the �rst agenda any judgment set J 2 J settles all propositions p � 
;
I shall say that all propositions are in the agenda�s scope. By contrast, for the other
two agendas in (1) some propositions p � 
 may remain unsettled, i.e., are out of the
agenda�s scope. The following de�nitions make all this precise.

De�nition 3 A proposition p (or proposition set J) entails a proposition p0 (or propo-
sition set J 0) if p (resp.

T
q2J

q) is a subset of p0 (resp.
T
q2J 0

q).

De�nition 4 (Dietrich 2006) A proposition set J settles a proposition p if it entails
p or entails p. The scope of an agenda X is the set X of propositions settled by each
rational judgment set J 2 JX ; equivalently, it is the closure of X under union (or
intersection) and negation, i.e., the algebra generated by X.

8The �niteness restriction could be dropped in many results, e.g., those of Section 4.
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The scope of an agenda can be quite large. It evidently contains all agenda propo-
sitions and all unions and intersections of agenda propositions. We can continue: it
contains all negations of unions of agenda propositions, all intersections of negations of
unions of agenda propositions, and so on. In short, the scope contains all propositions
constructible from agenda propositions. For instance the scope of the �rst agenda in
(1) contains all propositions: X = 2
. Indeed, each rational judgment set uniquely
determines a single world (e.g., fp; q; rg determines the world (1; 1; 0)), hence is able
to settle every proposition. Note that the scope X of an agenda X is itself an agenda,
where X � X.

De�nition 5 Two agendas X and X 0 are equivalent if they have same scope X = X 0.

For instance agendas X = fp; qg� and X = fp \ q; p \ q; p \ q; p \ qg� have the
same scope and are thus equivalent. Equivalent agendas represent essentially the same
decision problem, but framed di¤erently.

Note that for any agenda X the atoms of the scope X (the minimal non-empty
propositions in X) are the intersections of maximally many mutually consistent propo-
sitions in X, i.e., the propositions

T
p2J

p where J 2 JX .

Aggregation rules. An aggregation rule for an agenda X is a function F which to
every pro�le of �individual�judgment sets (J1; :::; Jn) (from some domain, usually J n)
assigns a �collective�judgment set F (J1; :::; Jn). For instance, majority rule is given by

F (J1; :::; Jn) = fp 2 X : more than half of J1; :::; Jn contain pg
and generates inconsistent collective judgment sets for many agendas and pro�les. We
shall be concerned with aggregation rules whose individual inputs and collective output
are rational. Such rules are functions F : J n ! J . Note that we exclude ties in this
paper: our aggregation rules are by de�nition �resolute�.

The example of preference aggregation. For a (�nite non-empty) set A of �alter-
natives�, let 
 be the set of strict linear orders � on A, where x � y reads �x is better
than y�according to a given (objective) criterion. So worlds describe how the alterna-
tives are (objectively) ranked. The group disagrees on the ranking. The preference
agenda is de�ned as X = fxPy : x; y 2 A; x 6= yg, where xPy is the proposition that
x is better than y, i.e., xPy = f� 2 
 : x � yg (note that xPy = yPx). There is
a one-to-one correspondence between rational judgment sets J 2 J and strict linear
orders � on A, given by xPy 2 J , x � y. Aggregation rules F : J n ! J can thus
be regarded as preference aggregation rules. Aside from this formal analogy between
preference aggregation and judgment aggregation for the preference agenda, there is an
interpretational di¤erence: preferences are usually viewed as attitudes of comparative
desire, not judgments (beliefs) about an objective ranking.

3 The impossibility of implicit consensus preserving propo-
sitionwise aggregation

I now state two axioms on an aggregation rule F : J n ! J for a given agenda X; they
will jointly lead to an impossibility result. Each axiom is interesting in itself, but also
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matters �instrumentally�by helping to limit agenda manipulation, as will be shown in
depth in Section 4.

The �rst axiom is the classical condition of �independence�or �propositionwise ag-
gregation�. It requires the collective judgment on any given proposition in the agenda
to depend solely on the individuals� judgments on this proposition � the judgment-
aggregation analogue of Arrow�s axiom of independence of irrelevant alternatives (to
which it reduces in the case of the preference agenda).

Independence (�propositionwise aggregation�): For all propositions p 2 X and
pro�les (J1; :::; Jn); (J 01; :::; J

0
n) 2 J n, if p 2 Ji , p 2 J 0i for every individual i, then

p 2 F (J1; :::; Jn), p 2 F (J 01; :::; J 0n).

This axiom is normatively no less controversial than Arrow�s analogous axiom. It
is known to be necessary for preventing strategic voting. We here focus on its role in
preventing agenda manipulation (Dietrich and List 2007b). As shown in Section 5, it is
also necessary for preventing an agenda manipulator from being able to reverse explicit
collective judgments. In short, if independence is violated, then the collective judgment
on a proposition p 2 X depends on other propositions in the agenda, and can thus be
reversed by the agenda setter through adding or removing other propositions.

Our second axiom requires respecting consensus, in an unusually strong sense. I �rst
recall the two standard consensus conditions, which pertain to judgment-set-wise resp.
proposition-wise consensus:

Unanimity preservation: F (J; :::; J) = J for each unanimous pro�le (J; :::; J) 2 J n.

Unanimity principle: For all (J1; :::; Jn) 2 J n and p 2 X, if each Ji contains p, so
does F (J1; :::; Jn):

The �rst of these axioms is weaker and almost unobjectionable. The second one is
analogous to the Pareto principle (and equivalent to it for the preference agenda). Our
own consensus axiom resembles the latter axiom, but strengthens it by also covering
�implicit�consensus on propositions outside the agenda. The axiom can be stated in
three equivalent versions.

Implicit consensus preservation (version 1): For every proposition p in the agenda�s
scope X, if each judgment set in a pro�le (J1; :::; Jn) 2 J n entails p, then F (J1; :::; Jn)
entails p.

This axiom is demanding. It for instance implies that whenever every individual
accepts at least one of some given propositions in X, i.e., implicitly endorses their
disjunction (union), then so does the collective �which might con�ict with majority
voting since each of these propositions might be rejected by a majority. In the case of
the preference agenda, the axiom for instance implies that if every individual ranks a
certain alternative x in 2nd position, i.e., implicitly endorses the proposition �x is the
2nd best alternative�, then so does the collective �although many standard preference
aggregation rules (such as Borda rule) sometimes rank in 1st position an alternative
which everyone ranks in 2nd position.
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Later I give two formal arguments for this axiom, both related to the prevention of
agenda manipulation. Let me anticipate them very brie�y. Firstly, the axiom prevents
a particularly bad form of agenda sensitivity, in which unanimously supported collective
judgments, explicit or implicit ones, are being reversed (see Section 4). Secondly, the
axiom is e¤ectively insensitive to redescribing (�reframing�) the decision problem: the
set of propositions p on which consensus must be preserved stays the same if the agenda
X is replaced by a new one which has the same scope and is thereby equivalent (see
Section 6).9

The axiom can be reformulated using the notion of a feature of a judgment set.
Examples are the feature of containing a given proposition p 2 X, and the feature
of containing at most two propositions from a given set S � X. We may identify
each feature with the set K � J of judgment sets having the feature. In its second
version, our axiom requires the collective judgment set to have each feature shared by
all individual judgment sets:

Implicit consensus preservation (version 2): For every K � J (every feature), if
each judgment set in a pro�le (J1; :::; Jn) 2 J n belongs to K (has the feature), so does
the collective judgment set F (J1; :::; Jn).

Intuitively, the versions 1 and 2 are equivalent because a judgment set J 2 J has a
given feature just in case it entails a certain proposition from the scope. For instance,
J contains two given propositions q and r from X just in case it entails the proposition
q \ r from X. In its third version, the axiom requires the collective judgment set to be
selected from the set of individual judgment sets:

Implicit consensus preservation (version 3): For every pro�le (J1; :::; Jn) 2 J n,
the collective judgment set F (J1; :::; Jn) belongs to fJ1; :::; Jng.

This axiom is far from an (undemocratic) dictatorship requirement, since the in-
dividual whose judgment set becomes the collective one may vary with the pro�le; he
could for instance be the pro�le�s �median�voter in a suitably de�ned sense.

Proposition 1 The three versions of implicit consensus preservation are equivalent.

I now combine our two axioms into an impossibility result. An aggregation rule
F : J n ! J is dictatorial if there is an individual i such that F (J1; :::; Jn) = Ji for all
J1; :::; Jn 2 J . As usual in the theory, the structure of the agenda matters. The agenda
X is called nested if it takes the very special form X = fp1; p2; :::; pmg� where m is
the number of issues and p1 � p2 � � � � � pm (whence also pm � pm�1 � � � � � p1). For
instance, the board of a bank might face such a nested agenda where pj is the proposition
�prices will grow by at most j percent�; and an academic hiring committee might face
such a nested agenda where pj is the proposition �candidate Smith will publish fewer
than j papers per year�. But most relevant agendas are not nested. The agendas in (1)
are not nested, and also the preference agenda de�ned in Section 2 is not nested (as
long as there are more than two alternatives). Finally, the agenda X is tiny if it has at
most two issues fp; pg (6= f
;?g), i.e., at most four propositions (6= 
;?).

9 I thank Marcus Pivato for bringing this fact to my attention.
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Theorem 1 Given an agenda, all independent and implicit consensus preserving ag-
gregation rules F : J n ! J are dictatorial if and only if the agenda is non-nested and
non-tiny.

To paraphrase the result, for almost all agendas our two axioms cannot be jointly
satis�ed by any non-dictatorial aggregation rule. Indeed, far more agendas imply im-
possibility than in the Arrow-like theorem mentioned in the introduction (and formally
stated later as Theorem 5). For instance all agendas in (1) fall under the impossibility
of Theorem 1 (they are non-nested), but not under that of the Arrow-like theorem. The
same is true of almost all example agendas used repeatedly in the literature to illus-
trate inconsistent majority judgments, such as agendas of type fp; q; p \ qg�. Theorem
1�s very wide class of �impossibility agendas� is a result of requiring implicit consen-
sus preservation, while standard impossibility theorems usually require one of the two
weaker consensus axioms mentioned earlier.

Theorem 1�s �only if�part is established by showing that, for a nested agenda X =
fp1; :::; pmg� (where p1 � p2 � � � � � pm), propositionwise majority rule satis�es all
requirements.10 In short, this is because each rational judgment set in J takes the
special form fp1; ; :::; pk�1; pk; :::; pmg for some cut o¤ point k (in f1; :::;m + 1g), and
propositionwise majority rule returns the judgment set of an individual who is median in
terms of the cut-o¤ point. This argument has the �avour of single-peakedness and other
structural conditions in preference or judgment aggregation. More precisely, nested
agendas have the special property that all pro�les in J n automatically satisfy several
structural conditions which guarantee consistent majority judgments, i.e., all conditions
introduced in List (2003) or Dietrich and List (2010).11 Judgment-aggregation theorists
will also be curious whether the notion of a non-nested agenda is related to any familiar
kind of agenda. Non-nested agendas can in fact be related to non-simple agendas.12

10 If n is even, then the majority is taken among individuals 1; :::; n� 1 only, to avoid ties.
11Consider, say, the condition of unidimensional alignment (a judgment-aggregation variant of single-

crossingness and Rothstein�s 1990 order restriction, to which it reduces if X is the preference agenda).
A pro�le (A1; :::; An) is unidimensionally aligned if the individuals can be linearly ordered such that,
for each proposition p 2 X, the individuals i with p 2 Ai all come before or all come after those with
p 62 Ai. The order might represent a political left-right order, with the individuals accepting a �left-wing�
proposition p located to the left of those rejecting it. For nested X, all pro�les in J n are necessarily
unidimensionally aligned: just order the individuals by increasing cut-o¤ point (the ranking between
two individuals with same cut-o¤ point can be chosen arbitrarily).
12An agenda X is simple if it has no subset Y � X with jY j > 2 that is minimal inconsistent,

i.e., is inconsistent but becomes consistent if any member is removed (informally, simplicity means
that there are no �complex�interconnections involving more than two propositions). For instance, the
preference agenda for a set of more than two alternatives is non-simple, since any �cyclical� subset
Y = fxPy; yPz; zPxg is minimal inconsistent. I show in Appendix B that a (non-tiny) agenda X is
nested if and only if it satis�es a condition only subtly distinct from the de�nition of simplicity: X has
no subset Y with jY j > 2 such that (Y nfpg) [ fpg is consistent for each p 2 Y . Adding �inconsistent�
before �subset Y �turns this characterization of nestedness into one of simplicity. This gives an idea of
how nestedness strengthens simplicity.
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4 Three types of agenda-insensitivity and their character-
izations

I now de�ne and characterize three forms of insensitivity of outcomes to the agenda
choice (and hence, to agenda manipulation). The characterization results show that
our two axioms �independence and implicit consensus preservation �play key roles in
ensuring agenda-insensitivity, along with other axioms.

Think of the agenda X as being chosen by an agenda setter. This agenda setter
has some room for maneuver, i.e., some degree of freedom in designing the agenda.
Typically his in�uence has limits: he might be able to �reframe�the decision problem,
but not to alter its topic altogether. For instance he cannot remove all �nancial issues
from the agenda of a bank�s board. The agenda setter might also face restrictions on
the agenda�s complexity or size: perhaps he cannot set an agenda with more than three
issues. To capture that only certain agendas X are feasible (choosable, settable), we
consider a �xed set X of agendas X � 2
 deemed feasible/possible. It could consist of
all agendas X � 2
; or of all agendas with at most six issues; or of all agendas without
certain given issues (the �too complex�issues, say); and so on. All we require from X
is that it contains each single-issue agenda fp; pg �

S
X2X

X. In particular, X need not

contain unions X [X 0 of agendas X;X 0 2 X , the scope X of agendas X 2 X , or the
maximal agenda X = 2
.

Can the agenda setter reverse collective judgments by changing the agenda? This
question obviously depends on which aggregation rules would be used for the various
feasible agendas. That is, it depends on what I call the �aggregation system�:

De�nition 6 An aggregation system is a family (FX)X2X containing an aggregation
rule FX : J nX ! JX for each feasible agenda X 2 X (where FX represents the rule used
if the agenda is X 2 X ).13

I now de�ne three conditions on an aggregation system (FX)X2X . Each one requires
the outcomes to be in a speci�c sense insensitive to the agenda choice, hence, immune to
agenda manipulation. The �rst condition states that the agenda setter cannot reverse
any explicit collective judgment, i.e., any collective judgment on a proposition in the
agenda:

De�nition 7 An aggregation system (FX)X2X is basically agenda-insensitive �for
short, agenda-insensitive � if any two feasible agendas X;X 0 2 X lead to the same
collective judgment on any proposition p 2 X \X 0: for all J1; :::; Jn 2 JX[X0,

p 2 FX(J1 \X; :::; Jn \X), p 2 FX0(J1 \X 0; :::; Jn \X 0):

What is the rationale behind this axiom? Think of Ji as individual i�s judgment set
under the (hypothetical) agenda X[X 0, and think of Ji\X and Ji\X 0 as his submitted
judgment sets under the (feasible) agendas X and X 0, respectively. Note the implicit

13An aggregation system could be viewed as a single �extended aggregation rule�with an additional
argument, the agenda. Note that each rule FX must have domain J n

X and co-domain JX (this restriction
might be lifted by a more general de�nition of �aggregation system�).
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idea that individuals hold �xed, i.e., agenda-independent, judgments on all propositions
p � 
. In short, individuals are themselves agenda-insensitive in their judgments. A
failure of individual agenda-insensitivity would of course open up additional sources of
agenda manipulation, which we do not model here.

By the next theorem, agenda-insensitivity forces each rule FX to be independent. It
also forces the aggregation rule FX to change coherently when the agenda setter extends
the agenda X to a new agenda X 0. What do I mean exactly? I start with two obvious
de�nitions:

De�nition 8 An agenda X 0 extends another one X if X � X 0.

De�nition 9 A set of propositions A is consistent with another one B if A [ B is
consistent.

I can now formally de�ne what it means for the aggregation rule to change coherently
as the agenda changes. For future purposes, the de�nition is formulated in full generality,
i.e., for arbitrary agenda changes, not just agenda extensions:

De�nition 10 In an aggregation system (FX)X2X , a rule FX0 coheres with a rule
FX if the outcome of FX0 is not ruled out by that of FX : for any any J1; :::; Jn 2
JX , FX0(J 01; :::; J

0
n) is consistent with FX(J1; :::; Jn) for at least some J

0
1; :::; J

0
n 2 JX0

consistent with J1; :::; Jn, respectively.

When do we call an entire aggregation system �coherent�?

De�nition 11 An aggregation system (FX)X2X is coherent if whenever an agenda
X 2 X is extended to another X 0 2 X the rule FX0 coheres with FX .

The following remark gives a clear idea of what it means for FX0 to cohere with FX
as the agenda is extended:

Remark 1 In case X 0 extends X, coherence of FX0 with FX means that the outcome of
FX0 extends that of FX for at least some extension of the individual judgments: for any
J1; :::; Jn 2 JX , FX0(J 01; :::; J

0
n) extends FX(J1; :::; Jn) for at least some J

0
1; :::; J

0
n 2 JX0

extending J1; :::; Jn, respectively.

I can now state the characterization result about agenda-insensitivity.

Convention: For any property of aggregation rules (such as independence), an aggre-
gation system (FX)X2X is said to satisfy it if and only if each rule FX satis�es it.

Theorem 2 An aggregation system (FX)X2X is agenda-insensitive if and only if it is
independent and coherent.

Basic agenda-insensitivity only prevents the agenda setter from reversing explicit
collective judgments, on proposition in the agenda. We now turn to a stronger require-
ment, which also excludes the reversal of implicit collective judgments, on propositions
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outside the agenda. For instance, if an agenda X = fp; qg� leads the collective judg-
ment set fp; qg, so that the collective implicitly accepts the proposition p \ q from the
scope X, then the acceptance of p \ q cannot be reversed by using another agenda X 0.
Formally:

De�nition 12 An aggregation system (FX)X2X is fully agenda-insensitive if any
two feasible agendas X;X 0 2 X lead to the same collective judgment on any proposition
p 2 X \X 0: for all J1; :::; Jn 2 JX[X0,

FX(J1 \X; :::; Jn \X) entails p, FX0(J1 \X 0; :::; Jn \X 0) entails p:

Here, Ji, Ji \ X and Ji \ X 0 again represents individual i�s judgment set under
the (hypothetical) agenda X [X 0, the (feasible) agenda X resp. the (feasible) agenda
X 0. While basic agenda-insensitivity requires independence and coherence, full agenda-
insensitivity requires stronger versions of independence and coherence. How are these
stronger versions de�ned? First, an aggregation rule F for an agenda X is called inde-
pendent on Y (� X) if the collective judgment on any proposition in Y only depends
on the individuals�judgments on this proposition: for all propositions p 2 Y and all pro-
�les (J1; :::; Jn) and (J 01; :::; J

0
n) in the domain, if for each individual i Ji entails p if and

only if J 0i entails p, then F (J1; :::; Jn) entails p if and only if; F (J
0
1; :::; J

0
n) entails p (see

Dietrich 2006). Setting Y = X yields standard independence. Full agenda-insensitivity
however requires independence on the scope Y = X; this is the �maximal�choice of Y .

Second, I strengthen the coherence condition by requiring the aggregation rule to
change coherently not just when the agenda setter extends the agenda, but more gen-
erally when he �essentially extends�the agenda, i.e., when he extends the scope of the
agenda:

De�nition 13 An aggregation system (FX)X2X is strongly coherent if whenever an
agenda X 2 X is essentially extended to another X 0 2 X , i.e., X � X 0, then the rule
FX0 coheres with FX .

Note that if X � X 0 (or equivalently, X � X 0), then the judgments for X 0 subsume
those for X: each J 0 2 JX0 entails a J 2 JX . This implies a concrete characterization
of coherence of FX0 with FX in case X 0 essentially extends X:

Remark 2 In case X 0 essentially extends X, i.e., X � X 0, coherence of FX0 with
FX means that the outcome of FX0 entails that of FX for at least some �essential ex-
tensions� of the individual judgments: for any J1; :::; Jn 2 JX , FX0(J 01; :::; J

0
n) entails

FX(J1; :::; Jn) for at least some J 01; :::; J
0
n 2 JX0 entailing J1; :::; Jn, respectively.14

I can now state the characterization of full agenda-insensitivity:

Theorem 3 An aggregation system (FX)X2X is fully agenda-insensitive if and only if
it is independent on the entire scope X and strongly coherent.

14Strong coherence is equivalent to ordinary coherence if the scope of any feasible agenda is a feasible
agenda, i.e., if X 2 X ) X 2 X .
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One may regard Theorems 2 and 3 as formal counterparts of claims in Dietrich
(2006) about the role of independence and independence on the scope in preventing
agenda manipulation, although Dietrich (2006) does not yet invoke feasible agendas,
aggregation systems, and coherence or strong coherence.

Strong coherence has an interesting consequence. If two agendas X and X 0 are
equivalent (i.e., have same scope X = X 0), any judgment set for X is equivalent to
one for X 0, and any aggregation rule for X is equivalent to one for X 0. Formally, any
J 2 JX is equivalent to the unique J� 2 JX0 such that J and J� entail each other; and
any aggregation rule F : J nX ! JX is equivalent to the unique rule F 0 : J nX0 ! JX0

de�ned as the image of F via transforming judgment sets in JX into equivalent ones in
JX0 ; formally,

[F (J1; :::; Jn)]
� = F 0(J�1 ; :::; J

�
n) for all J1; :::; Jn 2 JX .

One easily checks that strong coherence ensures equal treatment of equivalent agendas
(and thus prevents Dietrich�s 2006 �logical agenda manipulation�). Formally:

Remark 3 If an aggregation system (FX)X2X is strongly coherent, then for any equiv-
alent agendas X;X 0 2 X the corresponding rules FX and FX0 are equivalent.

I now consider a third agenda-insensitivity condition. Rather than requiring that
all collective judgments in the scope are irreversible (by a change of agenda), let us
merely require irreversibility of those collective judgments which are most important or
focal in the sense of being unanimously supported by all individuals. Indeed, reversing
a unanimously supported collective judgment seems particularly bad, as it goes against
(�overrules�) all individuals. The condition that unanimously supported collective judg-
ments cannot be reversed by agenda manipulation is formally stated as follows:

De�nition 14 An aggregation system (FX)X2X is is focally agenda-insensitive if
any two feasible agendas X;X 0 2 X lead to the same collective judgment on any unan-
imously accepted proposition in X \X 0: for all J1; :::; Jn 2 JX[X0 and all propositions
p 2 X \X 0 entailed by each Ji,15

FX(J1 \X; :::; Jn \X) entails p, FX0(J1 \X 0; :::; Jn \X 0) entails p:

This condition turns out to be equivalent to the requirement that each rule FX
is implicit consensus preserving, assuming a mild condition of non-degeneracy (i.e.,
unanimity preservation):

Theorem 4 An aggregation system (FX)X2X is focally agenda-insensitive and una-
nimity preserving if and only if it is implicit consensus preserving.

15Note that Ji entails p if and only if Ji \X entails p (since p 2 X), and if and only if Ji \X 0 entails
p (since p 2 X 0). So, the requirement that each Ji entails p means that p emerges as unanimously
accepted, whether agenda X or agenda X 0 is used.
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5 Agenda-insensitive aggregation: impossibility results

Our characterization results (Theorems 2-4) establish that agenda-insensitivity requires
that aggregation rules satisfy certain axioms such as independence. But such axioms
imply dictatorial aggregation for many agendas, by Theorem 1 and two other theorems
of the literature. This turns our characterization results into impossibility results about
agenda-insensitive aggregation. These impossibility results are now stated as corollaries.

I begin with basic agenda-insensitivity. By Theorem 2, this condition implies in-
dependence. However, by the well-known Arrow-like theorem in the �eld, independent
aggregation rules must, for certain agendas, be degenerate, i.e., either dictatorial or not
unanimity preserving. Formally:

Theorem 5 (Dietrich-List 2007a, Dokow-Holzman 201016) Given an agenda, all inde-
pendent and unanimity preserving aggregation rules F : J n ! J are dictatorial if and
only if the agenda is �strongly connected�.

Which agendas count as �strongly connected�? The most important conceptual
point is that the class of these agendas is far smaller than (and included in) the class of
�impossibility agendas�in Theorem 1, i.e., the class of non-nested non-tiny agendas. For
instance, an agenda of type X = fp; q; p\ qg� is not strongly connected (so escapes the
Arrow-like impossibility), though it is non-nested and non-tiny (so falls into Theorem
1�s impossibility). Formally, strong connectedness is the conjunction of two well-known
conditions, pathconnectedness (introduced by Nehring and Puppe 2002 under the label
�total blockedness�) and pair-negatability, which are in turn de�ned as follows:

� Pathconnectedness: Recall �rst that a proposition p 2 X conditionally entails
another q 2 X �written p `� q �if fpg [ Y entails q for some set Y � X which
(for non-triviality) is consistent with p and with q. Agenda X is pathconnected if
for any propositions p; q 2 Xnf
;?g there are p1; :::; pm 2 X (m � 1) such that
p = p1 `� p2 `� � � � `� pm = q. Some important agendas are pathconnected, but
many others are not.17

� Pair-negatability : Recall further that a set Y � X is minimal inconsistent if it
is inconsistent but each proper subset of Y is consistent. The agenda X is pair-
negatable if it has a minimal inconsistent subset Y � X which becomes consistent
after negating some two members (i.e., (Y nfp; qg) [ fp; qg is consistent for some
distinct p; q 2 Y ). Most concrete agendas are pair-negatable.18

Prominently, the preference agenda is strongly connected, and is thus subject to the

16Both papers build on Nehring and Puppe (2002/2010). Dietrich and List prove only the �if�direction,
and Dokow and Holzman prove both directions.
17The preference agenda for more than two alternatives is pathconnected: e.g., xPy entails xPz

conditionally on Y = fyPzg (for distinct options x; y; z). But an agenda of the form X = fp; q; p\ qg�
is not pathconnected: check that none of p; q; p \ q conditionally entails any of p; q; p \ q (assuming
?;
 62 X). Also the agendas in (1) are not pathconnected.
18The preference agenda for more than two alternatives is pair-negatable: Y = fxPy; yPz; zPxg � X

is minimal inconsistent and becomes consistent after replacing xPy by yPx and yPz by zY y. Also
X = fp; q; p \ qg� is pair-negatable (assuming ?;
 62 X): Y = fp; q; p \ qg is minimal inconsistent but
fp; q; p \ qg is consistent, and also Y = fp; p\qg is minimal inconsistent but fp; p \ qg is consistent. (In
the de�nition of pair-negatability, one can equivalently replace �some two members�by �some positive
even number of members�.)
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impossibility, as is already known from Arrow�s Theorem (to which Theorem 5 indeed
reduces in the case of the preference agenda).

Given this Arrow-like theorem, our Theorem 2 immediately implies that agenda-
insensitive aggregation systems must be degenerate:

Corollary 1 If an aggregation system (FX)X2X is agenda-insensitive and unanimity
preserving, then the rule FX is dictatorial for each strongly connected agenda X 2 X
(more generally, each agenda X 2 X included in a strongly connected agenda X 0 2 X ).19

Let us now turn to the condition of full agenda-sensitivity, which by Theorem 3 forces
to independence on the scope. Unfortunately, no non-degenerate aggregation rules are
independent on the scope, as long as the agenda is non-monadic i.e., contains more
than one issue fp; pg (6= f
;?g):

Theorem 6 (Dietrich 2006, Corollary 1) Given an agenda, all aggregation rules F :
J n ! J which are independent on the scope are dictatorial or constant if and only if
the agenda is non-monadic.20

Given this result, Theorem 3 implies that fully agenda-insensitive aggregation sys-
tems must be degenerate:

Corollary 2 If an aggregation system (FX)X2X is fully agenda-insensitive, then the
rule FX is dictatorial or constant for each non-monadic agenda X 2 X (more generally,
each agenda X 2 X included in the scope of a non-monadic agenda X 0 2 X ).

Finally, we turn to focal agenda-insensitivity, which by Theorem 4 forces to implicit
consensus preserving (under the mild assumption of unanimity preservation). This by
itself does not lead into an impossibility result. But if one combines focal with basic
agenda-insensitivity, then one is forced to independence (by Theorem 2) as well as im-
plicit consensus preserving (by Theorem 4), which leads us straight into the impossibility
of Theorem 1. Formally:

Corollary 3 If an aggregation system (FX)X2X is basically and focally agenda-insensitive,
and unanimity preserving, then the rule FX is dictatorial for each non-nested non-tiny
agenda X 2 X (more generally, each agenda X 2 X included in a non-nested non-tiny
agenda X 0 2 X ).

6 Conclusion

I begin by summing up. I have �rstly derived a new impossibility theorem on judg-
ment aggregation, based on the familiar independence axiom and a particularly strong
consensus axiom. Subsequently, I have de�ned and axiomatically characterized three

19The generalization mentioned in brackets holds because FX inherits dictatorship or constancy from
FX0 by coherence. Analogous remarks apply to Corollary 2 (in which the generalization draws on strong
coherence) and Corollary 3.
20Dietrich (2006) only states the �if�direction; but the �only if�direction holds trivially.
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types of agenda-insensitive aggregation: basic, full and focal agenda-insensitivity. Fi-
nally, combining these characterization results with the impossibility result (and two
well-known impossibility results), I have derived impossibility results about each type
of agenda-insensitivity.

Let me �nish by mentioning another type agenda-insensitivity, which pertains not to
particular procedures (aggregation systems), but to axioms on aggregation rules. I call
an axiom description-insensitive if whenever two agendas X and X 0 are equivalent
(i.e., have the same scope), then an aggregation rule for agenda X satis�es the axiom if
and only if the equivalent rule for agenda X 0 (de�ned in Section 4) satis�es the axiom.21

One might favour description-insensitive axioms on the grounds that any dependence on
how the decision problem is framed is a form of arbitrariness. The standard unanimity
principle is not description-invariant: respecting unanimity on propositions in X =
fp; qg� is considerably di¤erent from doing so for the equivalent agenda X = fp \
q; p\ q; p\ q; p\ qg�. Our stronger consensus axiom �implicit consensus preservation �
avoids this �aw; it is from this perspective more canonical. The following table classi�es
axioms according to whether they are description-invariant.

axiom description-invariant?
unanimity principle no

unanimity preservation yes
implicit consensus preservation yes

independence no
independence on the scope yes

anonymity yes
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A A more standard judgment-aggregation framework for
the results and concepts of the paper

All displayed results of the main text (the �theorems�, �propositions�, �corollaries�and
�remarks�) and all de�nitions of properties of aggregation rules/systems (such as �inde-
pendence�and �basic/full/focal agenda-insensitivity�) continue to apply as stated under
a more standard, non-semantic judgment-aggregation framework. Section A.1 de�nes
the usual notions of this framework (following List and Pettit 2002 and more precisely
Dietrich 2007/2014). Sections A.2 and A.3 add the notions of �scope�and �aggregation
system�, whose de�nitions are less obvious than in a semantic or syntactic framework.

A.1 The common concepts

We still consider a group of individuals i = 1; :::; n with n � 3. No underlying set of
worlds 
 is introduced. Instead, I de�ne agendas from scratch:

De�nition 15 An agenda is a non-empty set X (of �propositions�) which is endowed
with the notions of negation and interconnections, i.e.,

(a) to each p 2 X corresponds a proposition denoted :p 2 X (�not p�) with :p 6= p =
::p (so X is partitioned into pairs fp;:pg, called �issues�),

(b) certain judgment sets J � X containing a single member of each issue count as
�rational�, the non-empty set of them being denoted J or JX ,

where (in this paper) X is �nite and jJ j > 1.22

Notationally, an agenda will be denoted simply by its set of propositions �X�, sup-
pressing the structure on X.23 The semantic agendas of the main text are a special
22Most results do not require the �niteness restriction. The condition that jJ j > 1 excludes trivial

agendas.
23 In more explicit algebraic terms, the agenda is the triple (X;:;J ) containing X and the structure

on X, i.e., the negation operator : and the set of rational judgment sets J . Since the negation operator
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case: there propositions are sets of worlds, with the set-theoretic notions of negation
and interconnections.24 Syntactic agendas are another special case: here propositions
are sentences of a formal logic, with the logical notions of negation and interconnec-
tions.25 Examples of syntactic agendas are X = fa; b; a ^ bg� and X = fa; a ! b; bg�.
Here and in what follows, Y � still stands for

S
p2Y

fp;:pg.

A judgment set J � X is complete if it contains a member of each issue fp;:pg, and
consistent if it is extendable to a rational judgment set. So the complete and consistent
judgment sets are precisely the rational judgment sets. In most concrete agendas,
every proposition p 2 X is contingent, i.e., neither a contradiction (for which fpg is
inconsistent), nor a tautology (for which f:pg is inconsistent). A proposition p 2 X
(or set S � X) entails another proposition p0 2 X (or set S0 � X) if every rational
judgment set containing p (resp. including S) also contains p0 (resp. includes S0).

Aggregation rules for an agenda X are still functions F mapping any pro�le of
�individual�judgment sets (J1; :::; Jn) (from some domain, usually J n) to a �collective�
judgment set F (J1; :::; Jn).

The results of the main text draw on some agenda properties, whose general de�ni-
tions are easily stated:

� A agenda X is nested if it takes the form X = fp1; :::; pmg�, where m is the
number of issues and p1 entails p2, p2 entails p3, and so on.

� An agenda X is non-tiny if it has more than two issue, i.e., more than four
propositions (not counting non-contingent proposition if any, and identifying any
equivalent propositions if any26).

� An agenda is non-monadic if it has more than one issue, i.e., more than two
propositions (again not counting any non-contingent proposition and identifying
any equivalent propositions).

� Strong connectedness (the conjunction of pathconnectedness and pair-negatability)
is de�ned as before, modulo replacing complements p by negations :p and replac-
ing Xnf
;?g by fp 2 X : p is contingentg.

A.2 Closed agendas and scope of agendas

Extending agendas is easy in the special case of semantic agendas (it su¢ ces to consider
new subsets of 
) or syntactic agendas (it su¢ ces to consider new sentences of the
logic). But how does this work in our general framework? In principle, there are two �
as we shall see, equivalent �strategies for de�ning the scope of an agenda X. They can

: (a mapping p 7! :p satisfying :p 6= p = ::p) and the set of issues (a partition of X into binary
sets) are interde�nable objects, we could equivalently de�ne an agenda as a set X endowed with �issues
and interconnections�, and de�ne the negation of p as the unique proposition :p such that fp;:pg is an
issue. Algebraically, the agenda would then be the structure X � (X; I;J ); where I is the set of issues.
24 I.e., :p is the complement p, and J consists of those sets J � X (with a single member of each

issue) for which
T
p2J

p 6= ?.
25Negation is given by the negation symbol (in fact, to ensure that double-negations cancel out, �:p�is

de�ned from p by adding or deleting an initial negation symbol, depending on whether p already starts
with a negation symbol). J contains the logically consistent sets J � X containing a single member of
each issue.
26 In practice, agendas of course contain no non-contingent propositions and no two equivalent propo-

sitions. Propositions are equivalent if they entail one another.
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be stated informally as follows:

(a) add to X all propositions (in an extended sense) which are constructible by com-
bining propositions in X;

(b) add to X all propositions (in an extended sense) on which the judgment (�yes�or
�no�) is determined by the judgments on the propositions in X.

I choose the approach (a), but also brie�y discuss the approach (b) (which is perhaps
more in line with Dietrich�s 2006 original de�nition). Starting with some natural ter-
minology, I call an agenda

� closed under conjunction if for any propositions p; q 2 X there exists a propo-
sition r (the conjunction of p and q) such that any rational judgment set contains
r if and only if it contains both p and q,

� closed under disjunction if for any propositions p; q 2 X there exists a propo-
sition r (the disjunction of p and q) such that any rational judgment set contains
r if and only if it contains p or q (possibly both).

These two closure properties are in fact equivalent, as is seen shortly. Most relevant
agendas, including the semantic ones in the main text, are redundancy-free: they
contain no two distinct propositions that are equivalent, i.e., entail each other.

Proposition 2 In any redundancy-free agenda X, the conjunction resp. disjunction of
two propositions p and q, if existing, is unique and denoted by p ^ q resp. p _ q.

Proposition 3 An agenda X is closed under conjunction if and only if it is closed
under disjunction. I then call it closed simpliciter.

To �close�an agenda, we must extend it. First, let me spell out the obvious:

De�nition 16 An agenda X is a subagenda of another X 0, and X 0 an extension
or superagenda of X, if X � X 0, where the notions of negation and interconnections
for X are those for X 0 restricted to X (i.e., the negation operator of X is that of X 0

restricted to X, and JX = fJ \X : J 2 JX0g).

The following result ensures that closing an agenda is possible in a unique way:

Proposition 4 Every agenda X has a closure, i.e., a minimal closed superagenda; it
is moreover unique up to relabelling27.

De�nition 17 The scope of an agenda X is its (up to relabelling uniquely existing)
minimal closed superagenda, denoted X.

The judgments within an agenda X determine those within the entire scope X.
Formally:

27Uniqueness up to relabelling means that between any two minimal closed superagendas X 0 and
X 00 there exists an (agenda-)isomorphism that is constant on X, where an isomorphism is of course a
bijection f : X 0 ! X 00 that preserves (i) the notion of negation (i.e., f(:p) = :f(p) for all p 2 X) and
(ii) the notion of interconnections (i.e., J 2 JX , f(J) 2 JX0 for all J � X).
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De�nition 18 (a) Given an agenda, a judgment set J settles a proposition p if J
entails p or entails :p.

(b) An agenda X settles a superagenda X 0 if each rational judgment set J 2 JX
settles each proposition in X 0 (equivalently, is uniquely extendable to a J 0 2 JX0).

Proposition 5 Every agenda settles its scope.

In fact, a stronger result can be shown: the scope of an agenda X is the (up to
relabelling unique) maximal superagenda which is settled by X (and is redundancy-free
outside X, i.e., contains no two equivalent propositions outside X). We could therefore
have used an alternative and equivalent de�nition of the scope:

De�nition 19 (alternative statement) The scope of an agenda X is the (up to
relabelling uniquely existing) maximal superagenda settled by X and redundancy-free
outside X.

The following lemma gives a concrete idea of the totality of propositions in the scope.
It uses conjunctions/disjunctions of any number of propositions, which are de�ned like
conjunctions/disjunctions of two propositions.28

Lemma 1 Every proposition p in the scope of a redundancy-free agenda X is a dis-
junction of conjunctions of propositions in X; for instance, p =

W
J2J p

V
q2J

q, where

J p := fJ 2 JX : J entails pg.

Finally, the scope carries a familiar algebraic structure:

Proposition 6 Any closed redundancy-free agenda �for instance the scope of a redundancy-
free agenda � is a Boolean algebra with respect to the relation of entailment between
propositions, with the meet, join, and complement given by the conjunction, disjunc-
tion, and negation, respectively.29

Recall that Boolean algebras are de�ned as follows. First, a lattice is a partially
ordered set L � (L;�) such that any two elements p; q 2 L have a meet p ^ q (greatest
lower bound) and a join p_ q (smallest upper bound). It is distributive if p_ (q^ r) =
(p_ q)^ (p_ r) and p^ (q_ r) = (p^ q)_ (p^ r) for all p; q; r 2 L. A Boolean algebra
is a distributive lattice (L;�) such that L contains a greatest element | (the �top�or
�tautology�) and a bottom ? (the �bottom�or �contradiction�), and every element has an
algebraic complement, i.e., an element whose join with p is | and whose meet with p is ?.
The paradigmatic Boolean algebras are the set-theoretic ones: here there exists a set 

such that L � 2
, � = �, | = 
, ? = ?, and the meet, join and complement are given
by the set-theoretic intersection, union and complement. By Stone�s representation
theorem, every Boolean algebra is isomorphic to such a set-theoretic one. Another
example is the Boolean algebra generated from a logic, i.e., the set of sentences modulo
logical equivalence (where the logic includes classical negation and conjunction, which
induce the algebraic negation, meet and join).
28Generalizing the earlier de�nition, I call a proposition r the conjunction (resp. disjunction) of a

set of propositions S if any rational judgment set contains r if and only if it contains all (resp. some)
p 2 S.
29Without assuming redundancy-freeness, the agenda is a Boolean algebra modulo equivalence be-

tween propositions.
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A.3 Feasible agendas and aggregation systems

Just as in the main text, aggregation systems are families (FX)X2X containing an
aggregation rule FX : J nX ! JX for each agenda X from a given set X of �feasible�
agendas X (see De�nition 6). However, we need to say what �feasible agendas� are
in the present framework. In the semantic framework, they were subagendas of the
�universal�agenda 2
 which contains the totality of all propositions at the disposal of
the agenda setter. Our present framework has no set of worlds 
 and thus no pre-de�ned
universal agenda. We therefore enrich the framework by assuming a (�universal�) agenda
L, which we take to be closed and redundancy-free (so L de�nes a Boolean algebra by
Proposition 6). Think of L as a reservoir of propositions. It could be as large as an
entire language, or as small as a set of propositions on a relevant topic (such as a given
court trial).

Now X is simply a set of subagendas X of L: those deemed feasible/possible.
All we assume about X is, here again, that it contains at least each binary agenda
fp;:pg �

S
X2X

X. Since L is closed, the scope X of an agenda X 2 X is again a

subagenda of L (the smallest one that includes X).30 Note that quite possibly X 62 X
since X might be too rich and complex for being feasible.31

B Proofs

All proofs are formulated for the general framework of Appendix A. The set of individu-
als is denoted N := f1; :::; ng. Recall that for an agenda X the set of rational judgment
sets is denoted �J �or sometimes, to avoid ambiguity, �JX�.

B.1 Results of Section 3 on single aggregation rules

Proof of Proposition 1. For the agenda X, consider an aggregation rule F : J n ! J .
I write ICP1, ICP2 and ICP3 for the three versions of implicit consensus preservation,
respectively.

�ICP1 ) ICP3�: Assume ICP1. Consider any (J1; :::; Jn) 2 J n. In the scope we

can form the proposition p :=

 V
q2J1

q

!W
� � �
W V

q2Jn
q

!
(i.e., the proposition that all

q in J1 or all q in J2 ... or all q in Jn hold). Each Ji entails
V
q2Ji

q, and hence, entails

p. So, F (J1; :::; Jn) entails p by ICP1. Let J be the unique extension of F (J1; :::; Jn) to
a set in JX . Since F (J1; :::; Jn) entails p, J contains p. So, for some i,

V
q2Ji

q 2 J , and

thus Ji � J . It follows that Ji = J \X = F (J1; :::; Jn). QED

�ICP3 ) ICP2�: Assume ICP3 and consider a feature K � J and a pro�le
(J1; :::; Jn) 2 J n such that J1; :::; Jn 2 K. By ICP3, F (J1; :::; Jn) 2 fJ1; :::; Jng. So,
F (J1; :::; Jn) 2 K. QED
30Or so we may assume without loss of generality. Recall that the scope is unique up to relabelling

propositions.
31All our results about aggregation systems remain true if we allow L and any X 2 X to be in�nite,

i.e., to be agendas in a generalized sense without �niteness restriction.
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�ICP2 ) ICP1�: Assume ICP2. Consider any p 2 X and any pro�le (J1; :::; Jn) 2
J n such that each Ji entails p. Since each Ji belongs to the feature K := fJ 2 J : J
entails pg, so does F (J1; :::; Jn) by ICP2. �

As part of the proof of Theorem 1, I show several lemmas. For an agenda X, an
aggregation rule F on J n is called systematic if there exists a set W of (�winning�)
coalitions C � N such that

F (J1; :::; Jn) = fp 2 X : fi : p 2 Jig 2 Wg for all J1; :::; Jn 2 J .

In this case, the set W is uniquely determined and denoted by WF .

Lemma 2 Every independent and implicit consensus preserving aggregation rule F :
J n ! J is systematic if and only if the agenda X is non-nested.

Proof. Let X be an agenda. We may assume without loss of generality that all
p 2 X are contingent, because each side of the claimed equivalence remains true (or
false) if the non-contingent propositions are removed from the agenda.

1. In this part we assume that X is non-nested and consider an independent and
implicit consensus preserving rule F : J n ! J . I show that F is systematic (drawing
on Dietrich and List 2013). For any p; q 2 X, I de�ne p � q to mean that there exists a
�nite sequence p1; :::; pk 2 X with p1 = p and pk = q such that any neighbours pl; pl+1
are not exclusive (i.e., fpl; pl+1g is consistent) and not exhaustive (i.e., f:pl;:pl+1g is
consistent). I prove �ve claims: the �rst four gradually establish that p � q for all
p; q 2 X, and the last shows that F is systematic.

Claim 1 : For all p; q 2 X, p � q , :p � :q.
It su¢ ces to show one direction of implication, as ::p = p for all p 2 X. Let

p; q 2 X with p � q. Then there is a path p1; :::; pk 2 X between p to q where any
neighbours pj ; qj+1 are non-exclusive and non-exhaustive. To see why :p � :q, note
that :p1; :::;:pk is a path between :p and :q where any neighbours :pj ;:pj+1 are
non-exclusive (as pj ; pj+1 are non-exhaustive) and non-exhaustive (as pj ; pj+1 are non-
exclusive). QED

Claim 2 : If p 2 X entails q 2 X, then p � q.
If p 2 X entails q 2 X, then p � q in virtue of a direct connection: p; q are

neither exclusive nor exhaustive (for instance, fp; qg is consistent because p is not a
contradiction and entails q. QED

Claim 3 : � is an equivalence relation on X, and for all p; q 2 X, p � q or p � :q.
(So each equivalence class contains at least one member of each issue fq;:qg, and it is
the only equivalence class if it contains both members of some issue.)

Re�exivity, symmetry and transitivity are all obvious (where re�exivity uses that
every p 2 X is contingent). Now consider p; q 2 X such that p 6� q; we have to show
that p � :q. Since p 6� q, fp; qg or f:p;:qg is inconsistent. In either case, one of p and
:q entails the other, so that p � :q by Claim 2. QED

Claim 4 : p � q for all p; q 2 X.
Let X+ be an equivalence class w.r.t. � and suppose for a contradiction that X+ 6=

X. Then, by Claim 3, X+ must contain exactly one member of each issue fr;:rg.
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We show that X+ is weakly ordered by the entailment relation between propositions �
implying that X is nested, a contradiction. As the entailment relation on X+ is of course
transitive, it remains to show that it is complete on X+. So we consider p; q 2 X+, and
have to show that p entails q or q entails p. We have p 6� :q, since otherwise X+ would
include the entire issue fq;:qg. So fp;:qg or f:p; qg is inconsistent. Hence, p entails q
or q entails p. QED

Claim 5 : F is systematic.

Since F is independent, there exists a family (Wp)p2X of sets of coalitions such that

F (J1; :::; Jn) = fp 2 X : fi : p 2 Jig 2 Wpg for all J1; :::; Jn 2 J : (2)

It su¢ ces to show that Wp is the same for all p 2 X. By Claim 4 and the de�nition
of �, it su¢ ces to show that Wp = Wq for all p; q 2 X which are non-exclusive and
non-exhaustive. Consider such p; q 2 X. Consider any C � N and let us show that
C 2 Wq , C 2 Wq. As fp; qg and f:p;:qg are consistent, there exist J1; :::; Jn 2 J
such that p; q 2 Ji for all i 2 C and :p;:q 2 Ji for all i 2 NnC. We now apply implicit
consensus preservation, in any of its three variants. Using either variant 1 (and the fact
that each Ji entails the proposition (p ^ q) _ (:p ^ :q) in the scope), or variant 2 (and
the fact that each Ji belongs to the feature K := fJ 2 J : p 2 J , q 2 Jg), or variant
3, it follows that p 2 F (J1; :::; Jn) , q 2 F (J1; :::; Jn). By (2), the left side of this
equivalence holds if and only if C 2 Wp and the right side holds if and only if C 2 Wq.
So C 2 Wp , C 2 Wq. QED

2. Now assume that X is nested, i.e., of the form X = fp1; :::; pmg� where m is the
number of issues and where p1 entails p2, p2 entails p3, etc. I consider the aggregation
rule F on J n de�ned as follows: for all J1; :::; Jn 2 J , F (J1; :::; Jn) consists of each pj
contained in all Ji and each :pj contained in some Ji. We have to show that F (i)
maps into J , (ii) is independent, (iii) is implicit consensus preserving, and (iv) is not
systematic. The properties (ii) and (iv) are obvious (where (iv) uses that n > 1 and that
X contains a pair of contingent propositions p;:p because jJ j > 1). It remains to prove
(i) and (iii). Now (i) follows from (iii) by version 3 of implicit consensus preservation.
To see why (iii) holds, note that for each J 2 J there is a cut-o¤ level t 2 f1; :::;m+1g
such that J = f:p1; :::;:pt�1; pt; :::; pmg, and that therefore for all J1; :::; Jn 2 J we
have F (J1; :::; Jn) = Ji where i is the (or an) individual with highest cut-o¤ level. �

The next lemma is the main technical step towards Theorem 1 and provides two
alternative characterizations of non-nested agendas. (Compare the characterization in
(b) with the de�nition of non-simple agendas mentioned in Section 3: the only di¤erence
is that (b) allows Y to be consistent.)

Lemma 3 For any agenda X, the following are equivalent:
(a) X is non-nested (and non-tiny).
(b) X has a subset Y such that jY j � 3 and (Y nfpg)[f:pg is consistent for all p 2 Y .
(c) X has a subset Y such that jY j = 3 and (Y nfpg)[f:pg is consistent for all p 2 Y .

Proof. Let X be an agenda. I write p ` q to mean that p (2 X) entails q (2 X),
and S ` q to mean that S (� X) entails q. We may assume without loss of generality.
that X contains only contingent propositions, and is redundancy-free, i.e., contains no
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two equivalent propositions. The reason is that otherwise it su¢ ces to do the proof for
any redundancy-free subagenda containing only contingent propositions, because each
of the conditions (a), (b) and (c) holds for X if and only if it holds for that subagenda;
to see for instance why (b) holds for X if and only if it holds for the subagenda, note
that (Y nfpg)[f:pg can only be consistent for all p 2 Y if Y contains no two equivalent
propositions and no non-contingent propositions.

The equivalence between (b) and (c) is straightforward (to see why (b) implies (c),
simply replace the set Y in (b) by a three-member subset of it). It is also relatively
easy to see why (c) implies (a). Indeed, whenever (a) is violated, so is (c), by the
following argument. First, if X is tiny, then (c) is violated since every three-element
set Y � X takes the form Y = fq;:q; pg for some p; q 2 X, and thus Y nfpg [ f:pg
fails to be consistent. Second, if X is nested, say X = fr;:r : r 2 Zg for some subset
Z � X linearly ordered by entailment, condition (c) is violated since any three-element
set Y � X has elements p 6= q which both belong to Z or both belong to f:p : p 2 Zg;
so that (by the linear orderedness of Z and of f:r : r 2 Zg w.r.t. entailment) p ` q or
q ` p, which implies that (Y nfqg) [ f:qg or (Y nfpg) [ f:pg is inconsistent.

It remains to show that (a) implies (c). Let X be non-nested and non-tiny; we show
(c). We distinguish between two cases.

Case 1 : no p; q 2 X are logically independent, i.e., for no p; q 2 X each of the sets
fp; qg; fp;:qg; f:p; qg and f:p;:qg is consistent.

Claim 1.1. There exists a (with respect to set-inclusion) maximal nested (sub)agenda
X� � X.

This follows from the fact that the set of nested subagendas V � X is non-empty
(because it contains any single-issue subagenda fp;:pg) and �nite (because X is �nite).
QED

Since X� is nested, we may write it as X� =
S

p2X�
+

fp;:pg where X�
+ is a subset of X

�

which contains exactly one member of each issue fp;:pg � X� and is linearly ordered
w.r.t. entailment.

Claim 1.2. There exists an s 2 XnX� such that fs; pg is consistent for all p 2 X�
+.

Since X� is nested but X is not, we have X� ( X, and thus there are r;:r 2 XnX�.
It su¢ ces to show that at least one of r and :r is consistent with each p 2 X�

+. This
is true because otherwise there would exist p; p0 2 X�

+ such that fr; pg and f:r; p0g
are inconsistent, which (recalling that p ` p0 or p0 ` p, and writing p00 for the logically
stronger one of p and p0) implies that fr; p00g and f:r; p00g are inconsistent, so that fp00g
is inconsistent, a contradiction since p00 is contingent. QED

I de�ne

Y1 : = fp 2 X�
+ : p ` sg;

Y2 : = fp 2 X�
+ : :p ` sg:

Claim 1.3. Y1 \ Y2 = ?, and Y1 [ Y2 = X�
+.

First, Y1 \ Y2 = ?, because otherwise there would be a p 2 X�
+ such that p ` s

and :p ` s, a contradiction as s is not a tautology. Second, suppose for a contradiction
that p 2 X�

+n(Y1 [ Y2). I ultimately show that the agenda X� [ fs;:sg is nested, a
contradiction as X� is a maximal nested subagenda of X.
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Since p and s are not logically independent (by assumption of Case 1), and since
fp; sg is consistent (by Claim 1.2), fp;:sg is consistent (as p 62 Y1) and f:p;:sg is
consistent (as p 62 Y2), it follows that f:p; sg is inconsistent, so that s ` p. We next
show that s entails not just in p, but also all other propositions in X�

+nY1:

s ` p0 for all p0 2 X�
+nY1: (3)

To show this, let p0 2 X�
+nY1, and note �rst that :p0 and :s are entailed by f:p0;:p;:sg.

Hence (as s ` p, i.e., :p ` :s), :p0 and :s are entailed by f:p0;:pg. So, since the set
f:p0;:pg is consistent (as either :p0 ` :p or :p ` :p0), the set f:p0;:sg is also
consistent. Since p0 and s are not logically independent (by assumption of Case 1), and
since fp0; sg is consistent (by Claim 1.2), fp0;:sg is consistent (as p0 62 Y1) and f:p0;:sg
is consistent (as just shown), it follows that f:p0; sg is inconsistent, so that s ` p0. This
proves (3).

Note that for every p0 in X�
+, either p

0 ` s (if p0 2 Y1) or s ` p0 (if p0 62 Y1, by (3)). So
the augmented (sub-)agenda X� [fs;:sg is nested, a contradiction as X� is a maximal
nested subagenda of X. QED

Claim 1.4. Y1; Y2 6= ?.
By Claim 1.3 we may equivalently show that Y1; Y2 6= X�

+. Suppose for a contradic-
tion that Y1 = X�

+ or Y2 = X
�
+. Then X

� [ fs;:sg is a nested agenda, a contradiction
since X� was de�ned as a maximal nested subagenda of X. QED

The proof of condition (c) is completed by combining Claim 1.4 with the following
observation:

Claim 1.5. For all q 2 Y1 and r 2 Y2, the set Y := f:q; r; sg satis�es the requirements
of condition (c), i.e., jY j = 3 and (Y nfpg) [ f:pg is consistent for each p 2 Y .

Consider any q 2 Y1 and r 2 Y2 and let Y := f:q; r; sg. To see why jY j = 3, note
that :q 6= r since r 2 X�

+ while :q 62 X�
+, and that s 6= :q; r since :q; r 2 X� while

s 62 X�. Further:

� fq; r; sg is consistent, because, �rstly, fq; sg is consistent by Claim 1.2, and, sec-
ondly, q ` r, as q and r belong to the linearly ordered set X�

+ and as r 6` q (by the
fact that q 2 Y1 and r 62 Y1).

� f:q;:r; sg is consistent, because, �rstly, :r ` :q (since q ` r, as just shown),
and, secondly, :r ` s (since r 2 Y2).

� f:q; r;:sg is consistent, because, �rstly, :s ` :q (since q ` s, as q 2 Y1), and,
secondly, :s ` r (since :r ` s, as r 2 Y2). QED

Case 2 : p; q 2 X are logically independent, i.e., all of fp; qg; fp;:qg; f:p; qg and
f:p;:qg are consistent. Consider such p; q 2 X. Since jXj > 4 there is an r 2
Xnfp;:p; q;:qg. As r is non-contradictory, it can be consistently added to at least one
of the (consistent) sets fp; qg; fp;:qg; f:p; qg and f:p;:qg. We may assume without
loss of generality that fp;:q; rg is consistent (otherwise, simply interchange p with :p
and/or q with :q). The argument distinguishes between two subcases.

Subcase 2.1 : f:p;:q;:rg and fp; q;:rg are both consistent. In this case, condition
(c) holds for Y := fp;:q;:rg, since each of the sets f:p;:q;:rg, fp; q;:rg and fp;:q; rg
is consistent.

Subcase 2.2 : f:p;:q;:rg or fp; q;:rg is inconsistent (perhaps both are). We assume
without loss of generality that fp; q;:rg is inconsistent, i.e., fp; qg ` r. (The proof is
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analogous in the other case.) There are three subsubcases.

Subsubcase 2.2.1 : f:p; q;:rg and fp;:q;:rg are both consistent. Here, condition
(c) holds for Y := fp; q;:rg, since each of the sets f:p; q;:rg, fp;:q;:rg and fp; q; rg
is consistent (the latter set being consistent because fp; qg is consistent and entails r).

Subsubcase 2.2.2 : f:p; q;:rg is inconsistent. So f:p; qg ` r. As also fp; qg ` r, we
have q ` r. We once again distinguish between cases:
� First assume f:p;:q;:rg is consistent. Then condition (c) holds with Y =
f:p;:q; rg, because fp;:q; rg, f:p; q; rg and f:p;:q;:rg are consistent (where
f:p; q; rg is consistent as f:p; qg is consistent and q ` r).

� Second assume f:p;:q;:rg is inconsistent, i.e., f:p;:qg ` r. Since also q ` r, we
have :r ` :q; p. Condition (c) holds with Y = fp;:q; rg, because f:p;:q; rg is
consistent (as f:p;:qg is consistent and entails r), fp; q; rg is consistent (as fp; qg
is consistent and entails r) and fp;:q;:rg is consistent (as :r ` :q; p).

Subsubcase 2.2.3 : fp;:q;:rg is inconsistent. (If in the following proof for the current
subsubcase we interchange p and q, then we obtain an alternative, but longer, proof for
Subsubcase 2.2.2.) Since fp;:q;:rg is inconsistent, fp;:qg ` r. As also fp; qg ` r, it
follows that p ` r. We now show that

(*) f:p; q; rg and f:p;:q;:rg are consistent
or (**) f:p;:q; rg and f:p; q;:rg are consistent. (4)

To show this, we assume that (*) is violated and show that (**) holds, by distinguishing
between two cases:

� First, let f:p; q; rg be inconsistent. It follows, on the one hand, that f:p; q;:rg
is consistent (as f:p; qg is consistent), and, on the other hand, that f:p;:q; rg
is consistent (as otherwise, by the inconsistency of f:p; q; rg, f:p; rg would be
inconsistent, i.e., r ` p, a contradiction since p ` r and p 6= r). This proves (**).

� Second, let f:p; q; rg be consistent. Then f:p;:q;:rg is inconsistent as (*) is
violated. It follows, one the one hand, that f:p;:q; rg is consistent (as f:p;:qg
is consistent), and, on the other hand, that f:p; q;:rg is consistent (as otherwise
f:p;:rg would be inconsistent, i.e., :r ` p, a contradiction since p ` r). This
proves (**).

We can now prove condition (c). In the case of (*), (c) holds with Y = f:p;:q; rg,
since fp;:q; rg is consistent (as assumed without loss of generality under Case 2),
f:p; q; rg is consistent (by (*)) and f:p;:q;:rg is consistent (by (*)). In the case
of (**), (c) holds with Y = f:p; q; rg, since fp; q; rg is consistent (as fp; qg is consistent
and p ` r), f:p;:q; rg is consistent (by (**)) and f:p; q;:rg is consistent (by (**)). �

Drawing on Lemma 3, I next show that for almost every agenda the set of winning
coalitions of a systematic and implicit consensus preserving aggregation rule de�nes an
ultra�lter (which would not be true if implicit consensus preservation were replaced by
the standard unanimity condition).

Lemma 4 Consider a systematic and implicit consensus preserving aggregation rule
F : J n ! J for an agenda X, and coalitions C;C 0 � N .
(a) If X satis�es jJ j > 2, then [C 2 WF and C � C 0] ) C 0 2 WF .
(b) If X is non-nested and non-tiny, then C;C 0 2 WF ) C \ C 0 2 WF .
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(c) C 2 WF , NnC 62 WF .

Note that jJ j > 2 if and only if X has more than two propositions (one issue),32 a
very mild assumption, satis�ed notably by non-tiny agendas.

Proof. Let X, F , C and C 0 be as speci�ed.

(a) Suppose jJ j > 2, C 2 WF and C � C 0. We show that C 0 2 WF . As jJ j > 2,
there exist contingent and pairwise non-equivalent propositions p;:p; q;:q 2 X. There
must exist a member of fp;:pg which entails neither q nor :q, as can be shown using that
the propositions p;:p; q;:q are contingent and pairwise non-equivalent. Without loss
of generality. we assume that p entails neither q nor :q (otherwise simply interchange
p and :p). So fp; qg and fp;:qg are each consistent. Note that at least one of f:p; qg
and f:p;:qg is consistent, as :p is not a contradiction. Without loss of generality.
we assume the latter (otherwise interchange q and :q). To summarize, each of the
sets fp; qg, fp;:qg and f:p;:qg is consistent. We may therefore consider a pro�le
(J1; :::; Jn) 2 J n such that

Ji �

8<:
fp; qg for all i 2 C,
fp;:qg for all i 2 C 0nC,
f:p;:qg for all i 2 NnC 0.

First, since each Ji contains p or :q, so does F (J1; :::; Jn) by implicit consensus preser-
vation (version 2). Second, q 2 F (J1; :::; Jn) since fi 2 N : q 2 Jig = C 2 WF . These
two facts imply that p 2 F (J1; :::; Jn). So, as fi : p 2 Jig = C 0, we have C 0 2 WF .

(b) Suppose X is non-nested and non-tiny, and assume C;C� 2 WF . We show
that C \ C� 2 WF . By assumption on X and Lemma 3, there is a three-element set
Y = fp; q; rg � X such that each of f:p; q; rg, fp;:q; rg and fp; q;:rg is consistent.
This allows us to construct a pro�le (J1; :::; Jn) 2 J n such that

Ji �

8<:
f:p; q; rg if i 2 C \ C�
fp; q;:rg if i 2 C�nC
fp;:q; rg if i 2 NnC�.

First, q 2 F (J1; :::; Jn) as fi : q 2 Jig = C� 2 WF . Second, as C 2 WF and C � C [
(NnC�), we have C[(NnC�) 2 WF by part (a); hence r 2 F (J1; :::; Jn) as fi : r 2 Jig =
C[ (NnC�). Third, as each Ji contains :p or :q or :r, so does F (J1; :::; Jn) by implicit
consensus preservation (version 2). These three facts imply that :p 2 F (J1; :::; Jn).
Hence, as fi : :p 2 Jig = C \ C�, we have C \ C� 2 WF .

(c) This claim is obvious, as (by jJ j > 1) we can choose a contingent proposition
p 2 X and construct a pro�le in J n in which all i 2 C accept p and all i 2 NnC accept
:p. �

I can now prove Theorem 1, whose �if�part will follow from the above lemmas.

Proof of Theorem 1. 1. In this part of the proof, let the agenda X be non-nested and
non-tiny, and let F : J n ! J be independent and implicit consensus preserving. I need

32counting only contingent propositions and counting equivalent propositions (if any) only once
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to show that F is dictatorial. By Lemma 2, F is systematic. By Lemma 4, the set of
winning coalitions WF is an ultra�lter over the set of individuals N . As is well-known,
every ultra�lter over a �nite set is principal, i.e., there is an individual j 2 N such that
WF = fC � N : j 2 Cg. Clearly, j is a dictator.

2. Conversely, assume the agenda X is nested or tiny. I need to construct a non-
dictatorial rule F : J n ! J which is independent and implicit consensus preserving.
As n � 3, we may choose an odd-sized subgroup M � N containing at least three
individuals. (For instance M = N if n is odd, or M = f1; 2; 3g.) De�ne F as the
aggregation rule on J n given by majority voting among M , i.e.,

F (J1; :::; Jn) = fp 2 X : jfi 2M : p 2 Jigj > jM j =2g for all J1; :::; Jn 2 J .

I have to show that F (i) maps into J , (ii) is independent, (iii) is implicit consensus
preserving, and (iv) is not dictatorial. Properties (ii) and (iv) hold obviously; regarding
(ii), F is in fact even systematic, and regarding (iv) it matters that jM j > 1 and
jJ j > 1. Properties (i) and (iii) both follow as soon as we have shown version 3 of
implicit consensus preservation. Consider J1; :::; Jn 2 J . To show that F (J1; :::; Jn) 2
fJ1; :::; Jng, I distinguish between two cases.

Case 1 : X is nested, i.e., of the form X = fp1; :::; pmg� where m is the number of
issues and where p1 entails p2, p2 entails p3, etc. Notice that for each J 2 J there is a
cut-o¤ level t = tJ 2 f1; :::;m+ 1g such that J = f:p1; :::;:pt�1; pt; :::; pmg, and that

F (J1; :::; Jn) = Ji = f:p1; :::;:ptJi�1 ; ptJi ; :::; pmg;

where i is the median individual in M , i.e., the (or an) individual i inM such that more
than half of the individuals j in M have a cut-o¤ level tJj � tJi , and more than half of
the individuals j in M have a cut-o¤ level tJj � tJi .

Case 2 : X is tiny. As one easily checks, we may assume without loss of generality.
thatX is redundancy-free and contains only contingent propositions. Then, asX is tiny,
it is either a single-issue agenda or a two-issue agenda. In the �rst case, F (J1; :::; Jn)
is a singleton fpg, which equals Ji for any individual i accepting p. In the second
case, F (J1; :::; Jn) is a binary set fp; qg; since the subgroups fi 2 M : p 2 Jig and
fi 2M : q 2 Jig each contain a majority of the individuals inM , these subgroups share
at least one individual i, whose judgment set is therefore Ji = fp; qg = F (J1; :::; Jn). �

B.2 Results of Section 4 on aggregation systems

Proof of Theorem 2. We consider any aggregation system (FX)X2X .

1. First, suppose (FX)X2X is agenda-insensitive.

Claim 1: (FX)X2X is coherent.

Consider X;X 0 2 X with X � X 0 and J1; :::; Jn 2 JX . Each Ji is consistent, and
thus extendible to a J 0i 2 JX0 . I show that FX(J1; :::; Jn) � FX0(J 01; :::; J

0
n). Consider

any p 2 FX(J1; :::; Jn). Applying agenda-insensitivity to the agendas X and X 0, the
proposition p (2 X = X \X 0) and the judgment sets J 0i (2 JX0 = JX[X0), and noting
that each J 0i satis�es J

0
i \X = Ji and J 0i \X 0 = J 0i , we obtain that

p 2 FX(J1; :::; Jn), p 2 FX0(J 01; :::; J
0
n):
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So, as p 2 FX(J1; :::; Jn) by assumption, p 2 FX0(J 01; :::; J
0
n). QED

Claim 2: Each FX is independent.

Consider any X 2 X , p 2 X, and (J1; :::; Jn); (J 01; :::; J 0n) 2 J nX such that, for all i,
p 2 Ji , p 2 J 0i . De�ne Z as the agenda fp;:pg 2 X . For each i, let Ki be fpg if p 2 Ji
(or equivalently, p 2 J 0i), and as f:pg otherwise. Applying agenda-insensitivity to the
agendas X;Z and the judgment sets Ji (2 JX = JX[X0), and noting that Ji \X = Ji
and Ji \ Z = Ki, we obtain

p 2 FX(J1; :::; Jn), p 2 FZ(K1; :::;Kn): (5)

Applying agenda-insensitivity again, this time to the agendas X;Z and the judgment
sets J 0i (2 JX = JX[Z), and noting that J 0i \X = J 0i and J

0
i \ Z = Ki, we obtain

p 2 FX(J 01; :::; J 0n), p 2 FZ(K1; :::;Kn): (6)

By (5) and (6), p 2 FX(J1; :::; Jn), p 2 FX(J 01; :::; J 0n). QED
2. Now suppose (FX)X2X is coherent and independent. I prove agenda-insensitivity.

Consider any X;X 0 2 X , p 2 X \ X 0 and J1; :::; Jn 2 JX[X0 , and let us show that
p 2 FX(J1 \ X; :::; Jn \ X) if and only if p 2 FX0(J1 \ X 0; :::; Jn \ X 0). Consider the
agenda Z := fp;:pg 2 X , and for each i let Ki be fpg if p 2 Ji and f:pg otherwise.
Note that p 2 Ki is equivalent to p 2 Ji \X and also to p 2 Ji \X 0, because each of
these three statements is equivalent to p 2 Ji. By coherence applied to the agendas Z
and X, the judgment sets K1; :::;Kn 2 JZ have extensions L1 � K1; :::; Ln � Kn in JX
such that FZ(K1; :::;Kn) � FX(L1; :::; Ln). It follows that

p 2 FX(L1; :::; Ln), p 2 FZ(K1; :::;Kn): (7)

Further, for any i, p 2 Li is equivalent to p 2 Ki (as Li � Ki), which is in turn equivalent
to p 2 Ji \ X (as shown above). Hence, as FX is independent, p 2 FX(L1; :::; Ln) ,
p 2 FX(J1 \X; :::; Jn \X). By (7) it follows that

p 2 FX(J1 \X; :::; Jn \X), p 2 FZ(K1; :::;Kn): (8)

By a similar argument for the agenda X 0,

p 2 FX0(J1 \X 0; :::; Jn \X 0), p 2 FZ(K1; :::;Kn): (9)

By (8) and (9), p 2 FX(J1 \X; :::; Jn \X), p 2 FX0(J1 \X 0; :::; Jn \X 0). �

Proof of Theorem 3. Let (FX)X2X be any aggregation system.

1. First let (FX)X2X be fully agenda-insensitive.

Claim 1: (FX)X2X is strongly coherent.

Consider X;X 0 2 X with X � X 0 and J1; :::; Jn in JX . For any individual i, since
Ji is consistent, it is extendible to a bJi 2 JX[X0 ; we let J 0i := bJi \ X 0 (2 JX0). We
have to show that (i) each J 0i entails Ji, and (ii) FX0(J 01; :::; J

0
n) entails FX(J1; :::; Jn).

Regarding (i), for any i, as J 0i 2 JX0 and X � X 0, the set J 0i entails exactly one set in
JX ; so, by the consistency of J 0i [ Ji (= bJi), J 0i entails Ji. Regarding (ii), consider any
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p 2 FX(J1; :::; Jn) and let us show that FX0(J 01; :::; J
0
n) entails p. Applying full agenda-

insensitivity to the agendas X;X 0, the proposition p (2 X = X \ X 0) and the sets bJi
(which satisfy bJi \X = Ji and bJi \X 0 = J 0i), we obtain

FX(J1; :::; Jn) entails p, FX0(J 01; :::; J
0
n) entails p:

The left-hand side holds as p 2 FX(J1; :::; Jn). So, FX0(J 01; :::; J
0
n) entails p. QED

Claim 2: Each FX is independent on X.

Consider any X 2 X , any p 2 X, and any (J1; :::; Jn); (J 01; :::; J 0n) 2 JX such that,
for all i, Ji entails p if and only if J 0i does so. Let Z be the agenda fp;:pg 2 X . For
each i, I de�ne Ki as fpg if Ji (or equivalently J 0i) entails p, and as f:pg otherwise,
and I de�ne Li := Ji [Ki and L0i := J 0i [Ki. Applying full agenda-insensitivity to the
agendas X;Z and the judgment sets Li (which belong to JX[Z and satisfy Li \X = Ji
and Li \ Z = Ki), we obtain

FX(J1; :::; Jn) entails p, FZ(K1; :::;Kn) entails p: (10)

Now applying full agenda-insensitivity to the agendas X;Z and the judgment sets L0i
(which belong to JX[Z and satisfy L0i \X = J 0i and L

0
i \ Z = Ki), we obtain

FX(J
0
1; :::; J

0
n) entails p, FZ(K1; :::;Kn) entails p: (11)

The relations (10) and (11) jointly imply that FX(J1; :::; Jn) entails p if and only if
FZ(J

0
1; :::; J

0
n) entails p. QED

2. Conversely, assume that (FX)X2X is strongly coherent and independent on X. To
show full agenda-insensitivity, we consider any X;X 0 2 X , p 2 X \X 0 and J1; :::; Jn 2
JX[X0 , and show that FX(J1\X; :::; Jn\X) entails p if and only if FX0(J1\X 0; :::; Jn\
X 0) entails p. Consider the agenda Z := fp;:pg 2 X . For each i, de�ne Ki as fpg if Ji
entails p and f:pg otherwise. By construction, Ji entails Ki. So, Ji \X also entails Ki
(as Ji\X 2 JX and p 2 X), and so Ji\X entails p if and only if p 2 Ki. For analogous
reasons, Ji \ X 0 entails Ki, and so Ji \ X 0 entails p if and only if p 2 Ki. By strong
coherence applied to the agendas Z;X (which indeed satisfy Z � X as p 2 X) and
the judgment sets Ki 2 JZ , there exist some L1; :::; Ln 2 JX such that each Li entails
Ki and FX(L1; :::; Ln) entails FZ(K1; :::;Kn). As FX(L1; :::; Ln) entails FZ(K1; :::;Kn)
(and as FZ(K1; :::;Kn) is fpg or f:pg),

FX(L1; :::; Ln) entails p, p 2 FZ(K1; :::;Kn): (12)

Similarly, for any i, as Li entails Ki (and as Ki is fpg or f:pg), Li entails p if and
only if p 2 Ki, which was shown to hold if and only if Ji \ X entails p. So, as FX is
independent on X, FX(L1; :::; Ln) entails p if and only if FX(J1 \X; :::; Jn \X) entails
p. By (12) it follows that

FX(J1 \X; :::; Jn \X) entails p, p 2 FZ(K1; :::;Kn): (13)

By an analogous argument for the agenda X 0,

FX0(J1 \X 0; :::; Jn \X 0) entails p, p 2 FZ(K1; :::;Kn): (14)

The relations (13) and (14) imply that FX(J1 \ X; :::; Jn \ X) entails p if and only if
FX0(J1 \X 0; :::; Jn \X 0) entails p. �
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Proof of Theorem 4. Consider an aggregation system (FX)X2X .

1. First let this system be focally agenda-insensitive and unanimity preserving. Fix
any X 2 X . Let p 2 X be entailed by each of J1; :::; Jn 2 JX . We have to show
that FX(J1; :::; Jn) entails p. Consider the agenda X 0 := fp;:pg 2 X . Applying focal
agenda-insensitivity to the judgment sets J 0i := Ji [ fpg 2 JX[X0 (each of which entails
p 2 X \X 0) and noting that each J 0i satis�es J

0
i \X = Ji and J 0i \X 0 = fpg, we obtain

that
FX(J1; :::; Jn) entails p, FX0(fpg; :::; fpg) entails p:

The right-hand side (in which �entails�can be replaced by �contains�) holds since FX0 is
unanimity preserving. So the left-hand side holds, as desired.

2. Conversely, assume each FX is implicit consensus preserving. It then obviously
is unanimity preserving. To show focal agenda-insensitivity, we consider any X;X 0 2 X
and p 2 X \ X 0, and any J1; :::; Jn 2 JX[X0 each of which entails p. We show that
FX(J1 \ X; :::; Jn \ X) entails p; for analogous reasons also FX0(J1 \ X 0; :::; Jn \ X 0)
entails p, and since both entailments are therefore true they are automatically equivalent,
completing the proof. Fix an individual i. Since Ji is consistent and entails p, Ji is
consistent with p. So Ji \X is also consistent with p, and therefore cannot entail :p.
Now, as p 2 X, every judgment set in JX (such as Ji \X) entails either p or :p. So
Ji \ X entails p. As this is true for all i and as FX is implicit consensus preserving,
FX(J1 \X; :::; Jn \X) entails p. �

B.3 Results of Appendix A.2 on the scope of agendas

I prove these results in a slightly di¤erent order, and draw on additional lemmas.

Proof of Proposition 2. The conjunction (disjunction) of elements p; q of a redundancy-
free agenda X is unique because any two conjunctions (disjunctions) of p and q entail
each other, hence coincide as X is redundancy-free. �

Proof of Proposition 3. Suppose an agenda X is closed under conjunction. Let
p; q 2 X. Let r 2 X be the (possibly not unique) conjunction of :p and :q. Then :r
is the (possibly not unique) disjunction of p and q. Indeed, any J 2 J contains p or
q if and only if it is not the case that :p;:q 2 J ; which is equivalent to r 62 J , i.e.,
to :r 2 J . Analogously, one can show that if X is closed under disjunction then any
p; q 2 X have a conjunction in X, namely the proposition :r where r is a disjunction
of :p and :q. �

Proof of Proposition 6. Let X be a closed redundancy-free agenda and ` the relation
of entailment between propositions. The proof proceeds in four claims.

Claim 1 : (X;`) is a lattice whose meet and join are given by the operations of
conjunction ^ and disjunction _, respectively.

First, ` is a partial order: it is clearly re�exive and transitive, and it is also anti-
symmetric as X is redundancy-free. Next, for any p; q 2 X, the conjunction p^ q is the
greatest lower bound of p and q because, �rstly, it is a lower bound (i.e., p ^ q ` p; q),
and, secondly, if r is also a lower bound, then r ` p ^ q, as r ` p; q and fp; qg ` p ^ q.
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Analogously, for any p 2 X, the disjunction p _ q is the smallest upper bound of p and
q. QED

Claim 2 : The lattice (X;`) is distributive.
Let p; q; r 2 X. Since p ` p_q and p ` p_r, we have (*) p ` (p_q)^(p_r). Since q^r

entails q (which entails p_q) and entails r (which entails p_r), (**) q^r ` (p_q)^(p_r).
By (*) and (**),

p _ (q ^ r) ` (p _ q) ^ (p _ r): (15)

We next show the converse implication,

(p _ q) ^ (p _ r) ` p _ (q ^ r): (16)

Consider any J 2 J containing (p _ q) ^ (p _ r), and let us show that p _ (q ^ r) 2 J .
As (p _ q) ^ (p _ r) entails p _ q and also p _ r, we have p _ q; p _ r 2 J . So, J contains
p or q (or both), and contains p or r (or both). So, J contains p or contains both q
and r; in the latter case, q ^ r 2 J . Since, as we have shown, p 2 J or q ^ r 2 J ,
we have p _ (q ^ r) 2 J , as desired. By (15) and (16), and by the asymmetry of `,
p _ (q ^ r) = (p _ q) ^ (p _ r). By analogous arguments, p ^ (q _ r) = (p ^ q) _ (p ^ r).
QED

Claim 3 : X has a smallest element ? and a greatest element |, namely the contra-
diction

V
p2X

p and the tautology
W
p2X

p, respectively.

It is obvious that
V
p2X

p entails each q 2 X and that each q 2 X entails
W
p2X

p. QED

Claim 4 : For each p 2 X, p ^ :p = ? and p _ :p = | (i.e., :p is the algebraic
complement of p).

Let p 2 X. Since fp;:pg is inconsistent, p ^ :p = ?. Since every J 2 J contains p
or :p, every J 2 J contains p _ :p, whence p _ :p = |. �

Lemma 5 The notions of consistency, entailment, conjunction and disjunction are pre-
served by any extension of the agenda (and thus can be used without referring explicitly
to an agenda). Formally, for any agenda X and any superagenda X 0 (e.g., the scope of
X),

(a) a set S � X is consistent w.r.t. X if and only if it is so w.r.t. X 0,
(b) a proposition p 2 X (or set S � X) entails a proposition p0 2 X (or set S0 � X)

w.r.t. X if and only if it does so w.r.t. X 0,
(c) a proposition r 2 X is the (or a) conjunction/disjunction of certain propositions

in X w.r.t. X if and only if it is so w.r.t. X 0.

Proof. Part (b) follows from part (a), since the entailment notion is reducible to
the consistency notion (e.g., p entails p0 if and only if fp;:p0g is inconsistent). Further,
part (c) follows from part (b), since the notions of conjunction and disjunction are
reducible to the entailment notion: r is a conjunction of a set of propositions S if and
only if r and S entail each other, and r is a disjunction of the set of propositions S if
and only if :r and f:p : p 2 Sg entail each other. To prove part (a), recall that (*)
JX = fJ 0 \X : J 0 2 JX0g. Consider any S � X. First, let S be consistent w.r.t. X.
Then there is a J 2 JX such that S � J . By (*), we may write J = J 0 \X for some
J 0 2 JX0 . Clearly, S � J 0, whence S is consistent w.r.t. X 0. Conversely, assume S is
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consistent w.r.t. X 0. Then we may choose a J 0 2 JX0 such that S � J 0. By (*), JX
contains J := J 0 \X. Note that S � J . So S is consistent w.r.t. X. �

Lemma 6 For any agenda X and any closed (redundancy-free) superagenda X 0 �pos-
sible X itself or the scope of X �a set A � X is consistent if and only if, in X 0,

V
p2A

p 6=

?.

Proof. Let X and X 0 be as speci�ed. By Lemma 5, we need not distinguish between
consistency w.r.t. X and w.r.t. X 0. We proceed by showing three claims.

Claim 1 : ? is the only element ofX 0 which is not contained in any rational judgment
set J 2 JX0 .

This follows from four facts (some of which draw on Proposition 6): (i) ? is the
only element of X 0 which entails its own algebraic complement (a basic fact about
Boolean algebras); (ii) the algebraic complement of an element p is its (agenda-theoretic)
negation :p; (iii) an element p entails another q if and only if no J 2 JX0 contains both
p and :q; (iv) every J 2 JX0 contains exactly one of member of each pair p;:p 2 X.
QED

Claim 2 : For any J 2 JX0 and any A � J , we have
V
p2A

p 2 J .

Let J 2 JX0 and A � J . By Proposition 6 we can think of �̂ � alternatively as
the conjunction operator (de�ned agenda-theoretically) or the meet (de�ned Boolean-
algebraically). The claim holds by induction on the size of A. If A = ?, the claims
holds because then

V
p2A

p = | and | 2 J (as | = : ?, where ? 62 J by Claim 1). Now

assume A has size m � 1 and suppose the claim holds for any smaller size. We may
write A = A0 [ fqg with q 62 A0. By induction hypothesis,

V
p2A0

p 2 J . Since J contains

both
V
p2A0

p and q, J contains their conjunction (
V
p2A0

p)
V
q =

V
p2A

p by de�nition of

conjunction. QED

Claim 3 : A set A � X 0 is consistent if and only if
V
p2A

p 6= ?.

First, let A � X 0 be consistent. Then it has an extension J 2 JX0 , which by Claim
2 contains

V
p2A

p. So by Claim 1
V
p2A

p 6= ?. Conversely, assume
V
p2A

p 6= ?. Then by

Claim 1 there is a J 2 JX0 containing
V
p2A

p. So, as
V
p2A

p entails each p 2 A, J contains

each p 2 A, i.e., A � J . �

Proof of Proposition 4. Let X be an agenda. As one easily checks, we may assume
without loss of generality. that X is redundancy-free.

1. In this part we show that we may assume without loss of generality. that X is
a �semantic�agenda given as follows: there exists a �nite set of �worlds�
 6= ? such
that X � 2
, where (i) each issue takes the form fA;Ag (I write A for the complement

nA of any set A � 
), (ii) the set JX of rational judgment sets consists of those
sets J � X which contain exactly one member of each issue and satisfy

T
A2J

A 6= ?,

and (iii) rational judgment sets in JX correspond to worlds in 
, in the sense that the
assignment J 7!

T
A2J

A de�nes a bijection from JX to ff!g : ! 2 
g.
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To show this, we consider any agenda V and construct a semantic agenda X of the
given sort to which V is isomorphic. Let the set of worlds be 
 := JV . To each p 2 V
corresponds a set of worlds, the �extension�of p, given by [p] := f! 2 
 : p 2 !g. Note
that the assignment p 7! [p] de�nes a bijection from V to the set X := f[p] : p 2 V g. I
de�ne an agenda by the set X, endowed with

� issues de�ned as the sets f[p]; [:p]g (which indeed partition X into pairs, since the
sets fp;:pg partition V into pairs and since p 7! [p] maps V bijectively to X),

� rational judgment sets de�ned as the sets J � X containing exactly one member
of each issue and satisfying

T
A2J

A 6= ?.

This agendaX satis�es (i) since [:p] = [p] for all p 2 V , and satis�es (ii) immediately
by de�nition. To show that it satis�es (iii), we �rst show that for each J 2 JX the
intersection

T
A2J

A (6= ?) is indeed a singleton. Assume for a contradiction that it

contains distinct !; !0 2 
. Since ! 6= !0, there is a p 2 V such that p 2 !0n! and
:p 2 !n!0. So, ! 62 [p] and !0 62 [:p]. Since J contains either [p] or [:p], it follows that
either ! 62

T
A2J

A or !0 62
T
A2J

A, a contradiction. Second, one has to check injectivity

and surjectivity of the mapping from JX to ff!g : ! 2 
g; we leave this to the reader.
Finally, to show that V and X are isomorphic (as agendas), it su¢ ces to show

that p 7! [p] de�nes an (agenda) isomorphism. This is so because the assignment
p 7! [p] is bijective, and bijectively maps the issues fp;:pg of V to those of X, and the
rational judgment sets of V to those of X (the latter can be shown by verifying that
the assignment J 7! f[p] : p 2 Jg de�nes a bijection from JV to JX).

2. From now on we assume that X takes the semantic form de�ned in part 1. In
the current part, we show the existence claim. As one can check, X is a subagenda of
the agenda X 0 := 2
 whose issues are the pairs fA;Ag (A � 
) and whose rational
judgment sets are the sets of the form fA � 
 : ! 2 Ag (! 2 
). It su¢ ces to show
that X 0 is a minimal closed extension of X. First, X 0 is closed, where the conjunction
is given by the intersection, and the disjunction by the union. Second, we have to show
minimality. Consider any superagenda X 00 of X which is a strict subagenda of X 0.
We have to show that X 00 is not closed. As X 00 is a subagenda of X 0, it inherits its
issues from X 0, and thus X 00 is closed under complement: A 2 X 00 ) A 2 X 00. Since
X 0 (= 2
) is the only subset of 2
 which includes X and is closed under intersection
and complement, and since X 00 is closed under complement, X 00 cannot be closed under
intersection. It follows that X 00 is not closed (i.e., not closed under conjunction), by
the following argument. Choose any A;B 2 X 00 such that A \ B 62 X 00. Suppose for
a contradiction that X 00 contains a C which (relative to agenda X 00) is the conjunction
of A and B, i.e., is equivalent to fA;Bg. Sine A \ B 62 X 00, C 6= A \ B. So, since
also C � A and C � B (as C entails A and B relative to the agenda X 00), we have
C ( A \ B. Choose any ! 2 (A \ B)nC. Note that J 00 := fD 2 X 00 : ! 2 Dg belongs
to JX00 , and contains A and B but not C. So (still relative to agenda X 00) fA;Bg does
not entail C, a contradiction since C is the conjunction of A and B.

3. Finally, we show the uniqueness claim. Since the agenda X 0 de�ned in part 2 is
a minimal closed extension of X, it su¢ ces to show that any other such extension of X
is equal to X 0 up to relabelling. Let Z be an arbitrary minimal closed superagenda of
X. We need to de�ne an agenda isomorphism f : X 0 ! Z which is constant on X. For
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all ! 2 
 and all Y � X 0 (= 2
), let Y! := fA 2 Y : ! 2 Ag, and for all B 2 X 0 (= 2
)
let

pB :=
_
!2B

�^
X!

�
( 2 Z): (17)

Here and in what follows, let �_�, �̂ �and �:�refer to the disjunction, conjunction and
negation operators of Z (rather than of X or X 0). By Proposition 6, �_�, �̂ �and �:�
can alternatively be viewed as the algebraic operations of join, meet and complement in
the Boolean algebra Z. So, standard algebraic rules apply, such as associativity, com-
mutativity and distributivity of _ and ^. Also, let | and ? be the greatest and smallest
elements of the Boolean algebra Z, respectively; clearly, | is the (only) tautology and
? the (only) contradiction of the agenda Z.

Claim 1 : For all Y � X, A 2 XnY and ! 2 
 we write Y A! := Y! [ fAg. For every
subagenda Y of X, A 2 XnY , and ! 2 A, either

V
Y A! = ? or Y A! = Y A!0 for some

!0 2 A.
Consider any subagenda Y of X, A 2 XnY , and ! 2 A. First assume Y A! is

inconsistent w.r.t. agenda X. Then
V
Y A! = ? by Lemma 6. Now assume Y A! is

consistent w.r.t. agenda X. So there is an !0 2 \Y A! . In particular, !0 2 \Y!. So,
for each B 2 Y , ! 2 B ) !0 2 B. In fact, the ` )�can be replaced by �,�, since
! and !0 belong to the same number of sets B in Y (i.e., to half the these sets, as
B 2 Y , B 2 Y ). So, Y! = Y!0 , and hence, Y A! = Y A!0 . QED

Claim 2 : For all B 2 X 0, :pB = pB.
Let B 2 X 0. Since : coincides with the algebraic complement operation in Z, it

su¢ ces to show that pB _ pB = | and pB ^ pB = ?.
We �rst prove that pB _ pB = |. Since

pB _ pB =
" _
!2B

^
X!

#_24_
!2B

^
X!

35 = _
!2


^
X!;

we have to prove that
W
!2


V
X! = |. We �rst show that

_
!2


^
X! =

_
!2


^
Y!; (18)

where Y is any set of the form XnfA;Ag with A 2 X. Note that

_
!2


^
X! =

"_
!2A

^
X!

#_24_
!2A

^
X!

35
=

"_
!2A

^
Y A!

#_24_
!2A

^
Y A!

35 ;
where the last expression uses notation introduced in Claim 1. This expression is a
disjunction of terms (disjuncts) of two types: any

V
Y A! with ! 2 A (type 1) and anyV

Y A! with ! 2 A (type 2). The result is not a¤ected by adding the following new
disjuncts: any

V
Y A! with ! 2 A (type 3) and any

V
Y A! with ! 2 A (type 4). Indeed,
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by Claim 1 each new disjunct of type 3 is either ? or coincides with a disjunct of type
1, and any new disjunct of type 4 is either ? or coincides with a disjunct of type 2.
After adding these new disjuncts and re-grouping, the expression becomes"_

!2


^
Y A!

#_"_
!2


^
Y A!

#
:

Noting that each Y A! equals fAg [ Y! and each Y A! equals fAg [ Y!, and then using
distributivity twice, the last expression reduces to"

A
^ _

!2


^
Y!

!#_"
A
^ _

!2


^
Y!

!#

=
h
A
_
A
i^ _

!2


^
Y!

!
=

_
!2


^
Y!:

This proves (18). By an analogous argument, one can show that (unless Y = ?), we
have

W
!2


V
Y! =

W
!2


V
Y 0! for a set Y

0 of the form Y nfA;Ag with A 2 Y ; which together

with (18) yields that
W
!2


V
X! =

W
!2


V
Y 0!: Continuing in this fashion, we ultimately

obtain that
W
!2


V
X! =

W
!2


V
?! = |, as desired.

We �nally have to prove that pB
V
pB = ?. Using distributivity twice,

pB ^ pB =

" _
!2B

^
X!

#^24 _
!02B

^
X!0

35
=

_
!2B

0@h^X!

i^24 _
!02B

^
X!0

351A
=

_
!2B

0@ _
!02B

�h^
X!

i^h^
X!0

i�1A :
It thus su¢ ces to show that for all ! 2 B and !0 2 B we have [

V
X!]

V
[
V
X!0 ] = ?.

Let ! 2 B and !0 2 B. Clearly ! 6= !0, and so there is an A 2 X such that ! 2 A
and !0 2 A. Since A 2 X!,

V
X! entails A. Analogously, since A 2 X!0 ,

V
X!0 entails

A. It follows that [
V
X!]

V
[
V
X!0 ] entails A

V
A. As A

V
A = ? (since A and A are

complements in the algebra Z), it follows that [
V
X!]

V
[
V
X!0 ] entails ?, hence, equals

?. QED
Claim 3 : pB = B for all B 2 X.
Consider any B 2 X. We regard B as an element of the extended agenda Z � X.

Since Z is redundancy-free, it su¢ ces to show that pB and B entail each other. We �rst
show that pB entails B. Since pB is the least upper bound of all

V
X! with ! 2 B, it

su¢ ces to show that B is an upper bound, i.e., that each of these
V
X! entails B. This
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is so because for each ! 2 B the set X! contains B. Second, we show that B entails pB,
or equivalently, that :pB entails :B. This follows from the previous argument applied
to B rather than B, because :pB = pB by Claim 2 and because :B = B (as Z is a
superagenda of X, so that B�s Z-relative negation :pB coincides with B�s X-relative
negation B). QED

Claim 4 : For all A;B 2 X 0, pA[B = pA _ pB and pA\B = pA ^ pB.
Let A;B 2 X 0. The �rst identity holds immediately by de�nition of pA and pB. As

for the second identity, using de Morgan�s Law (valid in Boolean algebras) and then
Claim 2, pA ^ pB = :(:pA _:pB) = :(pA _ pB). Now using the �rst identity, it follows
that pA^B = :pA[B, which reduces to pA\B by A [B = A \B and Claim 2. QED

Claim 5 : Z = fpB : B 2 X 0g.
The set S := fpB : B 2 X 0g (� Z) is closed under negation by Claim 2, hence de�nes

a subagenda of Z. The agenda S is closed because for any B;C 2 X 0 the disjunction
of pB and pC (relative to the agenda Z) equals pB[C by Claim 4, hence belongs to
the agenda S (relative to which it of course still de�nes the disjunction of pB and pC).
Moreover, the agenda S includes X by Claim 3, hence is a superagenda of X. Since Z
is by de�nition a minimal closed superagenda of X, it follows that S = Z. QED

Claim 6 : For all A;B 2 X 0, A � B if and only if pA entails pB.

For each ! 2 
 we have pf!g 6= ?; this is because the set X! is consistent with
respect to agenda X, and hence pf!g =

V
X! 6= ? by Lemma 6. Now consider any

A;B 2 X 0. First, if A � B, then pA clearly entails pB since pB is a disjunction of at
least those terms of which pA is a disjunction. Conversely, now assume that pA entails
pB. As AnB � B, pAnB entails pB; and so, as pB = :pB by Claim 2, pAnB entails :pB.
Also, as AnB � A, pAnB entails pA; and so, as pA entails pB, pAnB entails pB. Since, as
we have shown, pAnB entails both :pB and pB, it entails :pB ^pB = ?. Hence, pAnB =
?. It follows that AnB = ?, i.e., A � B, since if there were an ! 2 AnB, then pf!g
would entail pAnB, whence pf!g = ?, in contradiction with what was shown at the start
of the proof of the claim. QED

Claim 7 : The assignment B 7! pB de�nes an agenda isomorphism between X 0 and
Z which is constant on X. (This completes the proof.)

This assignment �call it f �is constant on X by Claim 3, and surjective by Claim
4. To show injectivity, consider distinct A;B 2 X 0. We may assume without loss of
generality. that A 6� B (since otherwise the roles of A and B can be interchanged). By
Claim 6, pA does not entail pB, and so pA 6= pB.

It remains to show that f preserves the agenda structure: the issues (resp. negation
operator) and the interconnections. This could be deduced from Claims 2, 5 and 6 since,
�rstly, by these claims the (bijective) function f is a Boolean-algebra isomorphism, and,
secondly, for a closed agenda, the agenda structure and the Boolean-algebra structure
are interde�nable, as can be veri�ed; see Proposition 6.33 But let me give a direct proof.
First, f preserves the issues structure, since for each A 2 X 0 we have :pA = pA (by
Claim 2) and A is the X 0-relative negation of A. Second, consider a set S � X 0; we
show that S is consistent (in the sense of X 0) if and only if its image fpB : B 2 Sg is
consistent (in the sense of Z). This holds for the following reasons. S is consistent if

33For instance, a subset A is consistent in the agenda sense if and only if its algebraic meet is not ?,
by Lemma 6.
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and only if \S 6= ?, which is in turn equivalent to p\S 6= p?, i.e., to p\S 6= ?. By Claim
4, the latter is equivalent to

V
B2S

pB 6= ?, which is in turn equivalent to the consistency

of fpB : B 2 Sg by Lemma 6. �

Proof of Lemma 1. This lemma follows from the proof of Proposition 4. �

Proof of Proposition 5. Let X be an agenda. It su¢ ces to show that for each J 2 JX
and p 2 X, J entails p or entails :p, or equivalently,

V
q2J

q entails p or entails :p. This

follows from the fact that, by Lemma 1,
V
q2J

q is an atom of X, i.e., a logically strongest

element of Xnf?g. �
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