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Abstract. In the absence of a music score, tempo can only be defined
by its perception by users. Thus recent studies have focused on the es-
timation of perceptual tempo defined by listening experiments. So far,
algorithms have only been proposed to estimate the tempo when people
agree on it. In this paper, we study the case when people disagree on the
perception of tempo and propose an algorithm to predict this disagree-
ment. For this, we hypothesize that the perception of tempo is correlated
to a set of variations of various viewpoints on the audio content: energy,
harmony, spectral-balance variations and short-term-similarity-rate. We
suppose that when those variations are coherent, a shared perception
of tempo is favoured and when they are not, people may perceive dif-
ferent tempi. We then propose several statistical models to predict the
agreement or disagreement in the perception of tempo from these audio
features. Finally, we evaluate the models using a test-set resulting from
the perceptual experiment performed at Last-FM in 2011.

Keywords: tempo estimation, perceptual tempo, tempo agreement, dis-
agreement

1 Introduction

Tempo is one of the most predominant perceptual element of music. For this
reason, and given its use in numerous applications (search by tempo, beat-
synchronous processing, beat-synchronous analysis, musicology ...) there has
been and there are still many studies related to the estimation of tempo from
an audio signal (see [9] for a good overview).

While tempo is a predominant element, Moelants and McKinney [14] high-
lighted the fact that people can perceive different tempi for a single track. For
this reason, recent studies have started focusing on the problem of estimating the
“perceptual tempo” and perceptual tempo classes (such as “slow”, “moderate”
or “fast”). This is usually done for the subset of audio tracks for which people
agree on the tempo. In this paper we study the case where people disagree.

1.1 Formalisation

We denote by a an audio track and by ¢, its tempo. The task of tempo estimation
can be expressed as finding the function f such that f(a) = T, ~ t,. Considering
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Fig. 1. g(a,u) is a function that predicts tempo agreement and disagreement. Based
on this prediction a user-independent or a user-dependent tempo estimation model is
used.

that different users, denoted by u, can perceive different tempi for the same audio
track, the ideal model can be expressed as f(a,u) = Ty >~ tou-

Previous research on the estimation of perceptual tempo (see part 1.2) con-
sider mainly audio tracks a for which the perception of the tempo is shared
among users. This can be expressed as t,, = tq.. The prediction model is
therefore independent of the user v and can be written f(a,Vu) = f(a) = T,,.

Our long-term goal is to create a user-dependent tempo prediction model
fla,u) =Ty =2 tg . As afirst step toward this model, we study in this paper the
prediction of the audio tracks a for which the perception is shared (tqu = tq.u’)
and for which it is not (¢4, 7 taw ). For this, we look for a function g(a, {u})
which can predict this shared perception for a given audio track a and a given
set of user {u} (see Figure 1). We consider that this disagreement of tempo
perception is due to

1. the preferences of the specific users (which may be due to the users them-
selves or to the listening conditions such as the listening environment),

2. the specific characteristics of the audio track; it may contain ambiguities in
its rhythm or in its hierarchical organization.

In this work we only focus on the second point. We therefore estimate a function
g(a) which indicates if an ambiguity exists and which can therefore be used to
predict whether users will share the perception of tempo (agreement) or not
(disagreement).

1.2 Related works

Studies on tempo agreement/disagreement estimation. One of the first
studies related to the perception of tempo and the sharing of its perception is the
one of Moelants and McKinney [14]. This study presents and discusses the results
of three experiments where subjects were asked to tap to the beat of musical
excerpts. Experiments 1 and 2 lead to a unimodal perceived tempo distribution



with a resonant tempo centered on 128 bpm and 140 bpm respectively!. They
therefore assume that a preferential tempo exists around 120 bpm and that
“...pieces with a clear beat around 120 bpm are very likely to be perceived in this
tempo by a large majority of the listeners.”. An important assumption presented
in this work is that “the relation between the predominant perceived tempi and
the resonant tempo of the model could be used to predict the ambiguity of tempo
across listeners (and vice versa). . .if a musical excerpt contains a metrical level
whose tempo lies near the resonant tempo, the perceived tempo across listeners
(i.e., perceived tempo distribution) is likely to be dominated by the tempo of
that metrical level and be relatively unambiguous”. In our work, this assumption
will be used for the development of our first prediction model. In [14], the authors
have chosen a resonant tempo interval within [110 — 170] bpm. During our own
experiment (see part 3), we found that these values are specific to the test-set
used. In [14], Moelants proposes a model to predict, from acoustic analyses, the
musical excerpts that would deviate from the proposed resonance model.

Surprisingly no other studies have dealt with the problem of tempo agree-
ment/ disagreement except the recent one of Zapata et al. [22] which uses mutual
agreement of a committee of beat trackers to establish a threshold for perceptu-
ally acceptable beat tracking.

In the opposite, studies in the case of tempo agreement (¢4, = tq,/) are nu-
merous. In this case, the model simplifies to f(a,Vu) = T and aims at estimating
“perceptual tempo”, “perceptual tempo” classes or octave error correction.

Studies on “perceptual tempo” estimation. Seyerlehner [19] proposes an
instance-based machine learning approach (KNN) to infer perceived tempo. For
this, the rhythm content of each audio item is represented using either a Fluc-
tuation Patterns or an Auto-correllation function. Two audio items are then
compared using Pearson correlation coefficient between their representations.
For an unknown item, the K most similar items are found and the most frequent
tempo among the K is assigned to the unknown item.

Chua [3] distinguishes perceptual tempo from score tempo (annotated on the
score) and foot-tapping tempo (which is centered around 80-100 bpm). He pro-
poses an Improved Perceptual Tempo Estimator to determine automatically the
perceptual tempo This IPTE determines the perceptual tempo (with frequency
sub-band analysis, amplitude envelope autocorrelation then peak-picking) on 10
seconds-length segment, along with a likelyhood measure. The perceptual tempo
is the tempo of the segment with the highest likelihood. On a test-set of 50 man-
ually annotated musical excerpts, he evaluates his IPTE. The model failed for
only 2 items.

! Experiment 3 is performed on musical excerpts specifically chosen for their extremely
slow or fast tempo and leads to a bi-modal distribution with peaks around 50 and
200 bpm. Because of the specificities of these musical excerpts, we do not consider
the results of it here.



Studies on “perceptual tempo” classes estimation. Hockman [10] con-
siders only two classes: “fast” and “slow” tempo classes. Using Last.fm A.P.I.,
artists and tracks which have been assigned “fast” and “slow” tags are selected.
The corresponding audio signal are then obtained using YouTube A.P.I. This
leads to a test-set of 397 items. 80 different audio features related to the onset
detection function, pitch, loudness and timbre are then extracted using jAu-
dio. Among the various classifiers tested (KNN, SVM, C4.5, AdaBoost ...),
AdaBoost achieved the best performance.

Gkiokas [8] studies both the problem of continuous tempo estimation and
tempo class estimation. The content of an audio signal is represented by a
sophisticated set of audio features. For this 8 energy bands are passed to a
set of resonators. The output is summed-up by a set of filter-bank and DCT
applied. Binary one-vs-one Support Vector Machine (SVM) classifier and SVM
regression are then used to predict the tempo classes and continuous tempo.
For the later, peak picking is used to refine the tempo estimation.

Studies on octave error correction. Chen [2] proposes a method to au-
tomatically correct octave errors. The assumption used is that the perception
of tempo is correlated to the “mood” ( “aggressive” and “frantic” mood usu-
ally relates to “fast” tempo while “romantic” and “sentimental” mood relates
to “slow” tempi). A system is first used to estimate automatically the mood
of a given track. Four tempo categories are considered: “very slow”, “somewhat
slow” | “somewhat fast” and “very fast”. A SVM is then used to train four models
corresponding to the tempi using the 101-moods feature vector as observation.
Given the estimation of the tempo category, a set of rules is proposed to correct
the estimation of tempo provided by an algorithm.

Xiao [21] proposes a system to correct the octave errors of the tempo
estimation provided by a dedicated algorithm. The idea is that the timbre
of a track is correlated to its tempo. To represent the timbre of an audio
track, he uses the MFCCs. An 8-component GMM is then used to model the
joint MFCC and annotated tempo t, distribution. For an unknown track, a
first tempo estimation 7, is made and its MFCCs extracted. The likelihoods
corresponding to the union of the MFCCs and either Ty, T, /3, T, /2 .. .is evalu-
ated given the trained GMM. The largest likelihood gives the tempo of the track.

Studies that uses real annotated perceptual tempo. As opposed to pre-
vious studies, only the following work with real annotated perceptual tempo
data.

McKinney [13] proposes to model the perceptual tempi assigned by the vari-
ous users to a track by a histogram (instead of the single value used in previous
studies). This histogram is derived from user tappings along 24 10-sec music
excerpts. He then studies the automatic estimation of these histograms using 3
methods : resonator filter-bank, autocorrelation and IOI Histogram. All three



methods performs reasonably well on 24 tracks of 8 different genres. The meth-
ods usually find the first and the second largest peaks correctly, while having a
lot of unwanted peaks.

Peeters et al. [17] studies the estimation of perceptual tempo using real an-
notated perceptual tempo data derived from the Last-FM 2011 experiment [12].
From these data, he only selects the subset of tracks for which tempo perception
is shared among users (fq,, = tq,). He then proposes four feature sets to de-
scribe the audio content and proposes the use of GMM-Regression [4] to model
the relationship between the audio features and the perceptual tempo.

1.3 Paper organization

The goal of this paper is to study the prediction of the agreement or disagreement
among users on tempo perception using only the audio content. We try to predict
this agreement/ disagreement using the function g(a) (see Part 1.1 and Figure 1).

For this, we first represent the content of an audio file by a set of cues that we
assume are related to the perception of tempo: variation of energy, short-term-
similarity, spectral balance variation and harmonic variation. We successfully
validated these four functions in [17] for the estimation of perceptual tempo (in
the case tq . = tqu ). We briefly summarize these functions in part 2.1.

In part 2.2, we then propose various prediction models g(a) to model the
relationship between the audio content and the agreement or disagreement on
tempo perception. The corresponding systems are summed up in Figure 2.

In part 3, we evaluate the performance of the various prediction models in a
usual classification task into tempo Agreement and tempo Disagreement using
the Last-FM 2011 test-set.

Finally, in part 4, we conclude on the results and present our future works.

2 Prediction model g(a) for the prediction of tempo
agreement and disagreement

2.1 Audio features

We briefly summarize here the four audio feature sets used to represent the audio
content. We refer the reader to [17] for more details.

Energy variation deper(A). The aim of this function is to highlight the pres-
ence of onsets in the signal by using the variation of the energy content inside
several frequency bands. This function is usually denoted by “spectral flux” [11].
In [15] we proposed to compute it using the reassigned spectrogram [5]. The later
allows obtaining a better separation between adjacent frequency bands and a
better temporal localization. In the following we consider as observation, the
autocorrelation of this function denoted by dener(A) where A denotes “lags” in
second.



Short-term event repetition dgi.,,(A). We make the assumption that the
perception of tempo is related to the rate of the short-term repetitions of events
(such as the repetition of events with same pitch or same timbre). In order to
highlight these repetitions, we compute a Self-Similarity-Matrix [6] (SSM) and
measure the rate of repetitions in it. In order to represent the various type of
repetitions (pitch or timbre repetitions) we use the method we proposed in [16].
We then convert the SSM into a Lag-matrix [1] and sum its contributions over
time to obtain the rate of repetitions for each lag. We denote this function by

dsim ().

Spectral balance variation dspecpai(A). For music with drums, the balance
between the energy content in high and low frequencies at a given time depends
on the presence of the instruments: low > high if a kick is present, high >
low when a snare is present. For a typical pop song in a 4/4 meter, we then
observe over time a variation of this balance at half the tempo rate. This vari-
ation can therefore be used to infer the tempo. In [18] we propose to compute
a spectral-balance function by computing the ratio between the energy con-
tent at high-frequency to the low-frequency one. We then compare the values
of the balance function over a one bar duration to the typical template of a
kick/snare/kick/snare profile. We consider as observation the autocorrelation of
this function, which we denote by dspecbar(N)-

Harmonic variation dparmo(X). Popular music is often based on a succession
of harmonically homogeneous segments named “chords”. The rate of this suc-
cession is proportional to the tempo (often one or two chords per bar). Rather
than estimating the chord succession, we estimate the rate at which segments
of stable harmonic content vary. In [17] we proposed to represent this using
Chroma variations over time. The variation is computed by convolving a Chroma
Self-Similarity-Matrix with a novelty kernel [7] whose length represent the as-
sumption of chord duration. The diagonal of the resulting convolved matrix is
then considered as the harmonic variation. We consider as observation the au-
tocorrelation of this function, which we denote by dparmo(A).

Dimension reduction. The four feature sets are denoted by d;(\) with i €
{ener, sim, specbal, harmo} and where A denotes the lags (expressed in seconds).
In order to reduce the dimensionality of those, we apply a filter-bank over the
lag-axis A of each feature set. For this, we created 20 filters logarithmically spaced
between 32 and 208bpm with a triangular shape. Each feature vector d;(X) is then
multiplied by this filter-bank leading to a 20-dim vector, denoted by d;(b) where
b € [1,20] denotes the number of the filter. To further reduce the dimensionality
and de-correlate the various dimensions, we also tested the application of the
Principal Component Analysis (PCA). We only keep the principal axes which
explain more than 10% of the overall variance.
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Fig. 2. Flowchart of the computation of the four prediction models

2.2 Prediction models

We propose here four prediction models to represent the relation-ship between
the audio feature sets (part 2.1) and the agreement and disagreement on tempo
perception. The four prediction models are summed up in Figure 2.

A. Model MM (Ener and Sim). As mentioned in part 1.2, our first model
is based on the assumption of Moelants and McKinney [14] that “if a musical
excerpt contains a metrical level whose tempo lies near the resonant tempo,
the perceived tempo across listeners is likely to be dominated by the tempo of
that metrical level and be relatively unambiguous”. In [14], a resonant tempo
interval is defined as [110 — 170] bpm. Our first prediction model hence looks if
a major peak of a periodicity function exists within this interval. For this, we
use as observations the audio feature functions in the frequency domain: d;(w)
(i.e. using the DFT instead of the auto-correlation) and without dimensionality
reduction. We then look if one of the two main peaks of each periodicity function
d;(w) lies within the interval [110 — 170] bpm. If this is the case, we predict an
agreement on tempo perception; if not, we predict a disagreement.

By experiment, we found that only the two audio features deper(w) and
dsim(w) lead to good results. We make two different models: MM (ener) or MM
(sim).

Tllustration: We illustrate this in Figure 3 where we represent the function
dener(w), the detected peaks, the two major peaks, the [110 — 170] bpm interval
(green vertical lines) and the preferential 120 bpm tempo (red dotted vertical
line). Since no major peaks exist within the resonant interval, this track will be
assigned to the disagreement class.

B. Model Feature-GMM. Our second model is our baseline model. In this,
we estimate directly the agreement and disagreement classes using the audio
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Fig. 3. Illustration of the Model MM (ener) based on Moelants and McKinney prefer-
ential tempo assumption [14].

features d;(b). In order to reduce the dimensionality we apply PCA to the four
feature sets?. Using the reduced features, we then train a Gaussian Mixture
Model (GMM) for the class agreement (A) and another for the class disagree-
ment (D). By experimentation we found that the following configuration leads
to the best results: 4-mixtures for each class with full-covariance matrices. The
classification of an unknown track is then done by maximum-a posteriori esti-
mation.

C. Model Inform-GMM (Pearson and KL). The feature sets d;(b) repre-
sent the periodicities of the audio signal using various view points i. We assume
that if two vectors d; and d;, bring the same information on the periodicity of
the audio signal, they will also do on the perception of tempo, hence favoring a
shared (Agreement) tempo perception.

In our third model, we therefore predict A and D by measuring the in-
formation shared by the four feature sets. For each track, we create a 6-dim
vector made of the information shared between each pair of feature vector d;:
C = [ce(dy,dy),c(dy,ds),c(dy,dy), c(ds,ds) .. .]. In order to measure the shared
information, we will test for ¢ the use of the Pearson correlation and the use of
the symmetrized Kullback-Leibler divergence (KL) between d; and d,.

The resulting 6-dim vectors C are used to train a GMM (same configuration
as before) for the class agreement (A) and disagreement (D). The classification
of an unknown track is then done by maximum-a posteriori estimation.

Hllustration: In Figure 4, we illustrate the correlation between the four feature
sets for a track belonging to the agreement class (left) and to the disagreement

2 As explained in part 2.1, we only keep the principal axes which explain more than
10% of the overall variance. This leads to a final vector of 34-dimensions instead of
4*20=80 dimensions.
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Fig. 4. [Left part] from top-to-bottom ener, sim, specbal and harmo functions for a
track belonging to the agreement class; [right part] same for the disagreement class.

class (right)®. As can be seen on the left (Agreement), the positions of the peaks
of the ener, sim and specbal functions are correlated to each other’s. We assume
that this correlation will favour a shared perception of tempo. On the right
part (Disagreement), the positions of the peaks are less correlated. In particular
the sim function has a one-fourth periodicity compared to the ener function, the
specbal a half periodicity. We assume that this will handicap a shared perception

of tempo.

D. Model Tempo-GMM and Model-Tempo-SVM. Our last prediction
model is also based on measuring the agreement between the various view points
i. But instead of predicting this agreement directly from the audio features (as
above), we measure the agreement between the tempo estimation obtained using

the audio features independently.

For this, we first create a tempo estimation algorithm for each feature sets:
T; = f(di()\)). Each of these tempo estimation is made using our previous GMM-
Regression methods as described in [17]. Each track a is then represented by a
4-dim feature vector where each dimension represent the prediction of tempo
using a specific feature set: [Tener; Tsims Lspecbals Lharmo)-

The resulting 4-dim vectors are used to train the final statistical model. For

this, we compare two approaches:

3 It should be noted that for easiness of understanding we represent in Figure 4 the
features d;(\) while the C' is computed on d;(b).



— training a GMM (same configuration as before) for the class agreement (.A)
and disagreement (D); then use maximum-a posteriori estimation,

— training a binary Support Vector Machine (SVM) (we used a RBF kernel
with v = 0.001 and C = 1.59) to discriminate between the classes agreement
(A) and disagreement (D).

3 Experiment

We evaluate here the four models presented in part 2.2 to predict automati-
cally the agreement or disagreement on tempo perception using only the audio
content.

3.1 Test-Set

In the experiment performed at Last-FM in 2011 [12], users were asked to listen
to audio extracts, qualify them into 3 perceptual tempo classes and quantify
their tempo (in bpm). We denote by ¢, , the quantified tempo provided by user
u for track a. Although not explicit in the paper [12], we consider here that the
audio extracts have constant tempo over time and that the annotations have
been made accordingly. The raw results of this experiment are kindly provided
by Last-FM. The global test-set of the experiment is made up of 4006 items but
not all items were annotated by all annotators. Considering the fact that these
annotations have been obtained using a crowd-sourcing approach, and therefore
that some of these annotations may be unreliable, we only consider the subset
of items a for which at least 10 different annotations u are available. This leads
to a subset of 249 items.

For copyright reason, the Last-FM test-set is distributed without the audio
tracks. For each item, we used the 7-Digital API in order to access a 30s audio
extract from which audio features has been extracted. This has been done query-
ing the API using the provided artist, album and title names.We have listened
to all audio extracts to confirm the assumption that their tempi are constant
over time.

Assigning a track to the Agreement or Disagreement class: We assign each audio
track a to one of the two classes agreement (A) or disagreement (D) based on
the spread of the tempo annotations ¢, ,, for this track. This spread is computed
using the Inter-Quartile-Range (IQR)* of the annotations expressed in log-scale’:
IQR, (logy(ta,w)). The assignment of a track a to one the two classes is based
on the comparison of IQR, to a threshold 7. If IQR, < 7, agreement is assigned
to track a, if IQR, > 7, disagreement is assigned. By experimentation we found

4 The IQR is a measure of statistical dispersion, being equal to the difference between
the upper and lower quartiles. It is considered more robust to the presence of outliers
than the standard deviation.

5 The log-scale is used to take into account the logarithmic character of tempo. In
log-scale, the intervals [80 — 85] bpm and [160 — 170] bpm are equivalent.
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7 = 0.2 to be a reliable value. This process leads to a balanced distribution of
the test-set over classes: #(A)=134, #(D)=115.

Lllustration: In Figure 5 we represent the histogram of the tempi ¢, , anno-
tated for each track a and the corresponding IQR, derived from those.

3.2 Experimental protocol

Each experiment has been done using a five-fold cross-validation, i.e. models are
trained using 4 folds and evaluated using the remaining one. Each fold is tested
in turn. Results are presented as mean value over the five-folds. When GMM
is used, in order to reduce the sensitivity on the initialization of the GMM-EM
algorithm, we tested 1000 random initializations.



In the following, we present the results of the two-classes categorization prob-
lem (A and D) in terms of class-Recall® (i.e. the Recall of each class) and in terms
of mean-Recall, i.e. mean of the class-Recalls”.

3.3 Results

The results are presented in Table 1. For comparison, a random classifier for
a two-class problem would lead to a Recall of 50%. As can be seen, only the
models MM (Sim), Inform-GMM (KL), Tempo-GMM and Tempo-SVM lead to
results above a random classifier.

The best results are obtained with the Tempo-GMM and Tempo-SVM mod-
els (predicting the agreement/disagreement using four individual tempo predic-
tions). Their performances largely exceed the other models.

In terms of Mean Recall, the Tempo-SVM outperforms the Tempo-GMM
classifier (74.9% instead of 70.1%). However this is done at the expense of the
distribution between the agreement and disagreement Recalls: while the Tempo-
GMM has close Recalls for the two classes (73.7% and 66.5%), the Tempo-SVM
model clearly recognizes more easily the class A (87.3%) than the class D (44.3%,
i.e. less than a random classifier). This unbalancing of Recall makes us prefer
the Tempo-GMM model over the Tempo-SVM model.

Table 1. Results of classification into agreement and disagreement using five-fold cross-
validation for the various prediction models presented in part 2.2.

[Model [Recall(A)[Recall(D)[[Mean Recall]
MM (Ener) 62.60 % | 42.61 % || 52.65%
MM (Sim) 56.71 % | 58.26 % || 57.49%
[Feature-GMM [5521% [ 4522 % [ 50.22% |
Inform-GMM (Pearson)|| 51.51 % | 49.57 % 50.54%
Inform-GMM (KL) 61.17 % | 50.43 % 55.80%
Tempo-GMM 73.73% | 66.52% 70.10%
Tempo-SVM 87.35% | 44.35% || 74.85%

3.4 Discussions on the model Tempo-GMM

The Tempo-GMM model relies on the agreement between the four individual
tempo estimations Tener, Tsim, Tspecbals Tharmo- In Figure 6 we represent the re-
lationship between these four estimated tempi for data belonging to the classes

6 _ True Positive
Recall = True Positive + False Negative
7 As opposed to Precision, the Recall is not sensitive on class distribution hence the

mean-over-class-Recall is preferred over the F-Measure.
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Fig. 6. Each panel represents the relationship between the estimated tempo for (a)
t1 = ener/t2 = lsim, (b) ty = ener/tB = Tepecbah (C) ty = sim/tB = Tepecbal-
Red plus signs represent data belonging to the agreement class, blue crosses to the
disagreement class.

agreement (red plus sign) and disagreement (blue crosses)®. As can be seen, the
estimated tempi for the class agreement are more correlated (closer to the main
diagonal) than the ones for the class disagreement (distribution mainly outside
the main diagonal). This validates our assumption that the sharing of the per-
ception of tempo may be related to the agreement between the various acoustical
cues.

We now investigate the usefulness of each of the four tempi estimation
Tener Tsim, Tspecbals Tharmo for our agreement/ disagreement estimation. As a re-
minder, T; is the tempo estimation obtained with d;(\) using GMM-Regression:
T; = f(d;()\)). The question is twofold: are the values we expect to have for T;

8 It should be noted that we didn’t plot the relationship between Tharmo and the
other estimated tempi because the effect we wanted to show was less clear. We will
investigate why in the next paragraph.



the correct ones 7 Is T; useful ? In order to test the first, we only consider the
subset of tracks for which people agree on the tempo (the 134 items belonging
to the class A). In this case, T; = f(d;(A)) should be equal to the shared percep-
tual tempo t. Table 2 indicates the tempo accuracy at 4% obtained with each
d;(N\). The best results are obtained with the Energy variation £(78.3%), followed
by the Short-term event repetition (55.0%) and the Spectral balance variation
(47.0%). The Harmonic variation is strongly inaccurate (only 20.5%). A similar
observation has been made by [17]. Because its estimation is strongly inaccu-
rate, it is likely that Tharmo is actually not useful for the prediction of tempo
agreement/ disagreement. Actually, using only Tener, Tsim, Lspecbal @8 Input to
our Tempo-GMM model allows increasing the classification into agreement (.A)
and disagreement (D) by 1% (71.2% without using Thqrme compared to 70.1%
when using it).

lAudio Feature [Correct tempo estimation
Tener = f(dener(N)) 78.3%
Toim = f(dsim(N)) 55.0%
Tspecval = f(dspecbai(N)) 47.0%
Tharmo = f(dnarmo(N)) 20.5%

Table 2. Correct tempo estimation (in %) of the 134 tracks of the class agreement by
a GMM-Regression algorithm, using d;(A) as input (i € [ener, sim, specbal, harmo)).

3.5 Discussion on Moelants and McKinney preferential tempo
assumption.

The model MM is derived from Moelants and McKinney experiment assuming a
preferential tempo around 120 bpm. Considering the bad results obtained in our
experiment with this model, we would like to check if their preferential tempo
assumption holds for our test-set. For this, we compute the histogram of all
annotated tempi for the tracks of our test-set. This histogram is represented in
Figure 7 (blue vertical bars). We compare it to the one obtained in experiments
1 and 2 of Moelants and McKinney [14] (represented by the green dotted curve).
Their distribution is uni-modal with a peak centered on 120 bpm while our distri-
bution is bi-modal with two predominant peaks around 87 and 175 bpm. Since
these distributions largely differ, Moelants and McKinney preferential tempo
assumption does not hold for our test-set.

We then tried to adapt their assumption to our test-set. We did this by
adapting their resonance model. In [20], they propose to model the tempo an-
notations distribution by a resonance curve: R(f)

_ 1 _ 1
VBB o1
where f is the frequency, fo the resonant frequency and § a damping constant.
The resonant model that best fits our distribution has a frequency of 80 bpm
(instead of 120 bpm in [14]). It is represented in Figure 7 by the red curve.
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Fig. 7. Histogram of tempi annotation for the tracks of the Last-FM test-set. We su-
perimposed to it the resonant model as proposed by Moelants and McKinney [14] with
a frequency of 80 bpm (red line) and with a frequency of 120 bpm (green dotted line).
The 80 bpm model has been fitted from our test-set. The 120 bpm model corresponds
to the McKinney and Moelants experiment.

We then re-did our experiment changing the preferential tempo interval in
our prediction model to [60 — 100] bpm (instead of [110 — 170] bpm in [14]).
Unfortunatelly it didn’t change our results in a positive way: mean-Recall(MM-
Ener)=>50.39%, mean-Recall(MM-Sim)=42.49%.

Note that, the difference of resonant frequency may be due to the different
test-sets, experimental protocols and users®. Note also that the bad results we
obtained with Moelants and McKinney model may also be due to our audio
features that are not suitable for this kind of modeling. These acoustical cues are
more adapted to a tempo-estimation task since they have a lot of peaks (at the
fundamental tempo and at its integer multiples). It makes the tempo estimation
more robust but hampers the selection of the two pre-dominant peaks..

9 Firstly the test-set for our experiment and the one of [14] largely differ in their genre
distribution. In [14], the tracks are equally distributed between classical, country,
dance, hip-hop, jazz, latin, reggae, rock/pop and soul. In our test-set, most of the
tracks are pop/rock tracks (50%), soul and country (about 10% each). The other
genres represent less than 5% each. The experimental protocols also largely differ.
Our test-set comes from a web experiment, done without any strict control on the
users, whereas McKinney and Moelants had a rigorous protocol (lab experiment,
chosen people). Users have then very different profiles. In McKinney and Moelants
experiment, the 33 subjects had an average of 7 years of musical education. In our
case, we reckon that almost nobody had a musical training.



4 Conclusion

In this paper, we studied the prediction of agreement and disagreement on tempo
perception using only the audio content. For this we proposed four audio fea-
ture sets representing the variation of energy, harmony, spectral-balance and the
short-term-similarity-rate. We considered the prediction of agreement and dis-
agreement as a two classes problem. We then proposed four statistical models
to represent the relationship between the audio features and the two classes.

The first model is based on Moelants and McKinney [14] assumption that
agreement is partly due to the presence of a main periodicity peak close to
the user preferential tempo of 120 bpm. With our test-set (derived from the
Last-FM 2011 test-set) we didn’t find such a preferential tempo but rather two
preferential tempi around 87 and 175 bpm. The prediction model we created
using [14] assumption reached a just-above-random mean-Recall of 57% (using
the sim function).

The second model predict the two classes directly from the audio features
using GMMs. It performed the same as a random two-class classifier.

The third and fourth model use the agreement of the various acoustical cues
provided by the audio features to predict tempo agreement or tempo disagree-
ment. The third model uses information redundancy between the audio feature
sets (using either Pearson correlation or symmetrized Kullback-Leibler diver-
gence) and models those using GMM. It reached a just-above-random mean-
Recall of 55% (with the symmetrized Kullback-Leibler divergence).

The fourth model uses the four feature sets independently to predict four
independent tempi. GMMs (then SVM) are then used to model those four
tempi. The corresponding model leads to a 70% mean-Recall (and 74% for the
SVM). Although SVM classifier has better overall results, the class-result are
far from being equally-distributed (87% for the agreement class against 44%
for the disagreement one). This made us prefer the GMM classifier (which has
well-distributed results by class). Detailed results showed that for the class agree-
ment, the four estimated tempi are more correlated to each other’s than for the
class disagreement. This somehow validates our assumption that the sharing of
tempo perception (agreement) is facilitated by the coherence of the acoustical
cues.

In a post-analysis, we found out that our harmonic variation feature, be-
cause of its inaccuracy, was not beneficial for predicting tempo agreement and
disagreement. Further works will therefore concentrate on improving this feature.
Future works will also concentrate on studying the whole model, i.e. introducing
the user variable w in the tempo estimation f(a,u) = T,,. However, this will
require accessing data annotated by the same users u for the same tracks a.
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