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Abstract. The SIFT framework has shown to be accurate in the im-
age classification context. In [1], we designed a Bag-of-Words approach
based on an adaptation of this framework to time series classification. It
relies on two steps: SIFT-based features are first extracted and quantized
into words; histograms of occurrences of each word are then fed into a
classifier. In this paper, we investigate techniques to improve the perfor-
mance of Bag-of-Temporal-SIFT-Words: dense extraction of keypoints
and normalization of Bag-of-Words histograms. Extensive experiments
show that our method significantly outperforms most state-of-the-art
techniques for time series classification.

Keywords: time series classification, Bag-of-Words, SIFT, dense fea-
tures, BoTSW, D-BoTSW

1 Introduction

Classification of time series has received an important amount of interest over
the past years due to many real-life applications, such as medicine [24], en-
vironmental modeling [7], speech recognition [12]. A wide range of algorithms
have been proposed to solve this problem. One simple classifier is the k-nearest-
neighbor (kNN), which is usually combined with Euclidean Distance (ED) or
Dynamic Time Warping (DTW) metric. The combination of the kNN classifier
with DTW is one of the most popular method since it achieves high classification
accuracy [20]. However, this method has a high computation cost which makes
its use difficult for large-scale real-life applications.

Above-mentioned techniques compute similarity between time series based
on point-to-point comparisons. Classification techniques based on higher level
structures (e.g. feature vectors) are most of the time faster, while being at least
as accurate as DTW-based classifiers. Hence, various works have investigated
the extraction of local and global features in time series. Among these works,
the Bag-of-Words (BoW) approach (also called Bag-of-Features) consists in rep-
resenting documents using a histogram of word occurrences. It is a very common
technique in text mining, information retrieval and content-based image retrieval



because of its simplicity and performance. For these reasons, it has been adapted
to time series data in some recent works [2, 3, 14, 21, 24]. Different kinds of fea-
tures based on simple statistics, computed at a local scale, are used to create
the words.

In the context of image retrieval and classification, scale-invariant descriptors
have proved their accuracy. Particularly, the Scale-Invariant Feature Transform
(SIFT) framework has led to widely used descriptors [17]. These descriptors are
scale and rotation invariant while being robust to noise. In [1], we built on this
framework to design a BoW approach for time series classification where words
correspond to quantized versions of local features. Features are built using the
SIFT framework for both detection and description of the keypoints. This ap-
proach can be seen as an adaptation of [22], which uses SIFT features associated
with visual words, to time series. In this paper, we improve our previous work by
applying enhancement techniques for BoW approaches, such as dense extraction
and BoW normalization. To validate this, we conduct extensive experiments on
a wide range of datasets.

This paper is organized as follows. Section 2 summarizes related work, Sec-
tion 3 describes the proposed Bag-of-Temporal-SIFT-Words (BoTSW) method
and its improved version (dense extraction and BoW normalization, D-BoTSW),
and Section 4 reports experimental results. Finally, Section 5 concludes and dis-
cusses future work.

2 Related work

Our approach for time series classification builds on two well-known methods in
computer vision: local features are extracted from time series using a SIFT-based
approach and a global representation of time series is produced using Bag-of-
Words. This section first introduces state-of-the-art distance-based methods in
time series classification and then presents previous works that make use of
Bag-of-Words approaches for time series classification.

2.1 Distance-based time series classification

Data mining community has, for long, investigated the field of time series clas-
sification. Early works focus on the use of dedicated metrics to assess similarity
between time series. In [20], Ratanamahatana and Keogh compare Dynamic
Time Warping to Euclidean Distance when used with a simple kNN classifier.
While the former benefits from its robustness to temporal distortions to achieve
high accuracy, ED is known to have much lower computational cost. Cuturi [5]
shows that, although DTW is well-suited to retrieval tasks since it focuses on
the best possible alignment between time series, it fails at precisely quantifying
dissimilarity between non-matching sequences (which is backed by the fact that
DTW-derived kernel is not positive definite). Hence, he introduces the Global
Alignment Kernel that takes into account all possible alignments in order to
produce a reliable dissimilarity metric to be used at the core of standard kernel



methods such as Support Vector Machines (SVM). Lines and Bagnall [15] pro-
pose an ensemble classifier based on elastic distance measures (including DTW),
named Proportional Elastic Ensemble (PROP). Instead of building classification
decision on similarities between time series, Ye and Keogh [26] use a decision
tree in which the partitioning of time series is performed with respect to the
presence (or absence) of discriminant sub-sequences (named shapelets) in the
series. Though accurate, the method is very computational demanding as build-
ing the decision tree requires one to check for all candidate shapelets. Douzal
and Amblard [6] define a dedicated metric for time series which is then used in
a classification tree.

2.2 Bag-of-Words for time series classification

Inspired by text mining, information retrieval and computer vision communities,
recent works have investigated the use of Bag-of-Words for time series classifica-
tion [2, 3, 14, 21, 24]. These works are based on two main operations: converting
time series into Bag-of-Words, and building a classifier upon this BoW repre-
sentation. Usually, standard techniques such as random forests, SVM, neural
networks or kNN are used for the classification step. Yet, many different ways
of converting time series into Bag-of-Words have been introduced. Among them,
Baydogan et al. [3] propose a framework to classify time series denoted TSBF
where local features such as mean, variance and extremum values are computed
on sliding windows. These features are then quantized into words using a code-
book learned by a class probability estimate distribution. In [24], discrete wavelet
coefficients are extracted on sliding windows and then quantized into words us-
ing k-means. In [14, 21], words are constructed using the Symbolic Aggregate
approXimation (SAX) representation [13] of time series. SAX symbols are ex-
tracted from time series and histograms of n-grams of these symbols are com-
puted to form a Bag-of-Patterns (BoP). In [21], Senin and Malinchik combine
SAX with Vector Space Model to form the SAX-VSM method. In [2], Baydogan
and Runger design a symbolic representation of multivariate time series (MTS),
called SMTS, where MTS are transformed into a feature matrix, whose rows
are feature vectors containing a time index, the values and the gradient of time
series at this time index (on all dimensions). Random samples of this matrix are
given to decision trees whose leaves are seen as words. A histogram of words is
output when the different trees are learned.

Local feature extraction has been investigated for long in the computer vi-
sion community. One of the most powerful local feature for image is SIFT [17].
It consists in detecting keypoints as extremum values of the the Difference-of-
Gaussians (DoG) function and describing their neighborhoods using histograms
of gradients. Xie and Beigi [25] use similar keypoint detection for time series.
Keypoints are then described by scale-invariant features that characterize the
shapes surrounding the extremum. In [4], extraction and description of time
series keypoints in a SIFT-like framework is used to reduce the complexity of
DTW: features are used to match anchor points from two different time series
and prune the search space when searching for the optimal path for DTW.



(a) Dense extraction (τstep = 15, 9 scales)

(b) Keypoint description (nb = 4, a = 2)

(c) k-means generated codebook (k = 6)
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Fig. 1: Approach overview: (a) A time series and its dense-extracted keypoints.
(b) Keypoint description is based on the time series filtered at the scale at which
the keypoint is extracted. Descriptors are quantized into words. (c) Codewords
obtained via k-means, the color is associated with the dots under each keypoint
in (a). (d) Histograms of word occurrences are given to a classifier (linear SVM)
that learns boundaries between classes. Best viewed in color.

In this paper, we build upon BoW of SIFT-based descriptors. We propose an
adaptation of SIFT to mono-dimensional signals that preserves their robustness
to noise and their scale invariance. We then use BoW to gather information from
many local features into a single global one.

3 Bag-of-Temporal-SIFT-Words (BoTSW) method

The proposed method is based on three main steps: (i) extraction of keypoints in
time series, (ii) description of these keypoints by gradient magnitude at a specific
scale and (iii) representation of time series by a BoW, where words correspond
to quantized version of the description of keypoints. These steps are depicted in
Fig. 1 and detailed below.

3.1 Keypoints extraction in time series

The first step of our method consists in extracting keypoints in time series. Two
approaches are described here: the first one is based on scale-space extrema
detection (as in [1]) and the second one proposes a dense extraction scheme.

Scale-space extrema detection. Following the SIFT framework, keypoints in
time series are detected as local extrema in terms of both scale and (temporal)



location. These scale-space extrema are identified using a DoG function, and
form a list of scale-invariant keypoints. Let L(t, σ) be the convolution (∗) of a
Gaussian function G(t, σ) of width σ with a time series S(t):

L(t, σ) = G(t, σ) ∗ S(t) (1)

where G(t, σ) is defined as

G(t, σ) =
1√

2π σ
e−t

2/2σ2

. (2)

Lowe [16] proposes the Difference-of-Gaussians (DoG) function to detect scale-
space extrema in images. Adapted to time series, a DoG function is obtained by
subtracting two time series filtered at consecutive scales:

D(t, σ) = L(t, kscσ)− L(t, σ), (3)

where ksc is a parameter of the method that controls the scale ratio between two
consecutive scales.

Keypoints are then detected at time index t in scale j if they correspond
to extrema of D(t, kjscσ0) in both time and scale, where σ0 is the width of the
Gaussian corresponding to the reference scale. At a given scale, each point has
two neighbors: one at the previous and one at the following time instant. Points
also have neighbors one scale up and one scale down at the previous, same and
next time instants, leading to a total of eight neighbors. If a point is higher (or
lower) than all of its neighbors, it is considered as an extremum in the scale-space
domain and hence a keypoint of S.

Dense extraction. Previous researches have shown that accurate classification
could be achieved by using densely extracted local features [10, 23]. In this sec-
tion, we present the adaptation of this setup to our BoTSW scheme. Keypoints
selected with dense extraction no longer correspond to extrema but are rather
systematically extracted at all scales every τstep time steps on Gaussian-filtered
time series L(·, kjscσ0).

Unlike scale-space extrema detection, regular sampling guarantees a minimal
amount of keypoints per time series. This is especially crucial for smooth time
series from which very few keypoints are detected when using scale-space extrema
detection. In addition, even if the densely extracted keypoints are not scale-space
extrema, description of these keypoints (cf. Section 3.2) covers the description
of scale-space extrema if τstep is not too large. This usually leads to more robust
global descriptors.

A dense extraction scheme is represented in Fig. 1, where we consider a step
of τstep = 15 for the sake of readability. In the following, when dense extraction
is performed, we will refer to our method as D-BoTSW (for dense BoTSW).

3.2 Description of the extracted keypoints

Next step in our process is the description of keypoints. A keypoint at time index
t and scale j is described by gradient magnitudes of L(·, kjscσ0) around t. To do



so, nb blocks of size a are selected around the keypoint. Gradients are computed
at each point of each block and weighted using a Gaussian window of standard
deviation a×nb

2 so that points that are farther in time from the detected keypoint
have lower influence. Then, each block is described by two values: the sum of
positive gradients and the sum of negative gradients. Resulting feature vector is
hence of dimension 2× nb.

3.3 Bag-of-Temporal-SIFT-Words for time series classification

The set of all training features is used to learn a codebook of k words using k-
means clustering. Words represent different local behaviors in time series. Then,
for a given time series, each feature vector is assigned the closest word in the
codebook. The number of occurrences of each word in a time series is computed.
(D-)BoTSW representation of a time series is the `2-normalized histogram (i.e.
frequency vector) of word occurrences.

Bag-of-Words normalization. Dense sampling on multiple Gaussian-filtered
time series provides considerable information to process. It also tends to generate
words with little informative power, as stop words do in text mining applica-
tions. In order to reduce the impact of those words, we compare two normal-
ization schemes for BoW: Signed Square Root normalization (SSR) and Inverse
Document Frequency normalization (IDF). These normalizations are commonly
used in image retrieval and classification based on histograms [8, 9, 19, 22].

Jégou et al. [9] and Perronin et al. [19] show that reducing the influence of
frequent codewords before `2 normalization could be profitable. They apply a
power α ∈ [0, 1] on their global representation. SSR normalization corresponds
to the case where α = 0.5, which leads to near-optimal results [9, 19].

IDF normalization also tends to lower the influence of frequent codewords.
To do so, document frequency of words is computed as the number of training
time series in which the word occurs. BoW are then updated by diving each
component by its associated document frequency.

SSR and IDF normalizations both reduce the influence of frequent codewords
in the codebook, and are applied before `2 normalization. We show in the exper-
imental part of this paper that using BoW normalization improves the accuracy
of our method.

Normalized histograms are finally given to a classifier that learns how to
discriminate classes from this D-BoTSW representation.

4 Experiments and results

In this section, we investigate the impact of both dense extraction of the key-
points and normalization of the Bag-of-Words on classification performance. We
then compare our results to the ones obtained with standard time series classi-
fication techniques.



For the sake of reproducibility, C++ source code used for (D-)BoTSW in
these experiments is made available for download1. To provide illustrative tim-
ings for our methods, we ran it on a personal computer, for a given set of pa-
rameters, using dataset Cricket X [11] that is made of 390 training time series
and 390 test ones. Each time series in the dataset is of length 300. Extraction
and description of dense keypoints takes around 1 second for all time series in
the dataset. Then, 35 seconds are necessary to learn a k-means and fit a linear
SVM classifier using training data only. Finally, classification of all D-BoTSW
corresponding to test time series takes less than 1 second.

4.1 Experimental setup

Experiments are conducted on the 86 currently available datasets from the UCR
repository [11], the largest online database for time series classification. It in-
cludes a wide variety of problems, such as sensor reading (ECG), image out-
line (ArrowHead), human motion (GunPoint), as well as simulated problems
(TwoPatterns). All datasets are split into a training and a test set, whose size
varies between less than 20 and more than 8000 time series. For a given dataset,
all time series have the same length, ranging from 24 to more than 2500 points.

Parameters a, nb, k and CSVM of (D-)BoTSW are learned, while we set
σ0 = 1.6 and ksc = 21/3, as these values have shown to produce stable re-
sults [17]. Parameters a, nb, k and CSVM vary inside the following sets: {4, 8},
{4, 8, 12, 16, 20},

{
2i,∀i ∈ {5..10}

}
and {1, 10, 100} respectively. Codebooks are

obtained via k-means quantization and a linear SVM is used to classify time se-
ries represented as (D-)BoTSW. For our approach, the best sets (in terms of accu-
racy) of (a, nb, k, CSVM ) parameters are selected by performing cross-validation
on the training set. Due to the heterogeneity of the datasets, leave-one-out cross-
validation is performed on datasets where the training set contains less than 300
time series, and 10-fold cross-validation is used otherwise. These best sets of
parameters are then used to build the classifier on the training set and evaluate
it on the test set. For datasets with little training data, it is likely that several
sets of parameters yield best performance during the cross-validation process.
For example, when using DiatomSizeReduction dataset, BoTSW has 150 out of
180 parameter sets yielding best performance, while there are 42 such sets for
D-BoTSW with SSR normalization. In both cases, the number of best parameter
sets is too high to allow a fair parameter selection. When this happens, we keep
all parameter sets with best performance at training and perform a majority
voting between their outputs at test time.

Parameters a and nb both influence the descriptions of the keypoints; their
optimal values vary between sets so that the description of keypoints can fit the
shape of the data. If the data contains sharp peaks, the size of the neighborhood
on which features are computed (equal to a × nb) should be small. On the
contrary, if it contains smooth peaks, descriptions should take more points into
account. Parameter k of the k-means needs to be large enough to precisely

1 http://people.irisa.fr/Adeline.Bailly/code.html



represent the different features. However, it needs to be small enough in order
to avoid overfitting. We consequently allow a large range of values for k.

In the following, BoTSW denotes the approach where keypoints are selected
as scale-space extrema and BoW histograms are `2-normalized. For all experi-
ments with dense extraction, we set τstep = 10, and we extract keypoints at all
scales. Using such a value for τstep enables one to have a sufficient number of key-
points even for small time series, and guarantees that keypoint neighborhoods
overlap so that all subparts of the time series are described.

4.2 Experiments on dense extraction
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Fig. 2: Error rates of BoTSW compared to D-BoTSW.

Fig. 2 shows a pairwise comparison of error rates between BoTSW and its
dense counterpart D-BoTSW for all datasets in the UCR repository. A point on
the diagonal means that obtained error rates are equals. A point above the di-
agonal illustrates a case where D-BoTSW has a smaller error rate than BoTSW.
Wilcoxon signed rank test’s p-value and Win/Tie/Lose scores are given in the
bottom-right corner of the figure. Win/Tie/Lose scores indicate that D-BoTSW
reaches better performance than BoTSW on 61 datasets, equivalent performance
on 4 datasets and worse on 21 datasets. Wilcoxon test shows that this differ-
ence is significant (in the following, we will use a significance level of 10% for all
statistical tests).

D-BoTSW improves classification on a large majority of the datasets. How-
ever, most points are close to the diagonal, which means that the improvement
is of little magnitude. In the following, we show how to further improve these
results thanks to D-BoTSW normalization.
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Fig. 3: Error rates of D-BoTSW with and without normalization.

4.3 Experiments on BoW normalization

In image retrieval and classification, Bag-of-Words normalizations have been
shown to improve classification rates with dense extracted keypoints. We inves-
tigate here the impact of SSR and IDF normalizations on D-BoTSW for time
series classification.

As it can be seen in Fig. 3, both SSR and IDF normalizations improve clas-
sification performance (though the improvement of using IDF is not statistically
significant). Lowering the influence of largely-represented codewords hence leads
to more accurate classification with D-BoTSW.

IDF normalization only leads to a small improvement in classification accu-
racy: Win/Tie/Lose score against non-normalized D-BoSTW is 38/14/34. On
the contrary, SSR normalization significantly improves the classification accu-
racy, with a Win/Tie/Lose score of 61/10/15 over non-normalized D-BoSTW.

This is backed by Fig. 4, in which one can see that when using SSR nor-
malization, variance (i.e. energy) is spread across all dimensions of the BoW,
leading to a more balanced representation than with other two normalization
schemes.

4.4 Comparison with state-of-the-art methods

In the following, we will refer to dense SSR-normalized BoTSW as D-BoTSW,
since this setup is the one providing the best classification performance. We now
compare D-BoTSW to the most popular state-of-the-art methods for time series
classification. The UCR repository provides error rates for the 86 datasets with
Euclidean distance 1NN (EDNN) and Dynamic Time Warping 1NN (DTWNN) [20].
We use published error rates for TSBF (45 datasets) [3], SAX-VSM (51 datasets) [21],
SMTS (45 datasets) [2], PROP (46 datasets) [15] and BoP (20 datasets).

As BoP [14] only provides classification performance for 20 datasets, we de-
cided not to plot pairwise comparison of error rates between D-BoTSW and BoP.
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(c) SSR+`2 normalized D-BoTSW

Fig. 4: Per-dimension energy of D-BoTSW vectors extracted from dataset Shape-
sAll. The same codebook is used for all normalization schemes so that dimensions
are comparable across all three sub-figures.

Note however that the Win/Tie/Lose score is 17/1/2 in favor of D-BoTSW and
this difference is statistically significant (p < 0.001). BoP has smaller error rate
than D-BoTSW on wafer (0.003 vs. 0.004) and Olive Oil (0.133 vs. 0.167) data
sets.

Fig. 5 shows that D-BoTSW performs better than 1NN combined with ED
(EDNN) or DTW (DTWNN), TSBF, SAX-VSM and SMTS. Though relying
on a single similarity measure that has linear time complexity in the length
of time series, D-BoTSW slightly outperforms PROP, which relies on outputs
from several metrics with quadratic time complexity. In Fig. 5, it is striking to
realize that D-BoTSW not only improves the classification, but might improve
it considerably. Error rate on Shapelet Sim dataset drops from 0.461 (EDNN)
and 0.35 (DTWNN) to 0 (D-BoTSW), for example. Pairwise comparisons of
methods show that all observed differences between D-BoTSW and state-of-
the-art methods are statistically significant, except for PROP. Error rates (ER)
obtained with D-BoTSW are reported in Table 1, together with baseline scores
publicly available at [11].

This set of experiments, conducted on a wide variety of time series datasets,
shows that D-BoTSW significantly outperforms most state-of-the-art methods.

5 Conclusion

In this paper, we presented the D-BoTSW technique, which transforms time
series into histograms of quantized local features. The association of SIFT key-
points and Bag-of-Words has been widely used and is considered as a standard
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Fig. 5: Error rates for D-BoTSW with SSR normalization versus baselines (ED-
NN, DTW-NN, TSBF, SAX-VSM, SMTS, PROP).



Dataset EDNN DTWNN D-BoTSW

50words 0.369 0.31 0.204
Adiac 0.389 0.396 0.082

ArrowHead 0.2 0.297 0.234
Beef 0.333 0.367 0.333

BeetleFly 0.25 0.3 0.1
BirdChicken 0.45 0.25 0.2

Car 0.267 0.267 0.117
CBF 0.148 0.003 0

Chlorine
Concentration

0.35 0.352 0.414

CinC ECG
torso

0.103 0.349 0.17

Coffee 0 0 0
Computers 0.424 0.3 0.268
Cricket X 0.423 0.246 0.262
Cricket Y 0.433 0.256 0.241
Cricket Z 0.413 0.246 0.231

DiatomSize
Reduction

0.065 0.033 0.088

DistalPhalanx
OutlineAgeGroup

0.218 0.208 0.145

DistalPhalanx
OutlineCorrect

0.248 0.232 0.235

DistalPhalanxTW 0.273 0.29 0.2
Earthquakes 0.326 0.258 0.224

ECG200 0.12 0.23 0.13
ECG5000 0.075 0.076 0.052

ECGFiveDays 0.203 0.232 0
ElectricDevices 0.45 0.399 0.334

FaceAll 0.286 0.192 0.095
FaceFour 0.216 0.17 0.023

FacesUCR 0.231 0.095 0.041
FISH 0.217 0.177 0.034
FordA 0.341 0.438 0.089
FordB 0.442 0.406 0.116

Gun Point 0.087 0.093 0.007
Ham 0.4 0.533 0.295

HandOutlines 0.199 0.202 0.119
Haptics 0.630 0.623 0.539
Herring 0.484 0.469 0.406

InlineSkate 0.658 0.616 0.575
Insect

WingbeatSound
0.438 0.645 0.405

ItalyPowerDemand 0.045 0.05 0.072
LargeKitchen

Appliances
0.507 0.205 0.128

Lightning2 0.246 0.131 0.164
Lightning7 0.425 0.274 0.288
MALLAT 0.086 0.066 0.12

Meat 0.067 0.067 0.1
MedicalImages 0.316 0.263 0.23
MiddlePhalanx

OutlineAgeGroup
0.26 0.25 0.21

Dataset EDNN DTWNN D-BoTSW

MiddlePhalanx
OutlineCorrect

0.247 0.352 0.395

MiddlePhalanxTW 0.439 0.416 0.386
MoteStrain 0.121 0.165 0.17

NonInvasiveFetal
ECG Thorax1

0.171 0.209 0.061

NonInvasiveFetal
ECG Thorax2

0.12 0.135 0.053

OliveOil 0.133 0.167 0.167
OSULeaf 0.479 0.409 0.079

PhalangesOutlines
Correct

0.239 0.272 0.213

Phoneme 0.891 0.772 0.714
Plane 0.038 0 0

ProxiamlPhalanx
OutlineAgeGroup

0.215 0.195 0.146

ProxiamlPhalanx
OutlineCorrect

0.192 0.216 0.162

ProximalPhalanxTW 0.292 0.263 0.208
RefrigerationDevices 0.605 0.536 0.459

ScreenType 0.64 0.603 0.483
ShapeletSim 0.461 0.35 0
ShapesAll 0.248 0.232 0.102

SmallKitchen
Appliances

0.659 0.357 0.283

SonyAIBORobot
Surface

0.141 0.169 0.055

SonyAIBORobot
SurfaceII

0.305 0.275 0.189

StarLightCurves 0.151 0.093 0.026
Strawberry 0.062 0.06 0.046
SwedishLeaf 0.211 0.208 0.064

Symbols 0.1 0.05 0.017
synthetic control 0.12 0.007 0.003

ToeSegmentation1 0.320 0.228 0.035
ToeSegmentation2 0.192 0.162 0.069

Trace 0.24 0 0
Two Patterns 0.09 0 0
TwoLeadECG 0.253 0.096 0.011
uWaveGesture

Library X
0.261 0.273 0.195

uWaveGesture
Library Y

0.338 0.366 0.294

uWaveGesture
Library Z

0.35 0.342 0.255

uWaveGesture
LibraryAll

0.052 0.108 0.156

wafer 0.005 0.02 0.004
Wine 0.389 0.426 0.315

WordsSynonyms 0.382 0.351 0.254
WordSynonyms 0.382 0.351 0.334

Worms 0.635 0.536 0.337
WormsTwoClass 0.414 0.337 0.26

yoga 0.170 0.164 0.15

Table 1: Classification error rates for D-BoTSW with SSR normalization (for
each dataset, best performance is written as bold text).



technique in image domain, however it has never been investigated for time se-
ries classification. We carried out extensive experiments and showed that dense
keypoint extraction and SSR normalization of Bag-of-Words lead to the best
performance for our method. We compared the results with standard techniques
for time series classification: D-BoTSW has comparable performance to PROP
with lower time complexity and significantly outperforms all other techniques.

We believe that classification performance could be further improved by tak-
ing more time information into account, as well as reducing the impact of quan-
tization losses in our representation. Indeed, only local temporal information is
embedded in our model and the global structure of time series is ignored. More-
over, more detailed global representations for sets of features than the standard
BoW have been proposed in the computer vision community [9, 18], and such
global features could be used in our framework.
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