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Abstract. Time series classification is an application of particular in-
terest with the increase of data to monitor. Classical techniques for time
series classification rely on point-to-point distances. Recently, Bag-of-
Words approaches have been used in this context. Words are quantized
versions of simple features extracted from sliding windows. The SIFT
framework has proved efficient for image classification. In this paper,
we design a time series classification scheme that builds on the SIFT
framework adapted to time series to feed a Bag-of-Words. We then re-
fine our method by studying the impact of normalized Bag-of-Words, as
well as densely extract point descriptors. Proposed adjustements achieve
better performance. The evaluation shows that our method outperforms
classical techniques in terms of classification.
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1 Introduction

Classification of time series has received an important amount of interest over
the past years due to many real-life applications, such as environmental mod-
eling, speech recognition. A wide range of algorithms have been proposed to
solve this problem. One simple classifier is the k-nearest-neighbor (kNN), which
is usually combined with Euclidean Distance (ED) or Dynamic Time Warping
(DTW) [13]. Such techniques compute similarity between time series based on
point-to-point comparisons, which is often not appropriate. Classification tech-
niques based on higher level structures are most of the time faster, while being
at least as accurate as DTW-based classifiers. Hence, various works have inves-
tigated the extraction of local and global features in time series. Among these
works, the Bag-of-Words (BoW) approach (also called bag-of-features) has been
considered for time series classification. BoW is a very common technique in
text mining, information retrieval and content-based image retrieval because of
its simplicity and performance. For these reasons, it has been adapted to time
series data in some recent works [2, 3, 11, 14, 17]. Different kinds of features based
on simple statistics have been used to create the words.



In the context of image retrieval and classification, scale-invariant descriptors
have proved their efficiency. Particularly, the Scale-Invariant Feature Transform
(SIFT) framework has led to widely used descriptors [12]. These descriptors
are scale and rotation invariant while being robust to noise. We build on this
framework to design a BoW approach for time series classification where the
words correspond to the description of local gradients around keypoints, that are
first extracted from the time series. This approach can be seen as an adaptation
of the SIFT framework to time series.

This paper is organized as follows. Section 2 summarizes related work, Sec-
tion 3 describes the proposed Bag-of-Temporal-SIFT-Words (BoTSW) method,
and Section 4 reports experimental results. Finally, Section 5 concludes and
discusses future work.

2 Related work

Our approach for time series classification builds on two well-known methods
in computer vision: local features are extracted from time series using a SIFT-
based approach and a global representation of time series is built using Bag-
of-Words. This section first introduces state-of-the-art methods in time series
classification, then presents standard approaches for extracting features in the
image classification context and finally lists previous works that make use of
such approaches for time series classification.

Data mining community has, for long, investigated the field of time series
classification. Early works focus on the use of dedicated metrics to assess sim-
ilarity between time series. In [13], Ratanamahatana and Keogh compare Dy-
namic Time Warping to Euclidean Distance when used with a simple kNN clas-
sifier. While the former benefits from its robustness to temporal distortions to
achieve high efficiency, ED is known to have much lower computational cost.
Cuturi [5] shows that DTW fails at precisely quantifying dissimilarity between
non-matching sequences. He introduces Global Alignment Kernel that takes into
account all possible alignments to produce a reliable dissimilarity metric to be
used with kernel methods such as Support Vector Machines (SVM). Douzal and
Amblard [6] investigate the use of time series metrics for classification trees.

So as to efficiently classify images, those first have to be described accurately.
Both local and global descriptions have been proposed by the computer vision
community. For long, the most powerful local feature for images was SIFT [12]
that describes detected keypoints in the image using the gradients in the regions
surrounding those points. Building on this, Sivic and Zisserman [15] suggested
to compare video frames using standard text mining approaches in which docu-
ments are represented by word histograms, known as Bag-of-Words (BoW). To
do so, authors map the 128-dimensional space of SIFT features to a codebook
of few thousand words using vector quantization. VLAD (Vector of Locally Ag-
gregated Descriptors) [8] are global features that build upon local ones in the
same spirit as BoW. Instead of storing counts for each word in the dictionary,
VLAD preserves residuals to build a fine-grain global representation.



Inspired by text mining, information retrieval and computer vision commu-
nities, recent works have investigated the use of Bag-of-Words for time series
classification [2, 3, 11, 14, 17]. These works are based on two main operations :
converting time series into Bag-of-Words (a histogram representing the occur-
rence of words), and building a classifier upon this BoW representation. Usually,
classical techniques are used for the classification step: random forests, SVM,
neural networks, kNN. In the following, we focus on explaining how the conver-
sion of time series into BoW is performed in the literature. In [3], local features
such as mean, variance, extremum values are computed on sliding windows.
These features are then quantized into words using a codebook learned by a
class probability estimate distribution. In [17], discrete wavelet coefficients are
extracted on sliding windows and then quantized into words using k-means.
In [11, 14], words are constructed using the SAX representation [10] of time se-
ries. SAX symbols are extracted from time series and histograms of n-grams of
these symbols are computed. In [2], multivariate time series are transformed into
a feature matrix, whose rows are feature vectors containing a time index, the
values and the gradient of time series at this time index (on all dimensions).
Random samples of this matrix are given to decision trees whose leaves are seen
as words. A histogram of words is output when the different trees are learned.
Rather than computing features on sliding windows, authors of [18] first extract
keypoints from time series. These keypoints are selected using the Differences-
of-Gaussians (DoG) framework, well-known in the image community, that can
be adapted to one-dimensional signals. Keypoints are then described by scale-
invariant features that describe the shapes of the extremum surrounding key-
points. In [4], extraction and description of time series keypoints in a SIFT-like
framework is used to reduce the complexity of Dynamic Time Warping: features
are used to match anchor points from two different time series and prune the
search space when finding the optimal path in the DTW computation.

In this paper, we design a time series classification technique based on the
extraction and the description of keypoints using a SIFT framework adapted to
time series. The description of keypoints is quantized using a k-means algorithm
to create a codebook of words and classification of time series is performed with
a linear SVM fed with normalized histograms of words.

3 Bag-of-Temporal-SIFT-Words (BoTSW) method

The proposed method is adapted from the SIFT framework [12] widely used for
image classification. It is based on three main steps : (i) detection of keypoints in
time series, (ii) description of these keypoints by gradient magnitude at a specific
scale, and (iii) representation of time series by a BoW, words corresponding to
quantized version of the description of keypoints. These steps are depicted in
Fig. 1 and detailed below.
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Fig. 1: Approach overview : (a) A time series and its extracted keypoints (scale-
space extrema detection), (b) The Difference-of-Gaussians, computed at differ-
ent scales, on which the keypoint extraction is built, (c) In red the tested point,
in green the neighbors. On the right, a scale-space extrema, (d) Keypoint de-
scription is based on the time series filtered at the scale at which the keypoint is
extracted. Descriptors are quantized into words (feature vectors). (e) Codewords
obtained via k-means (where k = 4), the color is associated with the dots under
each keypoints in (a). (f) These histograms are given to a classifier (linear SVM
here) that learns boundaries between the different classes. Best viewed in color.

3.1 Detection of keypoints in time series

The first step of our method is to select keypoints in time series. Two approaches
are proposed, one based on scale-space extrema detection and another one based
on dense extraction.

Scale-space extrema detection. Following the SIFT framework, keypoints
in time series correspond to local extrema both in terms of scale and location.
These scale-space extrema are identified using a DoG function, which establishes
a list of scale-invariant keypoints. Let L(t, σ) be the convolution (∗) of a Gaussian
function G(t, σ) of width σ with a time series S(t):

L(t, σ) = G(t, σ) ∗ S(t).



DoG is obtained by subtracting two filtered time series at consecutive scales:

D(t, σ) = L(t, kscσ)− L(t, σ),

where ksc controls the scale ratio between two consecutive scales. A keypoint
is detected at time index t and scale j if it corresponds to an extremum of
D(t, kjscσ) in both time and scale (8 neighbors : 2 at the same scale, and 6 in
adjacent scales) If a point is higher (or lower) than all of its neighbors, it is
considered as an extremum in the scale-space domain and hence a keypoint of
S.

Dense extraction. Previous researches have shown that efficient classification
can be achieved by using densely extracted local descriptors features [16]. Dense
sampled extracts keypoints at regular locations. Counter to scale-space extrema
detection, keypoints detected with dense extraction do not represent extremum
in the scale-space domain but are extracted with a regular step between each
one of them.

3.2 Description of the extracted keypoints

Next step in our process is the description of keypoints. A keypoint at (t, j)
is described by gradient magnitudes of L(·, kjscσ) around t. nb blocks of size a
are selected around the keypoint. Gradients are computed at each point of each
block and weighted using a Gaussian window of standard deviation a×nb

2 so that
points that are farther in time from the detected keypoint have lower influence.
Then, each block is described by storing separately the sums of magnitude of
positive and negative gradients. Resulting feature vector is of dimension 2× nb.

Bag-of-Words normalization. We will consider the basic description as our
baseline (as in [1]). Advanced representations will include normalizations of Bag-
of-Words. We introduce 3 normalizations adapted to BoW in order to (possibly)
improve classification rate. Changes resulting from BoW normalization will be
study in section 4.

1. The first normalization is the `2-normalization i.e. ||x||2 =

√
n∑

i=1

|xi|2.

2. The second normalization corresponds to the Term-Frequency and Inverse
Document Frequency normalization (TF.IDF). BoW weights are adapted to
increase the influence of specific words and to decrease the influence of more
common words.

3. The Signed Square Root normalization (SSR) introduced by Jegou and
Chum [7] will be the last normalization tested. SSR-normalization can be

written as xi
SSR−→ sign(xi)

√
|xi|



3.3 Bag-of-Temporal-SIFT-Words for time series classification

Features are then quantized using a k-means algorithm to obtain a codebook
of k words. Words represent different kinds of local behavior in the time series.
For a given time series, each feature vector is assigned to the closest word of the
codebook. The number of occurrences of each word in a time series is computed.
The BoTSW representation of a time series is the normalized histogram (i.e.
frequency vector) of word occurrences. These histograms are then passed to a
classifier to learn how to discriminate classes from this BoTSW description.

4 Experiments and results

4.1 Experimental setup

In this section, we investigate the impact of both the dense extraction of the key-
points and the normalization of the Bag-of-Words on classification error rates.
Experiments are conducted on 86 datasets from the UCR repository [9]. Pa-
rameters a, nb, k and CSVM of BoTSW are learn, we set remaining parameters
as follows: σ = 1.6, ksc = 21/3. These values have shown to produce stable
results. Parameters a, nb, k and CSVM vary inside the following sets : {4, 8},
{4, 8, 12, 16, 20},

{
2i,∀i ∈ {5..10}

}
and {1, 10, 100} respectively. Codebooks are

obtained via k-means quantization and a linear SVM is used to classify times
series represented as BoTSW. Each dataset is composed of a train and a test set.
For our approach, the best sets (considering the accuracy) of (a, nb, k, CSVM )
parameters are selected by performing a leave-one-out cross-validation on the
train set. These best sets of parameters are then used to build the classifier on
the train set and evaluate it on the test set. Experimental error rates (ER) are
reported in Table 1, together with baseline scores publicly available at [9].

4.2 Experiments on BoW normalization

Table 2 allows us to analyze the impact of different types of BoW normaliza-
tion on the classification rate. Considering the normalization as a parameter,
we learn the best sets of parameters for each dataset for each one of the couple
{experimental setup detailed in 4.1 + normalization}, i.e. sets of best parame-
ters for `2-normalization and TF.IDF-normalization with the same experimental
setup can be dissimilar.

Several observations can be made. First, we can observe that if we normalize
the Bag-of-Words with `2-normalization or with TF.IDF-normalization, our clas-
sification rates are lower than without normalization for more than half of the
tested datasets. If we associate SSR-normalization with TF.IDF-normalization,
classification rates are comparable than without normalization. Finally, using ex-
clusively SSR-normalized BoTSW provides better classification rates than with-
out normalization for most of the UCR datasets.

Fig. 2 enables us to compare error rates obtain with unnormalized BoTSW
and with BoTSW associated with SSR-normalization. Basic BoTSW has a better



Dataset EDNN DTWNN BoTSW

50words 0.369 0.310 -1
Adiac 0.389 0.396 0.076

ArrowHead 0.200 0.297 0.188
Beef 0.333 0.367 0.3

BeetleFly 0.250 0.300 0.1
BirdChicken 0.450 0.250 0.15

Car 0.267 0.267 0.15
CBF 0.148 0.003 0.000

Chlorine
Concentration

0.35 0.352 -1

CinC ECG
torso

0.103 0.349 0.320

Coffee 0.000 0.000 0.035
Computers 0.424 0.300 0.404
Cricket X 0.423 0.246 -1
Cricket Y 0.433 0.256 -1
Cricket Z 0.413 0.246 -1

DiatomSize
Reduction

0.065 0.033 0.091

DistalPhalanx
OutlineAgeGroup

0.218 0.208 0.35

DistalPhalanx
OutlineCorrect

0.248 0.232 0.231

DistalPhalanxTW 0.273 0.290 0.272
Earthquakes 0.326 0.258 0.211

ECG200 0.120 0.230 0.1
ECG5000 0.075 0.076 -1

ECGFiveDays 0.203 0.232 0.041
ElectricDevices 0.450 0.399 -1

FaceAll 0.286 0.192 0.239
FaceFour 0.216 0.170 0.034

FacesUCR 0.231 0.095 0.212
FISH 0.217 0.177 0.051
FordA 0.341 0.438 -1
FordB 0.442 0.406 -1

Gun Point 0.087 0.093 0.026
Ham 0.400 0.533 0.438

HandOutlines 0.199 0.202 0.257
Haptics 0.630 0.623 0.636
Herring 0.484 0.469 0.406

InlineSkate 0.658 0.616 0.658
Insect

WingbeatSound
0.438 0.645 0.519

ItalyPowerDemand 0.045 0.05 0.068
LargeKitchen

Appliances
0.507 0.205 0.288

Lightning2 0.246 0.131 0.278
Lightning7 0.425 0.274 0.342
MALLAT 0.086 0.066 0.115

Meat 0.067 0.067 0.133
MedicalImages 0.316 0.263 -1
MiddlePhalanx

OutlineAgeGroup
0.260 0.250 0.275

Dataset EDNN DTWNN BoTSW

MiddlePhalanx
OutlineCorrect

0.247 0.352 0.413

MiddlePhalanxTW 0.439 0.416 0.416
MoteStrain 0.121 0.165 0.146

NonInvasiveFetal
ECG Thorax1

0.171 0.209 -1

NonInvasiveFetal
ECG Thorax2

0.120 0.135 -1

OliveOil 0.133 0.167 0.133
OSULeaf 0.479 0.409 0.198

PhalangesOutlines
Correct

0.239 0.272 -1

Phoneme 0.891 0.772 0.785
Plane 0.038 0.000 0.009

ProxiamlPhalanx
OutlineAgeGroup

0.215 0.195 -1

ProxiamlPhalanx
OutlineCorrect

0.192 0.216 -1

ProximalPhalanxTW 0.292 0.263 0.24
RefrigerationDevices 0.605 0.536 0.554

ScreenType 0.640 0.603 -1
ShapeletSim 0.461 0.350 0.072
ShapesAll 0.248 0.232 -1

SmallKitchen
Appliances

0.659 0.357 -1

SonyAIBORobot
Surface

0.141 0.169 0.083

SonyAIBORobot
SurfaceII

0.305 0.275 0.151

StarLightCurves 0.151 0.093 -1
Strawberry 0.062 0.060 0.123
SwedishLeaf 0.211 0.208 0.128

Symbols 0.100 0.050 0.016
synthetic control 0.120 0.007 0.013

ToeSegmentation1 0.320 0.228 0.043
ToeSegmentation2 0.192 0.162 0.115

Trace 0.240 0.000 0.000
Two Patterns 0.090 0.000 0.095
TwoLeadECG 0.253 0.096 0.023
uWaveGesture

Library X
0.261 0.273 -1

uWaveGesture
Library Y

0.338 0.366 -1

uWaveGesture
Library Z

0.35 0.342 -1

uWaveGesture
LibraryAll

0.052 0.108 -1

wafer 0.005 0.020 0.033
Wine 0.389 0.426 0.518

WordsSynonyms 0.382 0.351 0.250
WordSynonyms 0.382 0.351 0.373

Worms 0.635 0.536 0.464
WormsTwoClass 0.414 0.337 0.281

yoga 0.170 0.164 0.304

Table 1: Classification error rates (best performance is written as bold text).



• Basic `2 TF.IDF SSR
SSR+

TF.IDF
W T L W T L W T L W T L W T L

Basic - 24 8 15 24 6 17 11 13 23 20 7 20
`2 15 8 24 - 22 9 17 14 8 26 23 10 14

TF.IDF 17 6 24 17 9 22 - 12 5 31 13 14 20
SSR 23 13 11 26 8 14 31 5 12 - 29 7 11

SSR+TF.IDF 20 7 20 14 10 23 20 14 13 11 7 29 -

Table 2: Win-Tie-Lose (WTL) scores comparing BoTSW with unnormalized
BoW and normalized BoW. Unnormalized (Basic) BoTSW achieves a better
classification rate than `2-normalized BoTSW on 24 datasets, a similar perfor-
mance on 8 datasets and does worse on 15 datasets.
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Fig. 2: Error rate of unnormalized BoTSW compared to BoTSW associated
with SSR-normalization. Unnormalized BoTSW has a better classification than
BoTSW + SSR-normalization on 11 datasets, an equivalent classification rate
on 13 datasets and does worse on 23 datasets.

classification rate than BoTSW with SSR-normalization when a point is situated
above the diagonal. Furthermore, the farthest a point is from the diagonal, the
most significant the difference is. From Table 2, we already know that the Win-
Tie-Lose score between unnormalized BoTSW and SSR-normalized BoTSW is
11/13/23. As it can be seen in Fig. 2, BoTSW associated with SSR-normalization
leads to comparable (close to the diagonal) or better classification rates than
unnormalized BoTSW. SSR-normalized BoTSW produces for example an 0.359
error rate whereas unnormalized BoTSW obtains a 0.531 error rate for Herring
dataset.

The Win-Tie-Lose scores coupled with Fig. 2 show that amongst all normal-
izations, SSR-normalization of BoTSW should be the one to be privileged.



• Basic Dense
`2 +

Dense
SSR+
Dense

SSR
+ TF.IDF
+ Dense

W T L W T L W T L W T L W T L

Basic - 11 8 26 8 5 32 15 4 21 10 4 26

Dense 26 8 11 - 18 9 19 19 8 13 11 12 17

`2 +
Dense

32 5 8 19 9 18 - 20 6 14 12 11 17

SSR +
Dense

21 4 15 13 8 19 14 6 20 - 12 10 18

SSR+TF.IDF
+ Dense

26 4 10 17 12 11 17 11 12 18 10 12 -

Table 3: Win-Tie-Lose (WTL) scores comparing BoTSW {unnormalized BoW
associated with scale-space extrema detection} and {(un)normalized BoW as-
sociated with dense extraction}. The scale-space extrema detection achieves a
better classification rate than dense extraction on 11 datasets, a similar perfor-
mance on 8 datasets and does worse on 26 datasets.
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Fig. 3: Error rate of basic BoTSW compared to Dense BoTSW associated with
SSR / TF.IDF normalizations. Basic BoTSW has a better classification than
Dense BoTSW + SSR / TF.IDF-normalization on 11 datasets, an equivalent
classification rate on 8 datasets and does worse on 26 datasets.

4.3 Experiments on Dense extraction

As it can be seen in Table 3, BoTSW associated with dense extraction achieves
generally better classification rates than BoTSW with scale-space extrema de-
tection. If we associate Bag-of-Words normalization with dense extraction, it
also improved the performance for most datasets.

The best classification rates are obtained when we associate dense extraction
with both SSR and TF.IDF normalizations. As it can easily be seen in Fig. 3,



all the plotted points (which correspond to error rates) are near or below the
diagonal. Consequently, dense BoTSW associated with SSR and TF.IDF normal-
izations leads to similar or better classification rates than unnormalized BoTSW.

Amongst all dense extractions, SSR and TF.IDF normalized dense BoTSW
achieves the best classification.

4.4 Conclusion on BoTSW
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Fig. 4: Error rate of SSR-normalized BoTSW compared to Dense BoTSW asso-
ciated with SSR / TF.IDF normalizations.

In sections 4.2 and 4.3, we notice that Bag-of-Words normalization and dense
extraction of keypoints improve the performance. Prior to compare our method
to state-of-the-art methods, we have to determine which association has the best
performance. We previously reduce the possibilities to SSR-normalized BoTSW
(A-BoTSW) and SSR / TF.IDF normalized dense BoTSW (B-BoTSW).

Fig. 4 shows that A-BoTSW has a better classification than B-BoTSW on
14 datasets, an equal classification rate on 7 datasets and does worse on 19
datasets. Error rates of A-BoTSW and B-BoTSW are alike, both associations
are therefore equivalent. Error rates obtained with dense BoTSW associated
with SSR/TF.IDF normalizations will be use in the next section.

4.5 Results

In this section, we refer to dense BoTSW associated with SSR/TF.IDF nor-
malizations as BoTSW. We computes the Win-Tie-Lose scores between BoTSW
and several state-of-the-art methods. The UCR repository provides error rates
for the 86 datasets with Euclidean distance (ED) and Dynamic Time Warping
(DTW). We use available error rates for TSBF (45), SAX-VSM (51), SMTS (45)
and BoP (20).



Win-Tie-Lose scores from Table 4 shows that BoTSW is better that ED
(+1NN), DTW (+1NN), TSBF [3], SAX-VSM [14], SMTS [2] and BoP [11]
separately. Experiments shows that BoTSW outperforms performance of state-
of-the-art methods.

• ED+
1NN

DTW+
1NN

TSBF
SAX-
VSM

SMTS BoP

W T L W T L W T L W T L W T L W T L

BoTSW+
SVM

41 3 8 39 4 9 22 0 5 21 3 5 17 1 9 9 2 2

Table 4: Win-Tie-Lose (WTL) scores comparing BoTSW to state-of-the-art
methods. For instance, BoTSW+linear SVM reaches better performance than
ED+1NN on 41 datasets, and worse performance on 8 datasets.

5 Conclusion

BoTSW transforms time series into histograms of quantized local features. Using
dense extraction and normalizing Bag-of-Words enables to efficiently and accu-
rately classify time series. We believe classification performance could be further
improved by taking time information into account and/or reducing the impact
of quantization losses in our representation.
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Fig. 5: Error rate of dense BoTSW with SSR-normalization versus some base-
lines (ED-NN, DTW-NN, TSBF, SAX-VSM, SMTS, BoP). Win-Tie-Lose score
written at the bottom right corner.
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