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We consider the model Yi " XiUi, i " 1, . . . , n, where the Xi, the Ui and thus the Yi are all independent and identically distributed. The Xi have density f and are the variables of interest, the Ui are multiplicative noise with uniform density on r1 ´a, 1 `as, for some 0 ă a ă 1, and the two sequences are independent. However, only the Yi are observed. We study nonparametric estimation of both the density f and the corresponding survival function. In each context, a projection estimator of an auxiliary function is built, from which estimator of the function of interest is deduced. Risk bounds in term of integrated squared error are provided, showing that the dimension parameter associated with the projection step has to perform a compromise. Thus, a model selection strategy is proposed in both cases of density and survival function estimation. The resulting estimators are proven to reach the best possible risk bounds. Simulation experiments illustrate the good performances of the estimators and a real data example is described.

Introduction

We consider the following model Y i " X i U i , i " 1, . . . , n, U i " U r1´a,1`as , 0 ă a ă 1

(1.1)

where pX i q ti"1,...,nu and pU i q ti"1,...,nu are two independent samples. The U i 's are independent and identically distributed (i.i.d.) random variables from uniform density on an interval r1 ´a, 1 `as of R `with 0 ă 1 ´a ă 1 `a and a is assumed to be known. The X i 's are i.i.d. from an unknown density f on R `. Both sequences are unobserved. Only the Y i 's are observed. The model implies that they are i.i.d. and we denote by f Y their density on R `. Our goal is to estimate nonparametrically the density f of the X i 's from the observations Y i , i " 1, . . . , n.

Equation (1.1) can be obtained as follows. Classical models involving measurement errors are often additive and state that the variable of interest X i is not directly observed because an additive noise hides it: only samples of X i `ξi are available, where ξ i is an i.i.d. centred sequence. Then, in many contexts, this noise depends on the level of the signal and the simplest strategy is to consider that it is proportional to the signal. Thus, the model for the observations becomes X i `αX i ξ i , α P R. Rewriting this X i p1 `αξ i q, we obtain a multiplicative noise model with noise 1 `αξ i with mean 1. This corresponds to model (1.1) where we specified the final distribution of the noise as uniform, and symmetric around one 1 .

In any case, Equation (1.1) models an approximate transmission of the information: the recorded values Y i correspond to the value of interest X i , up to an error of order of ˘100a%. This represents rather standard situations, when people have to give their height or the amount of money they devote to some specific expenses, i.e. quantities they may not know exactly with no intention to change them (for instance, weight or income may be intentionally biased). However, very few studies of this model have been conducted in the literature. We mainly found it in Sinha et al. [2011], who study "noise multiplied magnitude microdata" as a form of data masking in contexts where one needs to protect the privacy of survey respondents. The authors mainly study quantile estimation.

Nevertheless, multiplicative noise models can be found with other distributions for the noise U . The case of U following a uniform distribution on r0, 1s (Upr0, 1sq) has been introduced by Vardi [1989] who called it a "multiplicative censoring" model. This model was studied by Vardi and Zhang [1992], [START_REF] Asgharian | Large-sample study of the kernel density estimators under multiplicative censoring[END_REF], [START_REF] Abbaszadeh | Multiplicative censoring: Estimation of a density and its derivatives under the l-p-risk[END_REF], [START_REF] Brunel | Nonparametric density and survival function estimation in the multiplicative censoring model[END_REF], and is mostly applied in survival analysis, see [START_REF] Van Es | Survival analysis under cross-sectional sampling: length bias and multiplicative censoring[END_REF]. In these papers, nonparametric estimators of the density f or of the survival function F " 1 ´F , F pxq " ş x 0 f puqdu, of the unobserved random variable X are built and studied, but in different contexts. For instance, [START_REF] Asgharian | Large-sample study of the kernel density estimators under multiplicative censoring[END_REF] assume that part of the observations are directly observed and the proposed method is no longer valid if this proportion is null as in our model. In [START_REF] Brunel | Nonparametric density and survival function estimation in the multiplicative censoring model[END_REF], kernel estimators are studied, while [START_REF] Abbaszadeh | Multiplicative censoring: Estimation of a density and its derivatives under the l-p-risk[END_REF] build wavelet estimators of the density and its derivatives. The case of Gaussian U , for variables on R, has also been considered in financial context and studied from statistical point of view by e.g. [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF].

In this paper, we build estimators of the density f and of the survival function F " 1 ´F . The operator linking the density of the observations and the density of interest is given by

f Y pyq " 1 2a ż y 1´a y 1`a f pxq x dx, y Ps0, `8r, (1.2) 
and the inversion of formula (1.2) is not obvious. This is why our strategy relies on two steps. Let us give here a sketch of the procedure. First, we approach an auxiliary function g expressed as a function of f and a. We prove that for an explicit transformation t P L 2 pR `q Þ Ñ ψ t and this function g in L 2 pR `q, we have Erψ t pY 1 qs " xt, gy, (1.3)

where xs, ty " ş R `spxqtpxqdx denotes the scalar product of two functions of L 2 pR `q. The two functions g and ψ t are given in Section 2. Relation (1.3) is used to build projection estimators of g. Indeed, considering the collection of spaces S m " Vecttϕ 0 , ϕ 1 , . . . , ϕ m´1 u where pϕ j q jě0 is an orthonormal basis of L 2 pR `q, the orthogonal projection g m of g on S m is given by g m " ř m´1 j"0 a j ϕ j , with a j " xg, ϕ j y. From relation (1.3), we notice that a j " Erψ ϕ j pY 1 qs and replacing the expectation by its empirical counterpart p a j , we obtain the estimator p g m " ř m´1 j"0 p a j ϕ j . With similar ideas, we also define q G m " ř m´1 j"0 q b j ϕ j where q b j are also computed from the observations Y 1 , . . . , Y n . Then we deduce, by inverting the relation between f and g (see Section 2.2) and between F and G (see Section 2.5), collections of estimators of f and F , for which risk bounds are provided, in term of mean integrated squared error (MISE) on R `. Model selection criterion are proposed to automatically select m in both cases, and they are proven to make the adequate tradeoff between bias (m must be large enough for the projection bias to be small) and variance (estimating too many coefficients increases the estimation error), see Theorems 2.3 and 2.6.

Finally we illustrate our method on simulated and real data. Our purpose is to propose a new method of privacy protection by the mean of our multiplicative censoring model. On the data given in Sinha et al. [2011], knowing the level of noise a, we show how to recover the hidden information about the original data from the noisy observations. The plan of the paper is the following. In Section 2, we describe our estimation method and the model selection procedure, for the density in Sections 2.2 to 2.4 and for the survival function in Section 2.5. We compute bounds on the integrated quadratic risk associated to the estimators and deduce rates of convergence. The strategy and the results are detailed for density estimation and then extended to the case of survival function estimation. In Section 3, we describe a deconvolution strategy based on the additive model obtained by taking the logarithm of (1.1): we compare our method to this one from theoretical point of view here and in practice in Section 4. Finally Section 4 illustrates the theoretical results, on simulated data (Section 4.1) and on real data (Section 4.2). Simulation experiments show the good performances of our method, and estimation on real data is presented through an example of application. Lastly, most proofs are gathered in Section 5.

Multiplicative denoising of density and survival function

2.1. Notations. The space L 2 pR `q is the space of square integrable functions on the positive real line. The associated 

L 2 -norm is denoted }t} 2 " ş R `|tpxq| 2 dx.
L k pxq " k ÿ j"0 p´1q j ˆk j ˙xj j! . (2.2)
It satisfies the orthonormality property xϕ j , ϕ k y " δ j,k where δ j,k is the Kronecker symbol equal to 1 if j " k and to zero otherwise; and the following relations on the norms (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]): @j ě 0, }ϕ j } 8 ď ? 2, and }ϕ 1 j } 8 ď 2

? 2pj `1q, (2.3) 
where ϕ 1 j is the derivative of ϕ j . Any function of L 2 pR `q can be decomposed on this basis. Lastly, we state a useful lemma, proven in Section 5, relying on the fact that the density f Y is given by (1.2).

Lemma 2.1. The density f Y defined in (1.2) satisfies lim yÑ0 yf Y pyq " 0 and lim yÑ`8 yf Y pyq " 0.

Lemma 2.1 is a useful property to justify the construction of the estimator.

Estimation strategy.

Recall that f Y is given by (1.2). Now let g be given by gpxq :" 1 2a

" f ˆx 1 `a ˙´f ˆx 1 ´a ˙ , (2.4)
and consider a bounded function t, derivable and with derivative function t 1 in L 2 pR `q. Then, an integration by part and the Lemma 2.1 imply

ErtpY 1 q `Y1 t 1 pY 1 qs " 1 2a ż `8 0 tpyq " f ˆy 1 `a ˙´f ˆy 1
´a ˙ dy " xt, gy.

(2.5)

In other words Erψ t pY 1 qs " xt, gy with ψ t pyq :" tpyq `yt 1 pyq. Our strategy is to use equation (2.5) to build a projection estimator of g, and then to look for an inversion of formula (2.4) to recover f . Precisely, it follows from (2.4) that f pxq ´f ˆˆ1 `a 1 ´a ˙x˙" 2a gpp1 `aqxq and iterating the relation (by changing x into p1 `aqx{p1 ´aq, x ą 0), it yields

f pxq ´f ˜ˆ1 `a 1 ´a ˙N x ¸" 2a N ´1 ÿ k"0 g ˜ˆ1 `a 1 ´a ˙k p1 `aqx Ţhus a sequence of approximations of f , for x ą 0, is f N pxq " 2a N ´1 ÿ k"0 g ˜ˆ1
`a 1 ´a ˙k p1 `aqx ¸.

(2.6)

Besides, using that f pxq ´fN pxq " f ppp1 `aq{p1 ´aqq N xq, it is easy to check for f P L 2 pR `q that }f ´fN } tends to 0 when N tends to infinity. Now, if f is square-integrable, so is g and therefore we can write its decomposition on the Laguerre basis:

gpxq " 8 ÿ j"0 a j pgqϕ j pxq, with a j pgq " xϕ j , gy.

Recall that g m :" ř m´1 j"0 a j pgqϕ j is the orthogonal projection of g on S m . According to (2.5), we have a j pgq " Erϕ j pY 1 q `Y1 ϕ 1 j pY 1 qs " xϕ j , gy. Then the projection g m of g on S m is estimated by

p g m " m´1 ÿ j"0 p a j ϕ j , p a j " 1 n n ÿ i"1 rY i ϕ 1 j pY i q `ϕj pY i qs " n ´1 n ÿ i"1 ψ ϕ j pX i q, (2.7)
with m in a finite collection M n Ă N that will be given later. Finally, plugging estimator (2.7) into (2.6), gives the collection of estimators of f , for m P M n ,

p f N,m pxq " 2a N ´1 ÿ k"0 p g m ˜ˆ1 `a 1 ´a ˙k p1 `aqx ¸.
(2.8) 2.3. Risk bound for density estimator. We first state a bound on the mean integrated squared error (MISE) of p f N,m as an estimator of f . Proposition 2.2. Assume that f P L 2 pR `q and ErX 2 1 s ă `8. (i) The estimator p g m of g defined by (2.7) satisfies

Er}p g m ´g} 2 s ď }g ´gm } 2 `c1 m n `c2 m 3 n , c 1 " 4, c 2 " 16ErY 2 1 s.
(2.9)

(ii) The estimator p f N,m of f defined by (2.8) satisfies Er} p f N,m ´f } 2 s ď 8a 2 p ? 1 `a ´?1 ´aq 2 ˆ}g ´gm } 2 `c1 m n `c2 m 3 n ˙`2 ˆ1 ´a 1 `a ˙N }f } 2 .
(2.10)

Both risk bounds involve a bias term (proportional to }g ´gm } 2 ) which decreases when m increases, and a variance term with main order m 3 {n, which increases with m. The last term of (2.10) is clearly exponentially decreasing with N . As the value of N is chosen by the statistician, taking N ě logpnq{| logpp1 ´aq{p1 `aqq| makes this term negligible (if a " 0.5, and n " 1000, the condition is N ě 8.)

Rates of convergence of estimators can be computed more precisely. To evaluate the order of }g ´gm } 2 , the regularity of the function g has to be specified. Let us assume, in this paragraph, that g belongs to a Sobolev-Laguerre space (see [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF]), defined by

W s pR `, Lq :" tf : R `Ñ R, f P L 2 pR `q, ÿ jě0 j s xf, ϕ j y 2 ď L ă `8u,
(2.11) with s ą 0 (see [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF] for equivalent definitions in case s is an integer).

Then we get the following order for the squared bias term:

}p g m ´g} 2 " 8 ÿ j"m a 2 j pgq " 8 ÿ j"m
a 2 j pgqj s j ´s ď Lm ´s.

Therefore we look for the choice m " m opt which minimizes Lm ´s `c2 m 3 {n. We obtain m opt " Cn 1{ps`3q with C :" p3c 2 {psLqq ´1{ps`3q , which implies Er}p g mopt ´g} 2 s " Opn ´s{ps`3q q. This rate is the classical one in the multiplicative censoring model, and it is minimax optimal in case U " Upr0, 1sq, see [START_REF] Belomestny | Laguerre estimation for k-monotone densities observed with noise[END_REF], [START_REF] Brunel | Nonparametric density and survival function estimation in the multiplicative censoring model[END_REF].

2.4. Model selection for density estimation. As the regularity s of g in unknown, the choice m " m opt cannot be performed in practice. Therefore, a selection method must be set up to choose automatically the best m among the discrete collection M n " tm P 1, n , m 3 ď nu, realizing the bias-variance trade-off. We want to choose m minimizing the MISE of p f N,m . Considering bound (2.10), the theoretical value is

m th :" argmin mPMn " }g ´gm } 2 `c1 m n `c2 m 3 n * " argmin mPMn " ´}g m } 2 `c1 m n `c2 m 3 n *
as }g ´gm } 2 " }g} 2 ´}g m } 2 and }g} 2 does not depend on m. But functions g m are unknown, thus we replace them by estimators. Therefore, we may select m as the minimizer of the sum ´}p g m } 2 `penpmq with penpmq :" κ 1 m n `κ2 ErY 2 1 s m 3 n ": pen 1 pmq `pen 2 pmq.

(2.12)

The penalty terms have the order of the variance term in (2.9). Note that the definition of M n ensures that it is bounded. As ErY 2 1 s is unknown, we finally propose to replace it by its empirical counterpart and we get:

p m " argmin mPMn t´}p g m } 2 `y penpmqu, (2.13) 
where

y penpmq " 2κ 1 m n `2κ 2 p C 2 m 3 n :" 2pen 1 pmq `2y pen 2 pmq, p C 2 " 1 n n ÿ k"1 Y 2 k .
(2.14)

The constants κ 1 and κ 2 are numerical constants which are calibrated in the simulations. Note that }p g m } 2 " ř m´1 j"0 p a 2 j with p a j given in (2.7) is easy to compute. Our final estimator is

p f N, p m pxq " 2a N ´1 ÿ k"0 p g p m

˜ˆ1

`a 1 ´a ˙k p1 `aqx ¸.

(2.15)

We can prove the following result.

Theorem 2.3. Assume that f P L 2 pR `q, that f is bounded and that ErX 8 1 s ă `8. For the final estimator p f N, p m defined by (2.7), (2.13) and (2.15), there exists κ 0 such that for κ 1 , κ 2 ě κ 0 ,

Er} p f N, p m ´f } 2 s ď 16a 2 p ? 1 `a ´?1 ´aq 2 ˆ6 inf mPM t}g ´gm } 2 `penpmqu `Ca n ˙`ˆ1 ´a 1 `a ˙N }f } 2 ,
where pen is given by (2.12), and C a is a positive constant depending on a and }f } 8 .

The theoretical study gives the bounds: κ 1 ě 32 and κ 2 ě 288. But it is well known that these theoretical constants are too large in practice: this is why the calibration step for choosing the values of the constants is done through simulations. Theorem 2.3 is a non-asymptotic bound for the MISE of the adaptive estimator p f N, p m . It shows that the selection method leads to an estimator with smallest possible risk among all the estimators in the collection. Note that as previously, the choice N " logpnq{| logpp1 ´aq{p1 `aqq| is suitable for the last term to be negligible.

Survival function estimation.

In this section, we extend the previous procedure to provide an estimator of the survival function of X, defined on R `by

F pxq " 1 ´F pxq " ż `8 x f puqdu.
(2.16)

We denote by F Y the survival function of Y , defined accordingly. We also define a similar function G associated with g (which is not a density). We can prove the following Lemma.

Lemma 2.4. For all x in R `,

Gpxq :"

ż 8 x gpuqdu " 1 2a " p1 `aqF ˆx 1 `a ˙´p1 ´aqF ˆx 1 ´a ˙ " xf Y pxq `F Y pxq.
(2.17)

By integrating relation (2.6), we also get a relation between F and G: for x ą 0, let

F N pxq :" 2a 1 `a N ´1 ÿ k"0 ˆ1 ´a 1 `a ˙k G ˜ˆ1 `a 1 ´a ˙k p1 `aqx ¸, (2.18) then F pxq ´F N pxq " ˆ1 ´a 1 `a ˙N F ˜ˆ1 `a 1 ´a ˙N x ¸.
Note that Gp0q " 1 and thus lim N Ñ8 F N p0q " 1, which is coherent with F p0q " 1. Moreover, if ErX 1 s ă `8 the function F , and thus G, is square integrable on R `. Denoting by G m the orthogonal projection of G on S m , we have

G m " m´1 ÿ j"0 b j pGqϕ j , with b j pGq :"ă G, ϕ j ą .
According to relation (2.17), the coefficients b j pGq can also be written as follows:b j pGq " ErY ϕ j pY qs`ă F Y , ϕ j ą. Thus we estimate the projection

G m of G on S m by q G m " m´1 ÿ j"0 q b j ϕ j , q b j " 1 n n ÿ i"1 "ż R `ϕj pxq1 Y i ěx dx `Yi ϕ j pY i q  . (2.19)
Finally, plugging (2.19) into (2.18), an estimator of F is given by

q F N,m " 2a 1 `a N ´1 ÿ k"0 ˆ1 ´a 1 `a ˙k q G m ˜ˆ1 `a 1 ´a ˙k p1 `aqx ¸.
(2.20)

We can prove the following bound.

Proposition 2.5. Assume that ErX 2 1 s ă `8. Then, F is square integrable and the estimator q F N,m of F given by (2.20) satisfies

Er} q F N,m ´F } 2 s ď Cpaq ˆ}G ´Gm } 2 `4ErY 2 1 s m n `2ErY 1 s n ˙`ˆ1 ´a 1 `a ˙3N }F } 2 , (2.21)
where Cpaq " 8a 2 {pp1 `aq 3{2 ´p1 ´aq 3{2 q 2 . Inequality (2.21) provides a squared-bias/variance decomposition with bias proportional to }G Ǵm } 2 and variance proportional to ErY 2 1 sm{n. The term of order ErY 1 s{n is negligible, as well as the last one, for N ě logpnq{r3 logpp1 `aq{p1 ´aqqs (if a " 0.5, and n " 1000, the condition is N ě 3). If G belongs to W s pR `, Lq defined by (2.11), then choosing m ‹ opt proportional to n 1{ps`1q yields Er} q F N,m ‹ opt ´F } 2 s " Opn s{ps`1q q. The rate is better than the one obtained for density estimation.

However, it remains a nonparametric rate while cumulative distribution functions are estimated with parametric rates in direct problems.

Then we proceed as in the density case for selecting m and set:

q m " argmin mPMn t´} q G m } 2 `} penpmqu, } penpmq " 2q κ p C 2 m n (2.22)
where p C 2 is given by (2.14). The constant q κ is calibrated in the simulation part. We can prove the following oracle-type inequality of the final estimator q F N, q m .

Theorem 2.6. If F P L 2 pR `q and ErX 4 1 s ă 8, the final estimator q F N, q m defined by (2.20) and (2.22) satisfies

Er} q F N, q m ´F } 2 s ď Cpaq ˆ6 inf mPMn t}G ´Gm } 2 `penpmqu `Da n ˙`ˆ1 ´a 1 `a ˙3N }F } 2 (2.23)
where Cpaq is defined in Proposition 2.5 and D a is a constant depending on a.

Only a sketch of proof of the Theorem is given in Section 5.8, and we find q κ ě 192.

2.6. Case of unknown a. Parameter a is not identifiable, unless additional information is available. Two cases can be considered. First, if an additional K-sample is available, where the signal is a deterministic known constant, then we have a set of observations of U , say U p1q 1 , . . . , U p1q K . In this case, we can use the maximum likelihood estimator max 1ďiďK p|U p1q i ´1|q as an estimator of a with rate of convergence K (i.e. the mean square risk is of order 1{K 2 ). Secondly, we can consider the model of repeated observations, where the variable X i can be observed repeatedly, with independent errors:

Y i,k " X i U i,k , k P t1, 2u, i " 1, . . . , n,
where pU i,1 q i and pU i,2 q i are independent i.i.d. samples with distribution Upr1 ´a, 1 `asq. Then we have

E « Y 2 i,1 Y 2 i,2 ff " ErU 2 i,1 sE « 1 U 2 i,2 ff , ErU 2 i,1 s " a 2 3 `1, E « 1 U 2 i,2
ff " 1 p1 ´aqp1 `aq , which yields ErY 2 i,1 {Y 2 i,2 s " p1 `a2 {3q{p1 ´a2 q. Therefore, we make the proposal

p a n " d W n ´1 W n `1{3 , with W n " 1 n n ÿ i"1 W i , W i :" Y 2 i,1 Y 2 i,2
.

(2.24)

Clearly, p a n is a consistent estimator of a and by the limit central Theorem and the delta-method, we obtain the convergence in distribution

? npp a n ´aq L Ñ Z, Z " N `0, σ 2 paq ˘, σ 2 paq " 1 ´a2 40 p15 `8a 2 `a4 q P p0, 0.375q.
This estimator can be plugged into the previous estimation procedure.

Model transformation and deconvolution approach

We present now another estimation strategy, to which ours may be compared. The idea is to rewrite the model under an additive form by taking logarithm of (1.1) (see [START_REF] Van Es | Nonparametric volatility density estimation for discrete time models[END_REF]). We obtain Z j :" logpY j q " logpX j q `logpU j q ": T j `εj , j " 1 . . . , n.

(3.1)

Estimating the density of T 1 in model (3.1) is a classical deconvolution problem on R (see for example [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]). Each sample pZ j q j , pT j q j , pε j q j is i.i.d. from density f Z , f T , f ε respectively, and pT j q j , pε j q j are independent. They satisfy f Z " f T ‹ f ε where ‹ denotes the convolution product.

Taking the Fourier transform of the equality implies f Z " f T f ε . Then using the Fourier inversion formula, we get the following closed form for the density f T ,

f T pxq " 1 2π ż R e ´iux f Z puq f ε puq du, x P R. (3.2)
An estimator of f T is obtained by replacing f Z by its empirical counterpart, p f Z puq " p1{nq ř n j"1 e iuZ j . However, although formula (3.2) is well defined, the ratio p f Z {f ε is not integrable on the whole real line, since f ε tends to zero near infinity. Therefore, we do not only plug p f Z in equation (3.2) but we also introduce a cut-off which avoids integrability problems. Finally the estimator is defined by:

r f T, pxq " 1 2π ż π ´π e ´iux p f Z puq f ε puq du " 1 2π ż π ´π e ´iux 1 n n ÿ j"1 e iuZ j f ε puq du . (3.3) Clearly Er r f T, pxqs " f T, pxq with f T, pxq :" 1 2π ż π ´π e ´iux f T puqdu.
We can remark that, by Plancherel-Parseval formula, }f T, ´fT } 2 " p2πq ´1 ş |u|ěπ |f T puq| 2 du. Then, with an additional bound on the variance, we recall the following result.

Proposition 3.1. If f ε puq ‰ 0, for all u P R, the estimator r f T, defined by (3.3), satisfies Er} r f T, ´fT } 2 s ď 1 2π ż |u|ěπ |f T puq| 2 du `1 2πn ż π ´π du |f ε puq| 2 .
Several proofs of this bound can be found in the literature, see for example [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], [START_REF] Dion | New adaptive strategies for nonparametric estimation in linear mixed models[END_REF]. Using ε j " logpU j q, we have

f ε puq " 1 2a
ż e iu logptq 1 r1´a,1`as ptqdt " p1 `aqe logp1`aqiu ´pa ´1qe logp1´aqiu 2ap1 `iuq , and |f ε puq| 2 " 1 `a2 ´p1 ´a2 q cospu logpp1 `aq{p1 ´aqqq 2a 2 p1 `u2 q (3.4) which never reaches zero, as 0 ă a ă 1. Besides, 1{|f ε puq| 2 ď 2a 2 p1 `u2 q{p2a 2 q " 1 `u2 , for u P R. Therefore, Proposition 3.1 writes in the present case

Er} r f T, ´fT } 2 s ď 1 2π ż |u|ěπ |f T puq| 2 du ` n `π2 3 3n . (3.5)
We can see that here plays the role of m previously, and we have to choose it in order to make a compromise between the squared bias term p2πq ´1 ş |u|ěπ |f T puq| 2 du which decreases when increases and the variance term (with main term π 2 3 {p3nq) which increases when increases. Thus as previously, writing that p2πq ´1 ş |u|ěπ |f T puq| 2 du " }f T } 2 ´}f T, } 2 , we omit the constant term }f T } 2 and estimate the second term by ´} r f T, } 2 ; then we replace the variance by its upper bound, up to a multiplicative constant. Finally, we set

r " argmin PMn t´} r f T, } 2 `Ą penp qu, with Ą penp q :" r κ ˆ n `π2 3 3 n ˙, (3.6)
where r κ is a numerical constant calibrated in Section 4.1. We can prove for the estimator r f T, r a non-asymptotic oracle-type inequality. Finally to estimate f (the density of X) we have to apply the following relations:

f pvq " f T plogpvqq{v, f T pvq " f logpXq pvq " f pe v qe v .
We define the estimator of f by r f r pxq :" r f T, r plogpxqq{x.

(3.7)

We can see on this definition that the estimator is not defined near zero, thus we have to consider the truncated integral ż `8

α ´r f r pxq ´f pxq ¯2 dx ď 1 α } r f T, r ´fT } 2
to obtain a bound on the risk: for any α ą 0

E "ż `8 α p r f r pxq ´f pxqq 2 dx  ď 4 α inf PMn t}f T, ´fT } 2 `Ą penp qu `K αn .
We can see on these bounds that, the smaller α, the larger the bound. This is clearly confirmed by the simulations hereafter.

Numerical study

4.1. Simulated data. In this Section we evaluate our estimators of the density and the survival function on simulated data. We compute three estimators: the estimators of f , p f N, p m given by (2.8) and r f r given by (3.7) and the estimator of F , q F N, q m , given by (2.20). For each estimator, there is a preliminary step before estimating the target function. Indeed, we first compute the collection of projection estimators of function g: p g m . Then we implement the selection procedure for the dimension parameter m. We obtain the final estimator of g: p g p m . Finally, applying formula (2.15) with N " 30, we obtain our final estimator p f 30, p m of f . The estimation procedure is implemented similarly for the survival function F .

For the deconvolution density estimator we first estimate the density f T " f logpXq with the collection r f T, as given by (3.3). The integrals are computed using Riemann approximations with thin discretisations. We select the best cut-off parameter among the collection, according to the criterion given in Section 3. Finally we use formula (3.7) to obtain r f r . Each selection procedure depends on a parameter which has to be calibrated, namely κ 1 , κ 2 in (2.14), q κ in (2.22), r κ in (3.6). They are chosen from preliminary simulation experiments. Different cases of density f have been investigated with different parameter values, and a large number of repetitions. Comparing the MISE obtained as functions of the constants of interest, yields to select values making a good compromise over all experiences. We choose: κ 1 " 0.5, κ 2 " 0.01, q κ " 0.3, r κ " 4. In the following we investigate 3 densities for X: ' Γp4, 0.5q. ' Ep1q ' 0.5Γp2, 0.4q `0.5Γp11, 0.4q The first one is uni-modal and 0 in 0, the second one is decreasing and is 1 in 0: we are indeed interested in the behaviour near 0 of the estimators. The last one is bi-modal. For each density, we could start the estimation procedure near x " 0 for our estimator p f N, p m . But in order to compare our estimator with the deconvolution estimator r f r which is not defined in 0, we start in x " 0.1 for all the grids of density estimation. Figure 1 illustrates the kind of data generated by the model and the histogram of Y with a projection Laguerre estimator of f Y applied on the pY i q's.

effect of the censoring variable. It is a real issue to successfully reconstruct the density of X from the censored data Y .

Let us first comment the density estimation procedure. For the projection estimator p f N, p m we choose m max " 10 or 15 because the selected m are small most of the time. For the deconvolution estimator: max " 10 and the selected are often small (1,2,3). Figure 2 illustrates the good performances of our estimation procedure by projection. We represent 20 estimators p f N, p m of f (for 20 simulated samples) in the exponential case and the mixed-gamma case, and the beam of estimators are very close and close to the true density. On Figure 3, we can see both estimators p f N, p m , r f r and the true density. We also plot on this graph the projection estimator of density f Y from the observations pY i q i . It is defined for observations pZ i q i , p f Z,m " m´1 ÿ j"0 p b j ϕ j with p b j "

1 n n ÿ i"1 ϕ j pZ i q, (4.1)
and p p m " argmin mPMn t´} p f Z,m } 2 `m{nu (the calibration constant has been chosen equal to 1 here). We can notice from the graph that estimator r f r is closer to p f Y, p p m (4.1) and f Y than to f , the target function. However, estimator p f N, p m catches the difference between f and f Y which is the aim here, and fits well the true density f of sample pX i q i .

Then we compute approximation of the MISE from 100 or 200 Monte-Carlo simulations. The number of repetitions has been checked to be large enough to insure the stability of the MISEs. They are multiplied by 100 and summed up in Table 1 for different values of parameter a and of the number of observations n, to complete the illustration. When a goes from 0.25 to 0.5 the estimation is more difficult, and this increases the value of the errors. Likewise, when n increases from 200 to 10000 the estimation is easier and the MISEs are smaller. We can see again that the results are specifically good for exponential densities. For the mixed-gamma case function g is hard to estimate because it has 2 modes, thus the estimation of f is also difficult and requires more observations, see the third line of Table 1. Still according to Table 1, the projection estimator performs better than the deconvolution method. All along, it has been seen that the projection method is computationally faster than the f N, p m of f in plain grey line (green) versus the true density f in black bold plain line: on the left when X " Ep1q with a " 0.5, n " 1000; on the right when X " 0.5Γp4, 0.25q `0.5Γp20, 0.5q, with a " 0.25, n " 1000. deconvolution strategy. Besides, the deconvolution estimator is very unstable around zero.

Remark. Estimation at x " 0. Note that by definition of function g (2.4) gp0q " 0, then f N p0q " 0 and the projection estimator p f N, p m may have to be corrected in point zero if the true density is non-zero in zero. But, we can see that, if the function f is continuous in 0 `, then lim yÑ0 f Y pyq " f p0q logpp1 `aq{p1 ´aqq{p2aq. This implies that estimating f Y in zero by a direct the projection estimator of f Y relying on the Laguerre basis ( p f Y, p p m ) and applying the multiplicative correction factor 2a{ logpp1 `aq{p1 ´aqq should be an adequate approximation of f near zero. On Figure 2 the grid begins in 0.03 for the exponential density and in 0 for the mixed-gamma density. If the statistician wants to start the estimation in 0, the plugging of corrected p f Y, p p m p0q for the first value of estimator p f N, p m is a good strategy.

For the estimation of the survival function the grid of estimation begins in 0. We choose for the maximal dimension m max " 10, 15, 20 (n " 200, 1000, 10000) and the selected m are small most of the time. The left graph of Figure 4 illustrates the good estimation of the survival function of X when it has an exponential distribution with parameter 1 from observations pY i q i . On the right, the second graph shows the mixed-gamma case: our estimator q F N, q m (plain grey line) detects well the bimodal character of the density (true F in plain black line). We also represent the empirical distribution function F Y,n in dotted grey line, given for a sample pZ i q i by:

F Z,n ptq " 1 ´1 n n ÿ i"1 1 Z i ďt . (4.2)
We can see that this function is not a good approximation of F when a " 0.5. To confirm this fact, Table 2 provides the MISEs (times 100) for estimator q F N, q m of F . They can be compared to the MISEs of estimators of F : F Y,n (available in practice) and F X,n (not available in practice). This table highlights the quality of our estimator when a " 0.5 (results in bold black). When a " 0.25 as expected F Y,n can be considered as a satisfying approximation of the survival function of X, except for the exponential case, where our estimator is the best. Again, when a increases the MISEs are higher and with n increases the MISEs are smaller. 4.2. Application. [START_REF] Klein | A comparison of statistical disclosure control methods: Multiple imputation versus noise multiplication[END_REF] detail the problem of confidential protection of data. The issue it how to alter the data before releasing it to the public in order to minimize the risk of disclosure and 2. MISE for the estimators of F : q F N, q m , F Y,n , F X,n , times 100, with 200 repetitions for n " 200, 1000 and 100 for n " 10000.

at the same time to remain able to find the main characteristics of the original dataset when the level of noise is known. F N, q m of F in plain grey line (green) versus the true function F in black bold plain line: when X " Ep1q, a " 0.25, n " 200. Right: estimator q F N, q m in bold plain grey line (green) and empirical distribution F n of Y in dotted bold grey line (green), when X " 0.5Γp4, 0.25q `0.5Γp20, 0.5q (F in black plain bold line), a " 0.5, n " 1000.

The multiplicative noise perturbation can be proposed in this context. Sinha et al. [2011] investigate this method on n " 51 magnitude data, different noise distributions, among which a uniform density U r1´a,1`as for a " 0.1 (the data set is publicly available from the American Community Survey (ACS) via http://factfinder.census.gov). The question is: how can the moments, the quantiles, the minimal value, maximal value of the sample X be estimated from the observations Y i . They propose a strategy which delivers good results. But, looking at the noisy data Y i one can see that they are very close from the true ones and thus in that case the privacy may be not insured. We illustrate this fact on Figure 5: it represents the multiplicative noise scenario, with a " 0.1 on the left and a " 0.5 on the right, for the original data pX i q i"1,...,n"51 from Sinha et al. [2011]. The three graphs are: top left the histogram of the pX i q i the real data, top right an histogram of pY i " X i U i q i and on the bottom a plot of Y versus X.

Thus here we choose to illustrate the second choice: a " 0.5. What is the estimated density of X from these observations pY i " X i U i q i ? Are we capable of giving predictions of the data from this estimated density? What are the mean, the min, the max, the main quantiles of our new sample?

Figure 6 shows the estimator p f 30, p m of f from the pY i q i , the projection estimator of f on the sample pX i q i : p f X, p p m (a benchmark, not available in practice) and p f Y, p p m the projection estimator of f Y on the pY i q i . It seems that the two densities are very different. The quality of the method is asserted by the fact that p f X, p p m and p f 30, p m are very close. Then, from the estimator p f 30, p m we simulate a new sample pXpred i q i of length n " 51. To do so, we generate a "discrete variable" because we have a discrete version of the estimator of the density function f . The graph of the sorted new sample versus the sorted original sample is presented of Figure 7. The lining up of the values confirms the goodness of our estimator p f N, p m from the noisy observations pY i q i . Finally we can compare the quantities of interest of pX i q i (not available), pY i q i (noisy sample) and pXpred i q i , see Table 3. Except for the third quantile Q3 at (75 %), the information we get from our new sample is very close from the information from X.

The proposed procedure allows to correctly mask the data and to recover the main information from the original sample, as soon as the level of noise (given by a) is known. The method is easy to use in practice and insures the privacy protection of the data. Table 3. Comparison of characteristic quantities from samples pX i q i , pY i q i , pXpred i q i . Plot of the new predictive sample pXpred i q i versus original data pX i q i . 5. Proofs 5.1. Proof of Lemma 2.1. Denote F the cumulative distribution function of X 1 , it comes the bounds Finally }t 1 } ď 1 `a2mpm ´1q. l

1 ´a 2a ż y 1´a y 1`a f pxqdx ď yf Y pyq ď 1 `a 2a ż y 1´a y 1`a f pxqdx 1 ´a 2a " F ˆy 1 ´a ˙´F ˆy 1 `a ˙ ď yf Y pyq ď 1 `a 2a " F ˆy 1 ´a ˙´F ˆy 1 `a ˙ . ( 5 
Proof of Lemma 5.2.

The following equality holds ϕ 1 j pxq " ´ϕj pxq`2 ? 2e ´xL 1 j p2xq which is a polynomial function of degree j multiplied by e ´x. Thus, it could be decomposed as ϕ 1 j pxq "

j ÿ k"0 a pjq k ϕ k pxq with a pjq k " ă ϕ 1 j , ϕ k ą" ż `8 0 ϕ 1 j pxqϕ k pxqdx " rϕ j pxqϕ k pxqs `8 0 ´ż `8 0 ϕ j pxqϕ 1 k pxqdx " ´ϕj p0qϕ k p0q ´ż `8 0 ϕ j pxqϕ 1 k pxqdx " ´2 ´2 ă ϕ j , ϕ 1 k ą" ´2 ´2a pkq j
Notice that this formula is also true when k " j: ă ϕ 1 j , ϕ j ą" ş `8 0 ϕ 1 j pxqϕ j pxqdx " ´p1{2qϕ 2 j p0q " ´2{2 " ´1. Thus we obtain:

ϕ 1 j pxq " j ÿ k"0 p´2´ă ϕ 1 j , ϕ k ąqϕ k pxq " ´2 j ÿ k"0 ϕ k pxq ´j ÿ k"0 ă ϕ j , ϕ 1 k ą ϕ k pxq " ´ϕj pxq ´2 j´1 ÿ k"0 ϕ k pxq ´j´1 ÿ k"0 ă ϕ j , ϕ 1 k ą ϕ k pxq
Or the ă ϕ j , ϕ 1 k ą are zero for k ď j ´1. Thus we obtain (5.2). l 5.3. Proof of Proposition 2.2.

Proof of (i).

To compute Er}g m ´p g m } 2 s we start by noting that }g m ´p g m } 2 " m´1 ÿ j"0 pp a j ´aj pgqq 2 .

This implies

Er}g m ´p g m } 2 s " m´1 ÿ j"0 Varpp a j q ď 1 n m´1 ÿ j"0
ErpY 1 ϕ 1 j pY 1 q `ϕj pY 1 qq 2 s. Now, Equation (2.5) applied with t " ϕ 2 j and (2.3) lead to

ErpY 1 ϕ 1 j pY 1 q `ϕj pY 1 qq 2 s ď Er2Y 2 1 ϕ 1 2 j pY 1 q `2ϕ j pY 1 q 2 s ď 2}ϕ

1 j } 2 8 ErY 2 1 s `2}ϕ j } 2 8 ď 16pj `1q 2 ErY 2 1 s `4. As 8 m´1 ÿ j"0 pj `1q 2 " 8 m ÿ j"1 j 2 ď 8m 3 , it yields Er}g m ´p g m } 2 s ď 16ErY 2 1 s m 3 n `4 m n , (5.3)
which is the result (i). l Proof of (ii). Let us study the mean of the estimator of f :

Er p f N,m pxqs " 2a N ´1 ÿ k"0 E « p g m ˜ˆ1 `a 1 ´a ˙k p1 `aqx ¸ff " 2a N ´1 ÿ k"0 m ÿ j"1 a j ϕ j ˜ˆ1 `a 1 ´a ˙k p1 `aqx " 2a N ´1 ÿ k"0 g m

˜ˆ1

`a 1 ´a ˙k p1 `aqx ¸:" f N,m pxq.

Thus the estimator p

f N,m is an unbiased estimator of f N,m and

Er} p f N,m ´f } 2 s " }f ´fN,m } 2 `Er}f N,m ´p f N,m } 2 s.
(5.4)

In the following we denote by h k the composition of h with the function

x Þ Ñ

ˆ1

`a 1 ´a ˙k p1 `aqx. We note that for any function h P L 2 pR `q,

}h k } 2 " ż h 2 ˜ˆ1 `a 1 ´a ˙k p1 `aqx ¸dx " 1 1 `a ˆ1 ´a 1 `a ˙k ż h 2 pyqdy " 1 1 `a ˆ1 ´a 1 `a ˙k }h} 2 . (5.5)
Let us study of the bias term }f ´fN,m } 2 : pf ´fN,m qpxq " 2a

N ´1 ÿ k"0 g k pxq `f ˜ˆ1 `a 1 ´a ˙N x ¸´2a N ´1 ÿ k"0 g m,k pxq " 2a N ´1 ÿ k"0 pg k ´gm,k qpxq `f ˜ˆ1 `a 1 ´a ˙N x ¸.
The triangular inequality gives

}f ´fN,m } ď 2a N ´1 ÿ k"0 }g k ´gm,k } `› › › › › f ˜ˆ1 `a 1 ´a ˙N ¨¸› › › › › . (5.6)
As a consequence, using (5.5), we get

N ´1 ÿ k"0 }g k ´gm,k } " N ´1 ÿ k"0 1 ? 1 `a ˆ1 ´a 1 `a ˙k{2 }g ´gm } " 1 ´´1´a 1`a ¯N{2 ? 1 `a ´?1 ´a }g ´gm } ď }g ´gm } ?
1 `a ´?1 ´a .

(5.7) Furthermore, }f ppp1 `aq{p1 ´aqq N ¨q} " pp1 ´aq{p1 `aqq N {2 }f }, and plugging this and (5.7) in (5.6), we obtain }f ´fN,m } 2 ď 8a 2 p ? 1 `a ´?1 ´aq 2 }g ´gm } 2 `2 ˆ1 ´a 1 `a ˙N }f } 2 .

(5.8)

For the variance term, we study }f N,m ´p f N,m } 2 . We easily obtain

}f N,m ´p f N,m } " 2a › › › › › N ´1 ÿ k"0 pp g m,k ´gm,k q › › › › › ď 2a N ´1 ÿ k"0 }p g m ´gm } 1 ? 1 `a ˆ1 ´a 1 `a ˙k{2 and finally }f N,m ´p f N,m } ď 2a 1 ´´1´a 1`a ¯N{2 ?
1 `a ´?1 ´a }p g m ´gm } (5.9)

and Er}p g m ´gm }s has been evaluated in (5.3). Gathering (5.4), (5.8) and (5.9) implies (ii rtpY i q `Yi t 1 pY i qs.

(5.11)

It is easy to check that p g m " argmin tPSm γ n ptq, i.e. the estimator p g m is also a minimum contrast estimator, and to compute that γ n pp g m q " ´}p g m } 2 . We notice that γ n ptq ´γn psq " }t ´g} 2 ´}s ´g} 2 ´2ν n pt ´sq (5.12) with

ν n ptq " 1 n n ÿ i"1 tpY i q `Yi t 1 pY i q ´xt, gy " 1 n n ÿ i"1
tpY i q `Yi t 1 pY i q ´ErtpY i q `Yi t 1 pY i qs " ν n,1 ptq `νn,2 ptq `νn,3 ptq where ν n,1 ptq :" p1{nq ř n i"1 tpY i q ´ErtpY i qs and ν n,2 ptq :" 1 n with p 1 pm, m 1 q " 6m ˚{n satisfying 12p 1 pm, m 1 q ď pen 1 pmq `pen 1 pm 1 q for κ 1 ě 72 and p 2 pm, m 1 q " 24ErY 2 1 sm 3˚{ n 12 p 2 pm, m 1 q ď pen 2 pmq `pen 2 pm 1 q for κ 2 ě 288. Let us state intermediate results.

n ÿ i"1 Y i t 1 pY i q1 Y i ďcn ´ErY i t 1 pY i q1 Y i ďcn s ν n,3 ptq :" 1 n n ÿ i"1 Y i t 1 pY i q1 Y i ącn ´ErY i t
Lemma 5.4. Under the assumption of Theorem 2.3,

(i) E " psup tPB m,x m ν 2 n,1 ptq ´p1 pm, p mqq `ı ď K 1 {n, (ii) E " psup tPB m,x m ν 2 n,2 ptq ´p2 pm, p mqq `ı ď K 2 {n, (iii) E " sup tPB m,x m ν 2 n,3 ptq ı ď K 3 {n, where K 1 , K 2 , K 3 are constants which do not depend on n.
(iv) There exists a positive constant K 4 depending on a such that,

Ert penp p mq ´z penp p mqu `s ď K 4 n .
Taking expectation of (5.15), using Ery penpmqs " 2penpmq, and plugging the results of Lemmas 5.4 implies Lemma 5.3. l 5.5. Proof of Lemma 5.4. First notice that, for i " 1, 2,

E «˜s up tPB m,x m ν 2 n,i ptq ´pi pm, p mq ¸`ff ď ÿ m 1 PMn ˜sup tPB m,m 1 ν 2 n,i ptq ´pi pm, m 1 q ¸`.
In the following we apply Talagrand's inequality to the two above terms. For that purpose, we compute the terms denoted by H 2 , v and M in Theorem 5.7. Proof of (i). We bound Er sup tPB m,m 1 ν 2 n,1 ptqs. For t P B m,m 1 , using that ř m ˚´1 j"0 xt, ϕ j y 2 " 1, we get

ν 2 n,1 ptq " ˜νn,1 ˜m˚´1 ÿ j"0 xt, ϕ j yϕ j ¸¸2 " ˜m˚´1 ÿ j"0 xt, ϕ j yν n,1 pϕ j q ¸2 ď m ˚´1 ÿ j"0 ν 2 n,1 pϕ j q Er sup tPB m,m 1 ν 2 n,1 ptqs ď m ˚´1 ÿ j"0 Erν n,1 pϕ j q 2 s " m ˚´1 ÿ j"0 1 n Varpϕ j pY 1 qq ď 2m n ": H 2 ,
as ϕ 2 j pxq ď 2, @j, @x. 

m,m 1 ν 2 n,3 ptqs ď 1 n m ˚´1 ÿ j"0 VarpY 1 ϕ 1 j pY 1 q1 Y 1 ącn q ď 1 n m ˚´1 ÿ j"0 }ϕ 1 2 j } 8 ErY 2 1 1 Y 1 ącn s ď 8 m ˚3 n ErY 2 1 c p n 1 Y 1 ącn sc ´1 n ď 8 ErY 2`p 1 s c p n with the choice of c n (5.13) we obtain E « sup tPB m,m 1 ν 2 n,3 ptq ff ď 8 ErY 2`p 1 sCardpM n q C p 3 ErY 2 1 s p logpnq p n p{2 ď K 3 n
for p " 4, using that cardpM n q ď n 1{3 and that the function logpnq 4 {n 2{3 is bounded with C" a positive constant depending on ErY 4 1 s. l Proof of (iv). Let us study the difference

Ertpenp p mq ´y penp p mqu `s " E " 2κ 2 " ErY 2 1 s 2 ´p C 2 * `p m 3 n  . Denote Ω " t|ErY 2 1 s ´p C 2 | ď ErY 2 1 s{2u. Then ErY 2 1 s{2 ´p C 2 ď 0 on Ω, thus Ertpenp p mq ´y penp p mqu `s " E " 2κ 2 ˆErY 2 1 s 2 ´p C 2 ˙p m 3 n 1 Ω c  ď E " 2κ 2 ´ErY 2 1 s ´p C 2 ¯p m 3 n 1 Ω c  .
By Cauchy-Schwarz we have

E "ˇˇˇE rY 2 1 s ´p C 2 ˇˇ1 Ω c ı ď Er|ErY 2 1 s ´p C 2 | 2 s 1{2 PpΩ c q 1{2 .
First, Markov's inequality implies

PpΩ c q " P ˆ|ErY 2 1 s ´p C 2 | ě ErY 2 1 s 2 ˙ď 2 4 ErY 2 1 s 4 Er|ErY 2 1 s ´p C 2 | 4 s.
Then the Rosenthal inequality implies that there exists a constant C, such that

Er|ErY 2 1 s ´p C 2 | 4 s ď Cn ´2E " `Y 2 1 ´ErY 2 1 s ˘4ı .
Gathering the results we obtain:

E "ˇˇˇE rY 2 1 s ´p C 2 ˇˇ1 Ω c ı ď Varp p C 2 q 1{2 4 ErY 2 1 s 2 ´c1 n 3 `c2 n 2 ¯1{2 `ErpY 2 1 ´ErY 2 1 sq 4 s ˘1{2 .
Thus, as ErY The MISE of estimator q G m is:

Er} q G m ´G} 2 s " }Er q G m s ´G} 2 `Er}Er q G m s ´q G m } 2 s.

First, ErG m s " ř m´1 j"0 Er q b j sϕ j " ř m´1 j"0 b j pGqϕ j " G m . Then to compute the variance term Er}G m q G m } 2 s we start with the relation: }G m ´q G m } 2 " ř m´1 j"0 p q b j ´bj q 2 and then

Er}G m ´q G m } 2 s " m´1 ÿ j"0 Varp q b j q ď 1 n m´1 ÿ j"0 E « ˆY1 ϕ j pY 1 q `żR `ϕj pxq1 Y 1 ěx pxqdx ˙2ff ď 2 n m´1 ÿ j"0
ErY 2 1 ϕ j pY 1 q 2 s `2 n The last term:

1 n E « m´1 ÿ j"0 ˆżR `ϕj pxq1 Y 1 ěx pxqdx ˙2ff " 1 n E « m´1 ÿ j"0 xϕ j 1 Y 1 ě¨y 2 ff ď 1 n E " }1 Y 1 ě¨} 2 ‰ " ErY 1 s n .
with a function p such that @ , 1 , 4pp , 1 q ď penp q `penp 1 q.

Lemma 5.6. There exists a constant C ą 0 such that

ÿ 1 PMn E «˜s up tPB , 1 ν 2 ptq ´pp , 1 q ¸`ff ď C N .
We conclude that there exist two numerical constants C 1 , C 2 ą 0 such that 

  Theorem 3.2. The estimator r f T, r defined by (3.3) and (3.6) satisfies Er} r f T, r ´fT } 2 s ď 4 inf PMn t}f T, ´fT } 2 `Ą penp qu `K n with K a numerical constant and r κ ě 4.

Figure 1 .

 1 Figure1. Example of database when X " 0.5Γp2, 0.4q `0.5Γp11, 0.5q, a " 0.5, n " 200. Top left: plot of X (green or grey) and Y (blue or black). Top right: Y as a function of X. Bottom left: histogram of X with the true density f , bottom right: histogram of Y with a projection Laguerre estimator of f Y applied on the pY i q's.

  Figure 3. Gamma case: X " Γp4, 0.5q, a " 0.5, n " 1000. Left graph: f in bold black line, estimator p f N, p m of f in plain bold grey line (green), estimator r f r of f in thin dotted grey line (green). Right graph: f in bold black line, f Y in bold grey line (green), estimator of f Y by projection p f Y, p

Figure 4 .

 4 Figure 4. Left: 20 estimators qF N, q m of F in plain grey line (green) versus the true function F in black bold plain line: when X " Ep1q, a " 0.25, n " 200. Right:

Figure 5 .

 5 Figure5. Illustration of uniform noise multiplication on real data. Three graphs for a " 0.1 on the left and a " 0.5 on the right. Top left histogram of pX i q i , top right histogram of pY i q i , bottom plot of Y i versus X i .

Figure 6 .

 6 Figure6. Histogram of the real data X i 's with full multiplicative noise, with a " 0.5, Y i " X i U i . Dotted black line estimator p f X, p p m of f on the pX i q i , plain black line (red) p f N, p m estimator of f on the pY i q i , plain grey line (green) line estimator p f Y, p p m of f Y on the pY i q i .

  Useful properties of the Laguerre basis.

  The Fourier transform of t P L 1 , for x P R is: t ‹ pxq " ş tpuqe iux du. Finally, the supremum norm of a bounded function t is denoted by }t} 8 " sup

	`|tpxq|. The Laguerre basis is defined by: xPR ϕ 0 pxq " ? 2e ´x, ϕ k pxq " ? 2L

k p2xqe ´x for k ě 1, x ě 0, (2.1)

with L k the Laguerre polynomials

  Gamma case: X " Γp4, 0.5q, a " 0.5, n " 1000. Left graph: f in bold black line, estimator p f N, p m of f in plain bold grey line (green), estimator r f r of f in thin dotted grey line (green). Right graph: f in bold black line, f Y in bold grey line (green), estimator of f Y by projection p

					f Y, p p m in dotted grey line (green).
	Distribution of f	a	Estimator p f N, p m		Estimator r f
	Exponential 0.25	0.386	0.075	0.006	0.703	0.153	0.024
			0.5	0.470	0.095	0.009	0.964	0.231	0.030
	Gamma 0.25	0.538	0.110	0.014	1.122	0.987	0.017
			0.5	0.972	0.394	0.154	1.589	1.851	0.217
	Mixed-gamma 0.25	1.070	0.146	0.015	1.603	0.346	0.048
			0.5	1.441	0.563	0.208	2.703	2.833	0.337
	Table 1. MISE for the estimators of f : p f N, p m and r f r , times 100, with 200 repetitions
	for n " 200, 1000 and 100 for n " 10000.			
	Distribution f	a		q F N, q m		F Y,n	F X,n
	Exponential 0.25	0.194	0.043	0.026	0.253	0.055	0.248	0.054
		0.5	0.269	0.072	0.027	0.277	0.106	0.234	0.054
	Gamma 0.25	0.269	0.151	0.121	0.260	0.081	0.245	0.054
		0.5	0.500	0.133	0.121	0.756	0.497	0.281	0.057
	Mixed-gamma 0.25	0.677	0.175	0.098	0.610	0.126	0.557	0.097
		0.5	0.888	0.225	0.126	0.855	0.430	0.517	0.102
	Table							

r n " 200 n " 1000 n " 10000 n " 200 n " 1000 n " 10000 n " 200 n " 1000 n " 10000 n " 200 n " 1000 n " 200 n " 1000

  Top left histogram of pX i q i , top right histogram of pY i q i , bottom plot of Y i versus X i .

	Mean Standard deviation Minimum Maximum	Q1 Median	Q3
	X 12.82	2.98	7.6	21.2 10.5	12.5 14.75
	Y 12.59	4.93	6.10	27.6 7.91	12.70 14.46
	Xpred 12.78	3.09	7.18	19.31 10.42	12.77 14.54

  ). l 5.4. Proof of Theorem 2.3. First, by the Cauchy-Schwarz inequality, we have a positive constant depending on a and }f Y } 8 .

	The last term is the MISE of the estimator p g m which follows from the following Lemma. p
	Lemma 5.3. Under the assumptions of Theorem 2.3, the estimator p g m defined by (2.7) and (2.13), p
	satisfies			
		Er}p g m ´g} 2 s ď 6 inf p mPM t}g ´gm } 2 `penpmqu	`C1 n
	with C 1 Gathering Lemma 5.3 and Inequality (5.10) ends the proof of Theorem 2.3. l
	Proof of Lemma 5.3. Let us define the contrast
				n
			γ n ptq " }t} 2 ´2 n	ÿ i"1
	Er} p f N, p m ´f } 2 s ď 2Er}f ´f p m,N } 2 s `2Er}f N, p m ´p f N, p m } 2 s
	Then we apply (5.8) and (5.9):	
	Er} p f N, p m ´f } 2 s ď 4	ˆ1 1	´a `a ˙N }f } 2 `16a 2 p ? 1 `a ´?1 ´aq 2 `Er}g ´g p m } 2 s `Er}p g m ´g p p m } 2 s "
	4	ˆ1 1	´a `a ˙N }f } 2 `16a 2 p ? 1 `a ´?1 ´aq 2 `Er}g ´p g m } 2 s ˘. p	(5.10)

  1 pY i q1 Y i ącn s

	Therefore we get			
	}p g m ´g} 2 ď 3}g ´gm } 2 `8 sup p tPB m,x m	ν 2 n ptq `2y penpmq ´2y penp p mq
	ď 3}g ´gm } 2 `24 sup tPB m,x m	ν 2 n,1 ptq `24 sup tPB m,x m	ν 2 n,2 ptq `24 sup tPB m,x m	ν 2 n,3 ptq
	`2y penpmq ´2y penp p mq `2penp p mq ´2penp p mq `2penpmq ´2penpmq
	ď 3}g ´gm } 2 `24p sup tPB m,x m	ν 2 n,1 ptq ´p1 pm, p mqq ``24p sup tPB m,x m	ν 2 n,2 ptq ´p2 pm, p mqq 24
	sup tPB m,x m	ν 2 n,3 ptq `2y penpmq ´2y penp p mq `2penp p mq `2penpmq	(5.15)
	with		c n :" C 3 ErY 2 1 s ? n{plogpnqq.	(5.13)
	By definition of p g m , for all m P M n , we have p
		γ n pp g m q `y penp p p mq ď γ n pg m q `y penpmq.
	Denoting m _ m 1 " m ˚,			
			B m,m 1 " tt P S m_m 1 , }t} " 1u,	(5.14)
	and using (5.12) we get			
	}p g m ´g} 2 ď }g ´gm } 2 `}p g p m ´g} 2 ´}g ´gm } 2 p
	ď }g ´gm } 2 `y penpmq `2ν n pp g m ´gm q ´y penp p p mq
	ď }g ´gm } 2 `1 4	}p g m ´gm } 2 `4 sup p tPB m,x m	ν 2 n ptq `y penpmq ´y penp p mq
	ď }g ´gm } 2 `1 2	}p g m ´g} 2 `1 2 p	}g m ´g} 2 `4 sup tPB m,x m	ν 2 n ptq `y penpmq ´y penp p mq

  Now, }f } 8 " sup xPR `|f pxq| ă 8 implies that |f Y pyq| ď p}f } 8 {2aq logpp1`aq{p1´aqq and }f Y } 8 ă 8. Thus VarptpY 1 qq ď ErtpY 1 q 2 s ď }f Y } 8 }t} 2 " }f Y } 8 ": v Proof of Lemma 5.5We have, as U ď p1 `aq a.s., ErY 2 ψ 2 pY qs ď Erp1 `aq 2 X 2 ψ 2 pXU qs " p1 `aq 2 Proof of (iii). We use that m ˚3 ď n, it yields

					ż `8	ż p1`aq	x 2 ψ 2 pxuqf pxqdudx
					0	p1´aq
	ď p1 `aq 2	ż `8	ψ 2 pvq dv	ż `8	xf pxq dx
		0		0	
	" p1 `aq 2 }ψ} 2 ErXs. l		
	Er sup				
	tPB				

  ErX 8 1 s ă 8 the quantities m 4 :" ErpY 2 1 ´ErY 2 1 sq 4 s, Varp p C 2 q are bounded, we have the announced result. l 5.6. Proof of Lemma 2.4. The survival function of Y satisfies 2aF Y pyq " But, looking at the definition of g given in (2.4), we define analogously the function Thus relation (5.16) becomes: Gpxq " xf Y pxq `F Y pxq. l 5.7. Proof of Proposition 2.5. First note that ErX 2 1 s ă `8 implies that F integrable. Indeed ż `8 ErX 1 s ď E 1{2 pX 2 1 q.

		ż `8 y	f Y pzqdz "	ż `8 y	˜ż z 1´a z 1`a	f pxq x	dx ¸dz
	"	ż `8 y 1`a	˜ż xp1`aq y_p1´aqx	dz	¸f pxq x	dx
	"	ż `8 y 1`a	f pxq x	rxp1 `aq ´y _ p1 ´aqxs dx
	" p1 `aq	ż `8 y 1`a	f pxqdx ´p1 ´aq	ż `8 y 1`a	f pxq1 yăp1´aqx pxqdx	´y ż `8 y 1`a	f pxq x	1 yąp1´aqx pxqdx.
	with x _ y " maxpx, yq. Finally it yields:
		F Y pyq "	1 2a	"	p1 `aqF	ˆy 1 `a ˙´p1 ´aqF	ˆy 1 ´a ˙ ´yf Y pyq.	(5.16)
		Gpxq :"	ż 8 x	gpyqdy "	1 2a	"	p1 `aqF	ˆx 1 `a ˙´p1 ´aqF	ˆx 1 ´a ˙ .
	0 F pxqdx " The result follows if we prove that F ż `8 2 pxqdx ď 0
									Er}G m ´q G m } 2 s ď	2ErY 1 s n	`4ErY 2 1 s	m n	.

k 1 s " ErX k 1 sErU k 1 s and the moments of ErU k 1 s are finite depending on a, if

  Proof of the Lemma 5.6. For P M n , we consider t P S . We use Talagrand's inequality. We denote B , 1 " tt P S _ 1 , }t} " 1u and ˚" _ 1 . Using Proposition 3.1, we obtain Finally, for t P B , 1 , as we know the characteristic function f ε , we have Varpφ t pZ 1 qq ď Er|φ t pZ 1 q| 2 s "Indeed }f Z } 8 ď p1 `aq{p2aq ă `8 since }f Z } 8 " }f T ‹ f ε } 8 ď }f ε } 8 " p1`aq{p2aq, with f ε pxq " e x {p2aq1 rlogp1´aq,logp1`aqs pxq. According to Talagrand's inequality, for α " 1{2, we obtain ˚3¸Ţ hen we use that 1 ď ˚3 ď n, thus for κ ě 4 we obtain that there exist four numerical constants A 1 , A 2 , A 3 , A 3 and a constant C ą 0 such that B. Sinha, T. K. Nayak, and L. Zayatz. Privacy protection and quantile estimation from noise multiplied data. Sankhya B, 73(2):297-315, 2011. Y. Vardi. Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation. Biometrika, 76(4):pp. 751-761, 1989. Y. Vardi and C.-H. Zhang. Large sample study of empirical distributions in a random-multiplicative censoring model. Ann. Statist., 20(2):1022-1039, 1992.

							Er} r f r ´fT } 2 s ď C 1 inf PMn	t}f T, ´fT } 2 `Ą penp qu	`C2 N	. l
	5.10. E	« tPB , 1 sup	ν 2 ptq ff	" E} r f T, ˚´f T, } 2 ď n	`π2 p ˚q3 3n	ď n	`π2 p ˚q3 n	:" H 2 .
	Then, by the Plancherel-Parseval inequality,it yields
							sup tPB , 1	}φ t } 8 ď	1 ? 2π	c 2π	˚`2π 3 ˚3 3	ď	a	˚`π 2 ˚3 :" M.
												1 4π 2 E	» -ˇˇˇˇż	π	π	˚t˚p ´uq	e iuZ 1 f ε puq	ˇˇˇˇ2 du	fi fl
								ď	}f Z } 8 4π 2	ż ˇˇˇˇż	π	π	˚t˚p ´uqe iuz f ε puq	du ˇˇˇˇ2 dz "	}f Z } 8 2π	ż π	π	˚|t ˚p´uq| 2 |f ε puq| 2 du
								ď	}f Z } 8 2π	p1 `pπ ˚q2 q	ż π	π	˚|t ˚p´uq|	2 du ď	1	`a 2a	p1 `pπ ˚q2 q :" v.
	E	«˜s up tPB , 1	ν 2 ptq ´4H 2	¸`ff	ď 24	ˆ1 `π2 ˚2 n	exp p´ ˚{12q
		`294 p 3 2 ´1q 2 ˚`π 2 ÿ " n2 `π2 ˚3 n 2  exp ˜´p a 3{2 ´1q 42 a 1 PMn E «˜s up tPB , 1 ν 2 ptq ´pp , 1 q ¸`ff ď ÿ 1 PMn A 1 1 `π2 12 n exp `´A 2 1 ˘`A 3 n exp ´´A 4	13{2	ď
												C
												n
	with pp , 1 q "	4	n	`4π 2 ˚3 3n	. l

Property 5.1. If t P S m , (1) }t} 8 ď ? 2m}t},

(2) }t 1 } 8 ď 2 ? 2m 3{2 }t} and (3) If }t} " 1, }t 1 } ď 1 `a2mpm ´1q.

The two first points are direct consequences of (2.3). The last point comes from the following Lemma.

Lemma 5.2. For all j P N, the Laguerre basis function pϕ j q j satisfies: ϕ 1 0 pxq " ´ϕ0 pxq, ϕ 1 j pxq " ´ϕj pxq ´2 j´1 ÿ k"0 ϕ k pxq, j ě 1.

(5.2)

Considering t P S m , such that }t} " 1, tpxq " ř m´1 j"0 a j ϕ j pxq, then

thus using that }t} " 1 and integrating, as the pϕ j q's form a b.o.n, it yields We obtain (for α " 1{2 in Theorem 5.7):

with C a positive constant depending on }f Y } 8 . This explains the choice p 1 pm, m 1 q " 6m ˚{n, and the constraint κ 1 ě 12 ˆ6 " 72.

Proof of (ii). As before

Er sup

We introduce the following result Lemma 5.5. ErY 2 i ψ 2 pY i qs ď ErX 2 i ψ 2 pX i U i qs ď p1 `aq 2 }ψ} 2 ErX i s. Using also Lemma 5.2, we obtain

˚3{2 ": M . We obtain, applying Theorem 5.7 with α " 1{2 again:

with c n given by (5.13) and C 1 a constant depending on ErX 1 s and ErY 2 1 s. We choose

and obtain (ii). l

Thus it comes

5.8. Proof of Theorem 2.6. This proof follows the same line as the proof of Theorem 2.3. We define the contrast

(5.17)

It is such that γ p2q n p q G m q " ´} q G m } 2 and q G m " argmin tPSm γ p2q n ptq. Then, let

with c n a numerical constant depending on n. Following the steps which lead to Equation (5.15), we choose c n :" dErY 2 1 s ? n{plogpnqq for numerical d a constant and we get the result with two applications of Talagrand inequality. l 5.9. Proof of Theorem 3.2. Denote:

pφ t pZ j q ´Erφ t pZ j qsq.

The two functions γptq and νptq satisfy the following relation, for t, s P S :

S " tt P L 1 pR X L 2 pRq, supportpt ˚q Ă r´π , π su, γptq ´}t ´f } 2 ´pγpsq ´}s ´f } 2 q " ´2νpt ´sq.

(5.18)

Thus writing this relation with r f T, r and f T, and as, by definition, γp r f T, r q `Ą penp r q ď γpf T, q `Ą penp q, it yields

ď }f T, ´fT } 2 `2νp r f T, r ´fT, q `Ą penp q ´Ą penp r q.

Let us remark that νp r f T, r ´fT, q " } r f T, r ´fT, }ν ˜r f T, r ´fT, } r f T, r ´fT, } ¸. This leads, as in the previous proofs, to

Appendix 5.11. Talagrand's inequality. The following result follows from the Talagrand concentration inequality.

Theorem 5.7. Consider n P N ˚, F a class at most countable of measurable functions, and pX i q iPt1,...,nu a family of real independent random variables. One defines, for all f P F,

pf pX i q ´Erf pX i qsq.

Supposing there are three positive constants M , H and v such that sup