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Introduction

This paper is organized as follows, we restart in the first section of preliminary results by some notions for define the field of Omicran-reals [START_REF] Saghe | The field of Omicran-reals A new approach to nonstandard analysis[END_REF], in the next section we define the exact limit, and we show that the limit of a sequence (u n ) is an approximation of the exact limit of (u n ), this important result leads to define the projection of an Omicran-real x onto R, and we can verify that the limit of (u n ) is the projection of the exact limit of (u n ) onto the set of the real numbers. In the section 3, we present the exact derivate with its applications. In the fifth section, we give the relations which calculates the logarithm, and we verify that ln(x) ≈ x δ -1 δ , which implies that ln(x) = lim α→0

x α -1 α , from the above example, we deduce the possibility to obtain an exact equality by using an approximate relationship. In the sixth section we give a simple method for calculating the length of an arc AB of a curve C f .

Preliminary results

Definition 1 Let u be a map from ]0, 1] to R, such that :

• There exists a map u is defined on D ′ (0, 1), and holomorphic in a neighborhood of 0.

• There exists ε > 0, such that ∀x ∈]0, ε[ we have a : u(x) = u(x).

The map u is called a metalic map, and u is a metalic extension of u.

Notations :

We note :

• ∆ 1 = { u, u is a metalic map }. • A 2 = { 1 u , u ∈ ∆ 1 ∀x ∈]0, 1] u(x) = 0 and lim u( 1 n ) = 0 }. • ∆ 2 = {v / v :]0, 1] -→ R , there exists 1/u ∈ A 2 and ε > 0 such that v /]0,ε] = ( 1 u ) /]0,ε] }. • ∆ = ∆ 1 ∪ ∆ 2 , (∆, +, .
) is a unitary ring.

• Let I 0 the set of maps defined in ]0, 1] and zero on ]0, ε] ( for 0 < ε ≤ 1 ). The set I 0 is a maximal ideal of ∆, then ∆/I 0 is a field.

• We define ∆( 1 n ) = { h( 1 n ) n≥1 , h ∈ ∆ }.
• Let ∼ the equivalence relation on ∆( 1 n ) defined by :

g( 1 n ) n≥1 ∼ h( 1 n ) n≥1 ⇔ ∃n 0 / ∀n ≥ n 0 , h( 1 n ) = g( 1 n
).

• The equivalence class of (f

( 1 n )) n≥1 modulo ∼ is noted (f ( 1 n )) n≥1 . • Let ∆( 1 n ) the set of the equivalence classes (f ( 1 n )) n≥1 .
• Let ∆ 0 = ∆/I 0 , and g the equivalence class of g.

If it has not ambiguity, we replace g by g.

• The field of Omicran-reals is defined as follows [START_REF] Saghe | The field of Omicran-reals A new approach to nonstandard analysis[END_REF] :

O = ∆ 0 (δ) = { g(δ), g ∈ ∆ 0 },
where δ is an indeterminate.

Remark 1

• We define on O the following total order :

g(δ) ≤ h(δ) ⇔ g( 1 n ) ≤ h( 1 n ) f rom a certain rank n 0 .
• The field of Omicran-reals is an extension of R, in addition, the total order relation defined on O extends the usual order relation ≤.

• The number δ is infinitesimal [START_REF] Saghe | The field of Omicran-reals A new approach to nonstandard analysis[END_REF].

The exact limit

Proposition 1 The map ϕ defined as :

ϕ : (∆( 1 n ), +, .) -→ (O, +, .) (g( 1 n )) n≥1 -→ g(δ) is isomorphism.
If we want to define a new concept more precise than the limit that allows to give the value taken by the sequence (f ( 1 n )) n≥1 on ad infinitum, then this concept (called exact limit) is dependent on the values taken by (f ( 1 n )) n≥1 from a certain rank n 0 . Intuitively, the equivalence class (f ( 1 n )) n≥1 is a only concept can give these values independently n 0 . On other hand, if f is an element of ∆, then we can identify the equivalence class (f ( 1 n )) n≥1 by f (δ) from the above proposition, so, we deduce that we can define the new concept as follow :

Definition 2 Let f ∈ ∆. The Omicran-real ϕ(f ( 1 n ) n≥1 ) = f (δ) is called the exact limit of the sequence (f ( 1 n )) n≥1 . We note : lim exact f ( 1 n ) = f (δ).
Remark 2 We remark that lim exact = ϕ • s, where s is a canonical surjection defined as :

s : (∆( 1 n ), +, .) -→ (∆( 1 n ), +, .) (f ( 1 n )) n≥1 -→ (f ( 1 n )) n≥1 . Example 1 • lim exact 1 n = δ. • lim exact sin( 1 n ) = sin(δ).
• lim

exact 1 n + 1 = δ δ + 1 .
• lim exact sin(2πn) = 0, the writing sin( 2π δ ) doesn't make sense, because the function z -→ sin( 2π z ) is not element of ∆.

• We can verify that there does not exist an element f ∈ ∆, such that f ( 1 n ) = (-1) n from a certain rank, then we can't define the exact limit lim exact (-1) n . Definition 3 (The projection) Let f a metalic function, and

x ∈ O such that x = f (δ). If we find an element x * ∈ R such that | x -x * | ≤ | x -y |, ∀y ∈ R, then the real x * is called the projection of x onto R. Remark 3 The distance from x to R is d R (x) = inf y∈R | x -y |=| x -x * |.

Example 2

• δ * = 0.

• ( 1 δ 2 + 1 ) * = 1.
Theorem 1 Let f a metalic function, and

x ∈ O / x = f (δ).
The projection x * of x onto R exist and unique, in addition :

x * = lim n→+∞ f ( 1 n ).
Proof.

Let x 0 = lim f ( 1 n ). Then : ∀ε > 0 ∃n ≥ n 0 , | f ( 1 n ) -x 0 |≤ ε. ⇔ for every n ≥ n 0 , we have : -ε ≤ f ( 1 n ) -x 0 ≤ ε. ⇔ lim exact f ( 1 n ) -x 0 ≤ ε and -ε ≤ lim exact f ( 1 n ) -x 0 . ⇔ f (δ) -x 0 ≤ ε and -ε ≤ f (δ) -x 0 . ⇔ | f (δ) -x 0 |≤ ε (1) Next, we can show that : ∀y ∈ R on a : | f (δ) -x 0 | ≤ | f (δ) -y |. If ∃y ∈ R and | f (δ) -y | ≤ | f (δ) -x 0 |≤ ε ( ∀ε ∈ R + ) Then, we deduce that | y -x 0 | ≤ 2ε ( ∀ε ∈ R + ) Then y = x 0 = x * .
Finally, we deduce the existence and the unicity of x * ∈ R such that :

∀y ∈ R , | f (δ) -x * | ≤ | f (δ) -y | .
In addition x * = lim f ( 1 n ). Theorem 2 Let f the metalic map, and x = f (δ). Then : ∀ε > 0 real, we have :

| x -x * |≤ ε
x * is a unique element of R which verify this property.

Proof.

For every n ≥ n 0 we have :

| f ( 1 n ) -x * | ≤ ε, then ∀n ≥ n 0 : x * -ε ≤ f ( 1 n ) ≤ x * + ε, which implies : x * -ε ≤ f (δ) ≤ x * + ε.
We deduce that :

| x -x * |≤ ε.
To show the unicity of x * , we assume there exists an other element y ∈ R such that : | x -y |≤ ε.

Then : | x * -y |≤ 2ε, finally we get y = x * .

Theorem 3 (of the exact limit)

If f ∈ ∆ 1 , then the real lim f ( 1 n ) is the projection of lim exact f ( 1 n
) onto R, so we get :

( lim exact f ( 1 n )) * = lim f ( 1 n ).

The exact derivative

Definition 4 f be a function that is differentiable at the point x 0 ∈ R.

If the function h -→ f (x0+h)-f (x0)
h is metalic, then the exact limit of (

f (x0+ 1 n )-f (x0) 1 n 
) exist. We note :

f (x 0 ) = lim exact f (x 0 + 1 n ) -f (x 0 ) 1 n = f (x 0 + δ) -f (x 0 ) δ
The Omicran-real f (x 0 ) is called the exact derivative of the function f at a point x 0 .

Example 3 Consider the following function defined as:

f : x -→ x 2 .
The exact derivative of f is defined by : f (x 0 ) = 2x 0 + δ.

Theorem 4 Let f be a function that is differentiable at the point x 0 ∈ R.

If the function h -→ f (x0+h)-f (x0)
h is metalic, then :

( f (x 0 )) * = f ′ (x 0 )
Proof.

We can apply the theorem of the exact limit.

Example 4 For f : x -→ x 2 , the exact derivative at x 0 is f (x 0 ) = 2x 0 + δ, and the derivative at x 0 is f ′ (x 0 ) = 2x 0 . We verify easily that :

(2x 0 + δ) * = 2x 0 .
Lemma 1 Let f be a metalic function such that for every integer k ∈ N, the function t -→ f (x 0 + kt) is metalic, then :

f (x 0 + N δ) = f (x 0 ) + δ( f (x 0 ) + f (x 0 + δ) + f (x 0 + 2δ) + ... + f (x 0 + (N -1)δ).
Proof.

From the definition of f , we get : Summing these equalities, and we find the desired result .

f (x 0 + δ) = f (x 0 ) + δ f (x 0 ) f (x 0 + 2δ) = f (x 0 + δ) + δ f (x 0 +
Application 1 (Calculate the sum of Σk n )

• For n = 1, if f (x) = x 2 , then f (x) = 2x + δ.
From the above proposition in the case of x 0 = 0, we find :

N 2 δ 2 = (δ( f (0) + f (δ) + f (2δ) + ... + f ((N -1)δ)).
Which implies that :

N 2 δ 2 = δ.( N -1 k=0 2kδ + δ). Then : N 2 = N -1 k=0 (2k + 1) = 2 N -1 k=0 k + N ⇒ N 2 -N 2 = N -1 k=0 k.
• In the case of n = 2, we choose f (x) = x 3 , then f (x) = 3x 2 + 3xδ + δ 2 , by using the above proposition for x 0 = 0, we find :

N 3 δ 3 = δ.( f (0) + f (δ) + f (2δ) + .... + f ((N -1)δ)) = δ. N -1 k=0 (3k 2 δ 2 + 3kδ.δ + δ 2 ) = δ 3 .( N -1 k=0 3k 2 + 3k + 1).
Then :

N 3 = 3 N -1 k=0 k 2 + 3 N -1 k=0 k + N .
We deduce :

N -1 k=0 k 2 = N 3 -N -3 N -1 k=0 k 3 .
Finally, we get :

N -1 k=0 k 2 = N (N -1)(2N -1)

6

. Similarly, we can calculate N -1 k=0 k 3 , N -1 k=0 k 4 , .....

(

The Riemann sum) Let f , g be two metalic functions, such that :

f (δ) = g(δ), then f ( 1 n ) = g( 1 n
) from a certain rank. Consider the function defined as follows :

f n (x) = f (x + 1 n ) -f (x) 1 n .
From the above lemma, we deduce that there exists a natural number n 0 such that ∀n ≥ n 0 , we have :

f (x 0 + N n ) = f (x 0 ) + 1 n (f n (x 0 ) + f n (x 0 + 1 n ) + f n (x 0 + 2 n ) + ... + f n (x 0 + (N -1) n ). If f is differentiable on R, then f n (a + k n ) = f ′ (a + k n ) + o( 1 n ). Then f (a + N n ) = f (a) + 1 n . N -1 k=0 f n (a + k n ) = f (a) + 1 n . N -1 k=0 (f ′ (a + k n ) + o( 1 n )).
We assume that b > a, we can choose N = E[(b -a)n], then we get :

f (a + N n ) -f (a) = 1 n . N -1 k=0 f ′ (a + k n ) + 1 n N -1 k=0 o( 1 n ) = 1 n . N -1 k=0 f ′ (a + k n ) + N n o( 1 n ). Since N = E[(b -a)n], then b -a -1 n < N n ≤ b -a. We deduce lim f (a + N n ) = f (b)
, we pass to the limit and we find :

f (b) -f (a) = lim 1 n . E[(b-a)n]-1 k=0 f ′ (a + k n ).
For b = 1, and a = 0, we get :

f (1) -f (0) = 1 0 f ′ (t)dt = lim 1 n n-1 k=0 f ′ ( k n ).

The logarithmic function

We know that : ∀x ∈ R, lim

n→+∞ (1 + x n ) n = e x .
Let x be a real number, the function f : z -→ (1 + xz)

1 z = e 1 z ln(1+zx) is a holomorphic function on D(0, ε) -{0}. In addition, ln(1 + zx) = zx -z 2 x 2 2 + o(z 2 x 2 ) ( for | z |<< 1)
, we deduce that : lim z→0 ln(1+zx) z = x, and lim z→0 f (z) = e x , then the function f can be extended to a holomorphic function on a neighborhood of 0, which implies that lim exact

(1 + x n ) n
exist and we have :

lim exact (1 + x n ) n = (1 + xδ) 1 δ , and ((1 + xδ) 1 δ ) * = e x .
From the above results we deduce that e x is an infinitesimal approximate value of (1 + δx) 

: ξ -1 (x) = x δ -1 δ (if it exists !!!).
We can justify the existence of this function, for that, we consider the real number x ∈ R * + . The map defined as g : z -→ x z -1 z = e z ln(x) -1 z is a holomorphic function on D(0, ε) -{0}, and lim z→0 g(z) = ln(x), then 0 is an artificial singularity of g, we deduce that there exists the exact limit of the sequence (n(x x δ -1 δ . We define the the original logarithm by :

ln o : x -→ x δ -1 δ .
The function ξ is called the function of the the original exponential, we note :

ξ(x) = exp o (x) = (1 + δx) 1 δ ,
and we deduce that :

(ln (x)) * = ln(x). Then : ln(x) = lim α→0

x α -1 α .

• Application 1. From the above results, we can show the following equality :

ln(x) = lim α→0 x α -x -α 2α . Remark 4 ln(x) ln(y) = lim α→0 x α -1 y α -1 = lim α→0 x α -x -α y α -y -α .
• Application 2. By using the above results we can show the following theorem.

Theorem 5 For every 0 < x and x = 1, we have :

x -1 ln(x) = lim n→+∞ 1 n n-1 k=0 x k n .
Proof. We have :

(x 1 n -1)( n-1 k=0 x k n ) = x -1.
Then :

n(x 1 n -1)( 1 n n-1 k=0 x k n ) = x -1.
Since lim α→0

x α -1 α = lim n(x 1 n -1) = ln(x), then :

x -1 ln(x) = lim • Application 3. Consider P the set of the prime numbers. We define the prime-counting function at real values of x by : π(x) = #{p ≤ x : p ∈ P}.

Theorem 6 (Hadamard and de la Vallée Poussin). As x → +∞, π(x) ∼ x ln(x) .

. By using the above theorem, and the formula ln(x) ≈ x δ -1 δ , we can show the following theorem :

Theorem 7 As x → +∞, π(x) ∼ 1 x 1 x -1 . .
Proof. We approach ln(x) by x δ -1 δ , and δ by 1

x , and we deduce that an approximate value of x ln(x) is 1

x 1 x -1
.

Next, we can verify that x ln(x) ∼ 1

x 1 x -1
, in fact : As x → +∞, we have : 

  δ) ............................................................. .................................................................. ........................................................................ f (x 0 + N δ) = f (x 0 + (N -1)δ) + δ f (x 0 + (N -1)δ).

1 δ

 1 the function ξ(x) = (1 + δx) , if this function x -→ ξ(x) has an inverse function, then the calcul gives us the function ξ -1 which is defined as

1 n - 1 )

 11 ) n≥1 , and his value is equal to lim exact

= 1 , then : 1 x 1 x - 1 ∼ 1 x - 1 .

 11111 x ln(x) . Finally, we obtain :π(x) ∼1x

Application 4. Let (p n ) the sequence of a prime numbers, we have : Theorem 8

p n ∼ n ln(n), while n → +∞ By using the above theorem and the approximations ln(n) ≈ n δ -1 δ and δ ≃ 1 n , we get the following theorem :

Theorem 9 p n ∼ n 2 ( n √ n -1), while n → +∞ Proof. We can verify that lim n( n √ n-1)

6 The geometry of the points Geometrically, we can represent the infinitesimal numbers as follows :

If f is a metalic function, and f (δ) is an infinitesimal number, the function f is metalic then the sequence (f ( 1 n )) keeps a constant signe from a certain rank, we can assume that the above sequence is positive from a certain rank n 0 , and we know that :

then we can represent f (δ) by the the family of segments (I n ) n≥n0 , we can justify this notation by this equality :

Definition 5 Let f and g be two metalic fonctions. We assume that the number f (δ) -g(δ) is infinitesimal and f (δ) < g(δ).

• If x A and x B are respectively the abscissa of the points A and B, we define the distance between A and B by :

The length of a curve C f

We define the length of an elementary geometric point by :

where x A = g(δ), and g is a metalic function. Let f be a function such that : x -→ f (x * A + x) is metalic, and f the metalic extension of f on a neighborhood of x * A , consider A(x A , f (x A )) and A ′ (x A + δ, f (x A + δ)) two ordered pairs of E 2 , let φ be a function defined as :

On the other hand, lim z→0 g(z) = x * A , and the map θ

z is holomorphic on D(0, ε) -{0}, and we get :

Then the lim z→0 θ(z) exist, and we have :

We deduce that lim z→0 φ(z) = 0, and φ is continuously extendable over 0, then the function φ is holomorphically extendable over 0, which justify the existence of the exact limit of the sequence (φ( 1 n )), and we have

which is infinitesimal. We define the of the segment [A, A ′ [ by :

We note :

If f is a metalic function defined on the interval [0, 1], Let A(0, f (0)) and B(1, f (1)) two points of the plane which define with f the arc AB, if the exact limit of lim

) 2 exist, we note :

We define the exact lenght of the arc AB by :

The lenght of the arc AB is the real denoted by l * ( AB) and defined by :

where

.

On other hand, since f is a metalic function, then it can be extended to a function twice differentiable at 0. We assume that the function is twice differentiable on ]0, 1[. Then :

where 1 ≤ k ≤ n -1, and

We have :

Next, we deduce that :

We can verify that β n,k > 1, and we have :

2n .

:

By using the Riemann sum, we deduce the length of the arc AB :