
HAL Id: hal-01252630
https://hal.science/hal-01252630

Preprint submitted on 8 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CONSTRUCTION OF MOLLER WAVE OPERATORS
FOR VLASOV EQUATIONS LINEARIZED AROUND

BOLTZMANNIAN STATES *
Bruno Després

To cite this version:
Bruno Després. CONSTRUCTION OF MOLLER WAVE OPERATORS FOR VLASOV EQUA-
TIONS LINEARIZED AROUND BOLTZMANNIAN STATES *. 2016. �hal-01252630�

https://hal.science/hal-01252630
https://hal.archives-ouvertes.fr


CONSTRUCTION OF MOLLER WAVE OPERATORS FOR VLASOV EQUATIONS
LINEARIZED AROUND BOLTZMANNIAN STATES∗

BRUNO DESPRÉS†

Abstract. We detail a possible construction of the Moller wave operators for linear Vlasov-Poisson and Vlasov-Ampere
equations. This is based on an explicit and detailed calculation of the eigenstructure. A simple non homogeneous case is detailed.
We finally show that, for the homogeneous case, the Morrison transform is exactly the Moller wave operator.
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1. Introduction. This work is a extension of a previous one [6] on the linearized Vlasov-Poisson or Vlasov-
Ampere equation and is dedicated to new connections between Moller wave operators (in the context of the
abstract theory of scattering [15, 19, 13, 32]) for general homogeneous or non homogeneous states and the
Morrison integral transform [24, 25]. It yields an alternative to the standard Hamiltonian framework privileged
in Morrison works. Indeed it seems that the abstract scattering theory per se has never been adapted to the
study of linearized Vlasov-Poisson equation, or more precisely, the fact that Moller wave operators give a proof
of linear Landau damping has never been explicitly formulated [27]. The associated algebra gives some tracks
in the direction of a proof of linear Landau damping [18, 27] for non homogeneous states [28, 3]. In particular
we rigorously derive an integral equation which appears to be fundamental for the definition of Moller operators
for non homogeneous Boltzmannian states.
The model problem is a Vlasov-Ampère equation in dimension 1+1{

∂tf + v∂xf − E∂vf = 0, t > 0, (x, v) ∈ I × R,
∂tE =

∫
R vfdv, t > 0, x ∈ I, (1.1)

where I = [0, 1] is a periodic domain. The system (1.1) is equivalent to the Vlasov-Poisson equation{
∂tf + v∂xf − E∂vf = 0, t > 0, (x, v) ∈ I × R,
∂xE = ρ0(x)−

∫
R fdv, t > 0, x ∈ I. (1.2)

considering that the following conditions are fulfilled at initial time ∂xE = ρ0(x)−
∫
fdv at t = 0 and ∀x ∈ I,∫

I

∫
R fdvdx =

∫
I
ρ0(x)dx, at t = 0,∫

I

∫
R fvdvdx = 0, at t = 0.

(1.3)

These conditions are propagated by the equation. The solutions of the Vlasov-Poisson-Ampère equation satisfy
the conservation of the physical energy d

dt

(∫
I

∫
R f(t, x, v)v2dvdx+

∫
I
E(t, x)2dx

)
= 0 and the boundedness of

the density 0 ≤ f(t, x, v) ≤ ‖f0‖L∞(I×R), f(0, x, v) = f0(x, v).
We will study the linear stability around general non homogeneous states

v∂xf0 − E0(x)∂vf0 = 0. (1.4)

A natural possibility to represent such states is f0(x, v) = F
(
v2

2 − ϕ(x)
)

where ϕ is the 1-periodic electric

potential such that

ϕ′(x) = −E0(x) (1.5)

and F is an arbitrary function which can be multivalued as well. For the simplicity of the expository, we will
restrict a lot by considering that the stationary state is Boltzmannian, that is F (w) = exp(−w) so that we can
write

f0(x, v) = n0(x)G(v), n0(x) = exp(ϕ(x)), G(v) = exp

(
−v

2

2

)
.
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Notice that

−ϕ′′ + α2 expϕ = ρ0 with α2 =

∫
R

exp

(
−v

2

2

)
dv =

√
2π.

This assumption could probably be partially relaxed, see [6].
Starting from the Kruzkal-Obermann-Antonov identity [17, 2], the linearized Vlasov-Ampere equations are
recast in the next section as

∂tU = iHU, i2 = −1, (1.6)

where U(t) is in a convenient Hilbert space V and one has the formal identity H∗ = H. The notation is formal
since iH is a real valued operator. Looking at the structure of the equations, one realizes moreover that

H = H0 +K

where H∗0 = H0 models the particles without interaction with the electric field and K is a compact operator
that models the interaction between the particles and the electric field. More precisely, writing all quantities
with moments against Hermite functions, the operator K is realized as an infinite matrix but with finite rank,
so the compactness. This is the framework of scattering theory. So, in this context, it is natural to embark in
the construction the Moller wave operator L such that

L∗H = H0L
∗ ⇐⇒ HL = LH0 (formally). (1.7)

Assuming invertibility of L∗, it yields a representation formula for the solution of (1.6)

U(t) = exp (iHt)U0 ⇐⇒ U(t) = L−∗ exp (iH0t)L
∗U0. (1.8)

The Moller wave operator is a fundamental object in scattering theory, we just quote seminal references [15, 19],
see also [13, 32].
In this work, we concentrate on an explicit representation for L and notice that (1.7) implies the formal identity

Vλ = LUλ

where Vλ is a (generalized) eigenvector for the full Hamiltonian, that is HVλ = λVλ, and Vλ is a (generalized)
eigenvector for the reduced or free Hamiltonian, that is H0Uλ = λUλ. It appears that Uλ and Vλ can be
constructed almost explicitly, which ultimately is a method to construct the wave operator L. In this work, we
try to make everything as discrete as possible by using a Hilbert basis conveniently defined with moment against
the Hermite functions: this construction is done with the help of the Koopman-von Neumann (KvN) method
[16, 30, 31] which yields a natural bridge between the method of characteristic for the transport equation and
the Hilbertian formulation. These ideas go back to the very early stage of quantum mechanics.
The results of this general strategy are pushed in two directions. Firstly we construct, for a simple non
homogeneous state, original series formulas and a new Lipmann-Schwinger integral equation. A necessary
structural condition shows up for the principal values to make sense. One needs that the time needed to travel
along characteristics must be monotone function. When applied to the case of study, one obtains the structural
condition which writes:
the function h is strictly concave

h(x) =
√
ϕ+ − ϕ(x), ϕ+ = max

I
ϕ(x). (1.9)

Additional technical difficulties associated to the integral equation in the general case are left for further research.
Secondly we show that, in the homogeneous case, the Moller wave operator is exactly the integral transform of
Morrisson, which can be used to obtain an elegant proof of linear Landau damping [24, 25, 6].
The plan of this work is as follows. Firstly we linearize the Vlasov equation around a general family of Boltz-
mannian stationary states. It gives the definition of iH, iH0 and iK. The KvN setting is used to construct
the generalized eigenvectors of iH0 and we prove that the completeness of the construction. The next section is
devoted to the construction of the eigenvectors Vλ. It yields an new equation of Lipmann-Schwinger type. For
homogeneous states the solution is trivial and it gives the Moller wave operator which is exactly the Morrison
transform. We indicate some open problems related to the solution of this integral equation.
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2. Vlasov equation. We provide elementary considerations on linearized Vlasov equations which justify
(1.6).

2.1. Linearization. The decomposition

f(t, x, v) = f0(x, v) + g(t, x, v) and E(t, x) = E0(x) + F (t, x)

injected in (1.3) yields, after dropping the quadratic terms, the linear system{
∂tg + v∂xg − E0(x)∂vg + Fvn0(x)G(v) = 0, t > 0, (x, v) ∈ I × R,
∂tF =

∫
R vgdv, t > 0, x ∈ I. (2.1)

The Gauss relation reads ∂xF = −
∫
R gdv. This equation is endowed with an important weighted L2 conservation

property

d

dt

(∫
I

∫
R

g2

n0G
dvdx+

∫
I

E2dx

)
= 0 (2.2)

which can be traced back to the early works of Kruzkal-Obermann and Antonov. Let us define

M(x, v) =
√
n0(x)G(v) = exp

(
−v

2

4
+
ϕ(x)

2

)
. (2.3)

and the function u = g
M . Using that (v∂x − E0∂v)M = 0, one gets the linear system{

∂tu+ v∂xu− E0∂vu = −vMF, t > 0, (x, v) ∈ I × R,
∂tF =

∫
R uvMdv, t > 0, x ∈ I, (2.4)

with the energy identity

d

dt

(∫
I

∫
R
u2dvdx+

∫
I

F 2dx

)
= 0. (2.5)

The Gauss law

∂xF = −
∫
R
uMdv (2.6)

is propagated by the equations. The system (2.4) shows that one can recast the linear Vlasov-Ampere equation
(2.4) as ∂tU(t) = iHU(t) where the unknown is

U =

(
u
F

)
∈ V = L2(I × R)× L2(I)

and the operator writes

iH =

(
−v∂x + E0∂v −vM∫

R ·vMdv 0

)
.

Since this operator is (formally) anti-hermitian, it shows that H is (formally) hermitian. The space V is endowed
with the natural real scalar product

(U1, U2) =

∫
I

∫
R
u1u2dxdv +

∫
I

F1F2dx, U1 =

(
u1
F1

)
, U2 =

(
u2
F2

)
∈ V.

The quadratic norm is

‖U‖ =

(∫
I

∫
R
u2dxdv +

∫
I

F 2dx

) 1
2

.
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2.2. Reduction. We show that a reduction method is possible which allows to work in the reduced space
L2(I × R) instead of V = L2(I × R) × L2(I). This is perhaps more a curiosity but we indicate it since the
algebra is interesting.
The idea is to find a weight γ(x) and a new function

w = u+ γ(x)M(x, v)F (2.7)

such that ∫
I

∫
R
w2dvdx =

∫
I

∫
R
u2dvdx+

∫
I

F 2. (2.8)

The electric potential ϕ in the next formula is the periodic function defined in (1.5).
Proposition 1. Assume the 1-periodic function γ is solution to the equation

∂xγ + α2γ2 expϕ = 1.

Then the identity (2.8) holds.

Proof. By definition (2.3), one has that M2 = exp
(
−v

2

2 + ϕ(x)
)

. So
∫
RM

2(x, v)dv = α2 exp(ϕ(x)). Therefore∫
I

∫
R
w2dvdx =

∫
I

∫
R
u2dvdx+ 2

∫
γF

∫
uMdvdx+ α2

∫
γ2F 2 expϕdx

=

∫
I

∫
R
u2dvdx+ 2

∫
γF (−∂xF )dx+ α2

∫
γ2F 2 expϕdx

=

∫
I

∫
R
u2dvdx+

∫
∂xγF

2dx+ α2

∫
γ2F 2 expϕdx

from which the result proceeds.
Set g = 1

γ which a formal solution of the Ricati equation

g′(x) + g(x)2 = α2 exp (ϕ(x)) .

Proposition 2. There exists one unique 1-periodic solution g = 1
γ of the Ricati equation. It is a positive

function.
Proof. The proof of the existence is by a shooting method. We consider the solution given by the Cauchy-Lipshitz
theorem of the equation in the interval (0, 1){

g′a(x) = α2 exp (ϕ(x))− ga(x)2, 0 < x ≤ 1,
ga(0) = a

and define the function H(a) = ga(1).
Define K = αmaxx∈I exp (ϕ(x)/2) + 1. We claim that the trajectories are well defined for a ∈ [0,K] and that
g(x) ∈ [0,K] for all x: this is actually trivial since if g(x) = 0 then g′(x) > 0, and if g(x) = K then g′(x) < 0.
Therefore H[0,K] ⊂ [0,K]. Since H is a continuous function, there exists b ∈ [0,K] such that H(b) = b.
Therefore the trajectory such that g(0) = b is periodic. Of course b cannot be equal to zero, nor to K. So this
trajectory is globally positive.
Assume there exists another solution g̃ (without any sign condition). Note z = g − g̃. As usual for Ricati
equations, one gets a simpler equation for the difference

z′ + 2gz + z2 = 0.

(
exp

(
2

∫ x

0

g(y)dy

)
z(x)

)′
= −z2 exp

(
2

∫ x

0

g(y)dy

)
.

The derivative on the left hand side is 1-periodic function. So after integration

−
∫ 1

0

z2 exp

(
2

∫ x

0

g(y)dy

)
dx = 0.
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Therefore z = 0 which yields the uniqueness and ends the proof.
Now that w is defined from u and F , we desire to show that the sole knowledge of w is enough to reconstruct
u and F . Indeed the integration of the identity (2.7) (multiplied by M) in the velocity direction yields

−
∫
R
wM(x, v)dv = −

∫
R
uM(x, v)dv − γα2 exp (ϕ(x))F = ∂xF − α2γ(x) exp (ϕ(x))F

where we use the Gauss law (2.6). One obtains an equation for F

∂xF +

(
∂xγ

γ
− 1

γ

)
F = −

∫
R
wM(x, v)dv

or

∂x(γF )− ∂xF = −γ(x)

∫
R
wM(x, v)dv.

Set G = γF so that

∂xG−
1

γ
∂xG = −γ(x)

∫
R
wM(x, v)dv

and

∂x

(
exp

(
−
∫ x

0

dy

γ(y)

)
G

)
= − exp

(
−
∫ x

0

dy

γ(y)

)
γ(x)

∫
R
wM(x, v)dv. (2.9)

Proposition 3. F and u can be reconstructed from w.
Proof. It is sufficient to show that the equation (2.9) is solvable in the space of periodic functions. By integration
in I one gets(

exp

(
−
∫ 1

0

dy

γ(y)

)
− 1

)
G(0) = −

∫ 1

0

(
exp

(
−
∫ x

0

dy

γ(y)

)
γ(x)

∫
R
wM(x, v)dv

)
dx.

Since exp
(
−
∫ 1

0
dy
γ(y)

)
< 1 as a consequence of γ > 0, the Cauchy data G(0) is uniquely determined, which is

enough to construct the function in the entire interval with the Cauchy-Lipshitz theorem. Therefore F is known
from w. After that u = w − γ(x)M(x, v)F . The proof is ended.
Since the system (2.4) preserves the quadratic norm of the pair (u, F ) which is equal to the quadratic norm of
w, it is not surprising w is the solution of an homogeneous equation. Define H = H∗ by

−iHw = Dw + γ(x)

(
vM(x, v)

∫
wM(x, v)dv −M(x, v)

∫
wvM(x, v)dv

)
with D = ∂xv − E0(x)∂v.
Proposition 4. The function w is solution of ∂tw = iHw.
Proof. Indeed

∂tw +Dw = ∂tu+Du+ γM(x, v)

∫
uvMdv +D(γ(x)FM(x, v))

= −vMF + γ(x)M(x, v)

∫
uvMdv +MD(γ(x)F )

= −vMF + γM(x, v)

∫
wvMdv − γM(x, v)

∫
(γ(x)FM)vMdv +Mv∂x(γ(x)F ).

One has that
∫
R vM

2(x, v)dv = 0. So

∂tw +Dw = γM(x, v)

∫
wvMdv − vMF +Mvγ(x)∂xF +MvF∂xγ
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= γM(x, v)

∫
wvMdv − vMF −Mvγ

∫
uMdv +MvF (1− α2γ2 exp (ϕ))

= γM(x, v)

∫
wvMdv −Mvγ

∫
uMdv −MvFα2γ2 exp (ϕ)

= γM(x, v)

∫
wvMdv − γvM

∫
wMdv + γvM

∫
(γMF )Mdv −MvFα2γ2 exp (ϕ)

= γM(x, v)

∫
wvMdv − γvM

∫
wMdv.

The proof is ended.

3. The KvN setting. The scattering method exposed in the introduction is based on the construction
of the eigenstructure of H0. Since we desire to obtained a rigorous decomposition, we decide to construct
a convenient basis of the space L2(I × R) with moments against Hermite functions, as proposed in [12, 6].
Moreover it appears that the equation which defines the generalized eigenvectors of v∂x − E0(x)∂v can more
easily be defined if one has in mind the structure of the characteristic lines of the transport operator because
the generalized eigenvectors can be interpreted as some Dirac masses which move along the characteristic lines.
This approach, which makes an explicit connection between a transport/Liouville equation and the underlying
Hilbert structure, is called the KvN approach, giving full credit to a formalization of quantum mechanics
achieved by Koopman [16] and von Neuman [30, 31]. This approach is sometimes referred to as Koopmanism.

3.1. Notations. We introduce the Hermite polynomials Hn(v) which are orthonormal with respect to
the Maxwellian weight G(v), see [1, 12]. The Hermite polynomials are Hn(v) = (−1)nG(v)−1 dn

dvnG(v). The
degree of Hn is n. The parity of Hn is the parity of n. Hermite polynomials are orthogonal with respect to the
Maxwellian weight ∫

Hn(v)Hm(v)G(v)dv = (2π)
1
2n! δnm, n,m ∈ N.

One has the recursion formula Hn+1(v) = vHn(v)−Hn−1(v). The family of Hermite polynomials is a Hilbert

basis of the space of functions such that
∫
R f

2(v)G(v)dv <∞. Define for convenience In(v) = (2π)−
1
4n!−

1
2Hn (v)

and the Hermite functions which constitute a Hilbert basis of L2(R)

ψn(v) = In(v)G
1
2 (v). (3.1)

The family (ψn)n∈N is by construction orthonormal:
∫
R ψp(v)ψq(v)dv = δpq. The first terms of the series are

ψ0(v) =
G

1
2 (v)

α
, ψ1(v) =

vG
1
2 (v)

α
, ψ2(v) =

(v2 − 1)G
1
2 (v)

α
√

2
, α = (2π)

1
4 . (3.2)

The recursion formula becomes after rescaling

vψn(v) =
√
n+ 1ψn+1(v) +

√
nψn−1(v), n ∈ N. (3.3)

Another fundamental relation writes

ψ′n(v) =
1

2

(
−
√
n+ 1ψn+1(v) +

√
nψn−1(v)

)
, n ∈ N. (3.4)

The system (2.4) is therefore rewritten as{
∂tu+ v∂xu− E0∂vu = −αn0(x)ψ1(v)F, t > 0, (x, v) ∈ I × R,
∂tF = αn0(x)

∫
R ψ1(v)udv, t > 0, x ∈ I. (3.5)

Assuming in view of the energy identity that u(t) ∈ L2(I × R), we define the moments αn(t) ∈ L2(I) by

u(t, x, v) =
∑
n

un(t, x)ψn(v), un =

∫
R
uψndv.

6



By construction ‖u‖2L2(I×R) =
∑
n∈N ‖un‖2L2(I). We construct the vector

U(t, ·) = (F (t, ·), u0(t, ·), u1(t, ·), u2(t, ·), . . . )t (3.6)

and the matrices

A =



0 0 0 0 0 . . .
0 0 1 0 0 . . .

0 1 0 2
1
2 0 . . .

0 0 2
1
2 0 3

1
2 0

0 0 0 3
1
2 0 4

1
2

. . . . . . . . . . . . 4
1
2 . . .

 = At, (3.7)

B =
1

2



0 0 0 0 0 . . .
0 0 1 0 0 . . .

0 −1 0 2
1
2 0 . . .

0 0 −2
1
2 0 3

1
2 0

0 0 0 −3
1
2 0 4

1
2

. . . . . . . . . . . . −4
1
2 . . .

 = −Bt, (3.8)

and

D =


0 0 −α 0 0 . . .
0 0 0 0 0 . . .
α 0 0 0 0 . . .
0 0 0 0 0 0
0 0 0 0 0 0
. . . . . . . . . . . . . . . . . .

 = −Dt. (3.9)

With these notations (3.5) is recast as

∂tU = iHU, iH = i(H0 +K) (3.10)

where iH0 = −A∂xU +E0(x)BU and iKU =
√
n0(x)DU . The matrix K has a finite rank, and so is a compact

perturbation of H0. The Hilbert space that will be used from now on is

V =

{
U = (αn)n∈N ∈ L2(I)N,

∑
n∈N
‖αn‖2L2(I) <∞

}
. (3.11)

The norm in V is

‖U‖2 =
∑
n

∫
I

|αn|2(x)dx.

We will consider that αn(x) ∈ C as well, since it is convenient for Fourier decompositions. The hermitian
product is

(U1, U2) =
∑
n

∫
I

α1
n(x)α2

n(x)dx, U1, U2 ∈ V.

A larger space is

Vloc = L2(I)N. (3.12)

These two spaces are functional extensions in L2(I) of the classical Hilbert space

l2 =

{
U = (αn)n∈N ∈ RN,

∑
n∈N
‖αn‖2 <∞

}
.

7



The notation for the hermitian product in l2 will be

U1 · U2 =
∑
n

αnα2
n, U1, U2 ∈ l2.

We also define

W0 = {U = (αn)n∈N ∈ V, there exists N > 0 such that

αn ∈ H1(I) for n ≤ N and αn = 0 for n > N
}
.

The space W0 is dense in V , and its elements have compact support with respect to the index n. Note that

W0 ⊂ V ⊂ Vloc.

We begin the construction of the eigenstructure by simple considerations on the operator/matrix A which can
be viewed as an unbounded hermitian operator in l2. So it admits a canonical eigenstructure decomposition. It
can be detailed with the help of the Hermite functions. We will use the notation that

ep = (0, . . . , 0, 1, 0, . . . )t, p = 0, 1, . . . ,

where the coefficient 1 is in the pth position. We say that W ∈ RN is a generalized eigenvector of A if it satisfies
the equation

AW = µW, µ ∈ R.

If W ∈ l2, then one says that W is a classical eigenvector: in this case µ is in the discrete spectrum.
Remark 5. To make no confusion, the standard notation λ is reserved for the eigenvalues of iH and iH0.
Proposition 6. There is one eigenvector e0 associated to the eigenvalue 0 (Ae0 = 0). For all µ ∈ R, Uµ is in
the continuous spectrum

Uµ = (0, ψ0(µ), ψ1(µ), ψ2(µ), . . . )t, AUµ = µUµ, (3.13)

Proof. Evident from the recurrence relation (3.3) for Hermite functions.
Proposition 7. These eigenvectors are complete: for all U ∈ l2, one has the representation formula

U = U · e0e0 +

∫
R
U · UµUµdµ

with

U · U = |U · e0|2 +

∫
R
|U · Uµ|2 dµ. (3.14)

Proof. The formulas come from the fact that the family of Hermite functions (ψn(µ))n∈N is an Hilbert basis of
L2(R).
So the discrete spectrum is Sd(A) = {0} and the continuous spectrum is Sc(A) = R. The goal is now to
extended the results to the operator v∂x + ϕ′(x)∂v viewed as an unbounded Hermitian operator in V .

3.2. Case of study. To more specific, we consider the case of study described in figure 3.1 where the
characteristic lines of the operator v∂x+ϕ′(x)∂v = v∂x−E0(x)∂v are plotted. We make an additional assumption
which will be reinforced later.
Assumption 8. The electric potential is a 1-periodic function, is smooth ϕ ∈ C2(I)per, and is monotone{

ϕ′(x) ≥ 0 for 0 < x < x0,
ϕ′(x) ≤ 0 for x0 < x < 1.

(3.15)

Moreover we normalize by translation in the x direction, so that

ϕ− = min
x
ϕ = ϕ(0).

The structure of the characteristic lines is depicted in figure 3.1 where the separatrix between these zones are

the curves v2

2 −ϕ(x) = −ϕ−. Fo an electric potential with a more complex structure, the internal zone might be
decomposed into any finite number of connected subdomains, such that a set of closed characteristic is defined
in each of these subdomains. But, for the simplicity of the presentation, we focus only on the situation depicted
in the graphics.
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zone c

0

1

v

x

zone −

zone +

zone c

zone −

zone +

Fig. 3.1. Case of study: the characteristics in dashed split the domain in three zones. Zone ’z = +’ corresponds to{
v2

2
− ϕ(x) > −ϕ−

}
∩ {v > 0}. Zone ’z = −’ is the symmetric

{
v2

2
− ϕ(x) > −ϕ−

}
∩ {v < 0}. Finally central zone ’z = c’

corresponds to the closed loops that cross the horizontal axis. The separatrix between these zones are the curves v2

2
−ϕ(x) = −ϕ−.

3.3. Eigenstructure of iH0 = −A∂x + E0(x)B. This is the next step in the construction. We will
show that the KvN philosophy is exactly what is needed to obtain an explicit representation of the generalized
eigenstructure of the operator

iH0 = −A∂x + E0(x)B

in relation with a convenient characteristic equation.
• The first line of the infinite matrix iH0 vanishes. So any function of the form

u0(·) = w(·)e0 ∈ V, w ∈ L2(I), (3.16)

is an eigenvector with eigenvalue 0 which is therefore in the discrete spectrum.
• To construct generalized eigenvectors of iH0, we start from the formula

U(x) = τ(x)Uµ(x) = τ(x)(0, ψ0(µ(x)), ψ1(µ(x)), ψ2(µ(x)), . . . )t

and try to find some functions x 7→ τ(x) and x 7→ µ(x) so that iH0U = λU for a given λ ∈ iR. Such a
representation comes from a direct interpretation of a Dirac mass

u(x, v) = τ(x)δ(v − µ(x))

in terms of a moment representation: indeed the moments of u are∫
R
u(x, v)ψn(v)dv = τ(x)ψn(µ(x)).

Therefore the equation iH0U = λU can be interpreted as a solution of v∂xu − E0(x)u = 0. Geometrically it
means that u is a Dirac mass at a varying vertical position

v = µ(x), (3.17)

with a weight τ(x) that accounts for the local curvature of the characteristic line. This is the KvN methodology.
The algebra is detailed in the next proposition which focuses on the construction in a small interval (x1, x2) ∈ I.
Proposition 9. Assume that

− (τ(x)µ(x))
′

= λτ(x), x1 < x < x2 (3.18)

9



with the characteristic equation

1

2
µ(x)2 − ϕ(x) = e ∈ R, x1 < x < x2. (3.19)

Then Uλ(x) = τ(x)Uµ(x) is solution of

(iH0Uλ) (x) = λUλ(x) x1 < x < x2. (3.20)

Proof. By construction AU(x) = µ(x)U(x). So

iH0Uλ(x) = −∂x
(
τ(x)µ(x)Uµ(x)

)
+ E0(x)τ(x)BUµ(x)

= − (τ(x)µ(x))
′
Uµ(x) − τ(x)µ(x)µ′(x) (∂λUλ)λ=µ(x) + E0(x)τ(x)BUµ(x).

One checks by using (3.4) that ∂λUλ = −BUλ. So

iH0Uλ(x) = − (τ(x)µ(x))
′
Uµ(x) + τ(x) [µ(x)µ′(x) + E0(x)]BUµ(x)

= λτ(x)Uµ(x) + τ(x)

(
1

2
µ(x)2 − ϕ(x)

)
Uµ(x) = λUλ(x), x1 < x < x2.

The proof is ended.
The next steps is to extend the construction in the entire interval I with a correct treatment of the periodic
boundary condition, and to verify the integrability condition Uλ ∈ Vloc. At inspection of the figure 3.1 one
distinguishes three zones in the construction/verification.

3.3.1. Zone +. Consider zone + where the characteristics lines are mono-valued functions of the x variable.
In view of (3.17-3.19) it corresponds to e > −ϕ− and positive velocities. Then µ in (3.19) is directly calculated:
we write it with an index e to make clear the dependence with respect to the height of the characteristics

µe(x) =
√

2(e+ ϕ(x)) ≥
√

2(e+ ϕ−) > 0. (3.21)

It is a positive and periodic function in zone I. Let us define the new variable

y(x) =

∫ x

0

ds

µe(s)
.

Since µe is the dimension of a velocity in view of (3.17), then y has the dimension of a time. It is therefore the
time variable spent by a particle which travels along the characteristics. The total time spent by the particle
along the characteristic is

te =

∫ 1

0

µe(s)
−1ds > 0. (3.22)

Equipped with these notations, one can now find the solutions of equation (3.18-3.19).
Proposition 10. In zone +, the periodic solutions of (3.18-3.19) are given by (3.21) and

τe,k(x) =
1

teµe(x)
exp

(
2iπk

∫ x
0
µe(s)

−1ds

te

)
. (3.23)

Remark 11. The scaling 1
teµe(x)

is convenient since it is equal to 1 if ϕ vanishes. In all cases,
∫ 1

0
dx

teµe(x)
= 1.

If ϕ ≡ 0, then
∫ x
0
µe(s)

−1ds

te
= x for all e: in this case the function exp

(
2iπk

∫ x
0
µe(s)

−1ds

te

)
= exp (2iπkx) is the

usual Fourier mode.
Proof. Equation (3.19) has already been discussed. Equation (3.18) is −µ(τµe)

′(x) = λ(τµe) that is with the
time variable

− d

dy
(τµe) = λ(τµe).
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The general solution is an exponential. Since we look for periodic functions, one obtains

(τµe)(y) =
1

L
exp (2iπky/y(1)) , λ = −2iπk/y(1)

where k ∈ Z and L is an arbitrary factor. Taking L = t+e and going back to the original variable, the proof of
the claim is ended.
One obtains a first family of generalized eigenvector as

U+
e,k(x) =

1

teµe(x)
exp

(
2iπk

∫ x
0
µe(s)

−1ds

te

)
Uµe(x). (3.24)

Proposition 12. The infinite vectorial function U+
e,k is in Vloc, and is a generalized eigenvector

(iH0)U+
e,k = λe,kU

+
e,k, λe,k = −2iπk

te
∈ iR.

Proposition 13. In the interval (−ϕ−,∞) the function e 7→ te is monotone decreasing from t(−ϕ−)+ to 0.

Proof. One has by definition te =
∫ 1

0
dx√

2(e+ϕ(x)
. So d

de te = −
∫ 1

0
dx

(2(e+ϕ(x))
3
2
< 0. The limits are evident. The

proof is ended.
Proposition 14. Assume ϕ′′(0) > 0 and ϕ ∈ C3(I)per. Then t(−ϕ−)+ = +∞ and there exists Cϕ ∈ R such
that

t−ϕ−+ε +
1√
ϕ′′(0)

log ε+ Cϕ = O(ε). (3.25)

Proof. One has t−ϕ−+ε =
∫ 1

0
dz√

2(ε+ϕ(z)−ϕ−)
. Consider first A =

∫ 1
2

0
dz√

2(ε+ϕ(z)−ϕ−)
. One has

A =

∫ 1
2

0

dz√
2(ε+ 1

2ϕ
′′(0)z2︸ ︷︷ ︸

=A1

+

∫ 1

0

 1√
2(ε+ ϕ(z)− ϕ−)

− 1√
2(ε+ 1

2ϕ
′′(0)z2

 dz

︸ ︷︷ ︸
=A2

.

The first term is

A1 =

∫ 1
2

0

dz√
2(ε+ 1

2ϕ
′′(0)z2)

=
1√
ϕ′′(0)

∫ 1/(2
√

2ε/ϕ′′(0))

0

dy√
1 + y2

=
1√
ϕ′′(0)

∫ 1

0

dy√
1 + y2

+
1√
ϕ′′(0)

∫ 1/(2
√

2ε/ϕ′′(0))

1

(
1√

1 + y2
− 1

y

)
dy +

1√
ϕ′′(0)

log
(

1/(2
√

2ε/ϕ′′(0))
)
.

At inspection of the various terms, A1 is such that A1 = 1√
ϕ′′(0)

(
− 1

2 log ε
)

+ q1(ε) where q1 is a function which

admits a finite limit when ε ⇒ 0+. More precisely the second integral is convergent so the reminder can be
bounded

1√
ϕ′′(0)

∫ 1/(2
√

2ε/ϕ′′(0))

1

(
1√

1 + y2
− 1

y

)
dy

=
1√
ϕ′′(0)

∫ ∞
1

(
1√

1 + y2
− 1

y

)
dy − 1√

ϕ′′(0)

∫ ∞
1/(2
√

2ε/ϕ′′(0))

(
1√

1 + y2
− 1

y

)
dy.

Since

∣∣∣∣ 1√
1+y2

− 1
y

∣∣∣∣ = 1

y
√

1+y2(y+
√

1+y2)
≤ 1

2y3 , the last integral is bounded as∣∣∣∣∣
∫ ∞
1/(2
√

2ε/ϕ′′(0))

(
1√

1 + y2
− 1

y

)
dy

∣∣∣∣∣ ≤ (2
√

2ε/ϕ′′(0))2 = O(ε).
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The second term admits a limit since the function under the integral is

Fε(z) =
1√

2(ε+ ϕ(z)− ϕ−)
− 1√

2(ε+ 1
2ϕ
′′(0)z2

=
2
(
1
2ϕ
′′(0)z2 − ϕ(z) + ϕ−

)√
2(ε+ ϕ(z)− ϕ−)

√
2(ε+ 1

2ϕ
′′(0)z2

(√
2(ε+ ϕ(z)− ϕ−)−

√
2(ε+ 1

2ϕ
′′(0)z2

) .
The numerator is 1

2ϕ
′′(0)z2 − ϕ(z) + ϕ− = 1

2ϕ
′′(0)z2 − ϕ(z) + ϕ(0) = O(z3). Since the denominator is also

O(z3) for ε = 0, the limit F0 is finite. Therefore one can write A2 = q2(ε) where q2 is a function which admits
a finite limit when ε⇒ 0+. More precisely q2(ε) = q2(0) +O(ε).

But symmetry the other term A1 =
∫ 1

1
2

dz√
2(ε+ 1

2ϕ
′′(0)z2

has a similar behavior. The proof is ended after summation

of all contributions to A.

3.3.2. Zone -. The construction is the same, it is sufficient to take the negative root of the characteristic
equation (3.19), still with the restriction e > −ϕ−. For simplicity of notations, we keep the same positive
definition (3.21) for µe. The family writes

U−e,k(x) =
1

teµe(x)
exp

(
−2iπk

∫ x
0
µe(s)

−1ds

te

)
U−µe(x). (3.26)

One obtains readily.
Proposition 15. The infinite vectorial function U−e,k is in Vloc, and is a generalized eigenvector

(iH0)U−e,k = λe,kU
−
e,k, λe,k = −2iπk

te
.

Proof. Just consider (3.18) is now written as

−

(
1

teµe(x)
exp

(
−2iπk

∫ x
0
µe(s)

−1ds

te

)
(−µe(x))

)′
= −2iπk

te

(
1

teµe(x)
exp

(
−2iπk

∫ x
0
µe(s)

−1ds

te

))
.

3.3.3. Zone c. In view of the fact that the characteristic lines are closed (see figure 3.1), a modification
is needed to define correctly the generalized eigenvectors in the central zone.
Firstly one must restrict the range

e ∈ (−ϕ−,−ϕ+) , ϕ− = min
x∈I

ϕ(x), ϕ+ = max
x∈I

ϕ(x). (3.27)

We look for eigenvectors under the form

U(x) = τ+(x)Uµ(x) − τ−(x)U−µ(x) (3.28)

where

µe(x) =
√

2 max (e+ ϕ(x), 0) ≥ 0

and τ± are unknown functions to be determined. Notice that µe(x) = 0 for e + ϕ(x) ≤ 0. Considering (3.27),
the function µe vanishes at two endpoints 0 < ae < be < 1 defined by µe(a) = µe(b) = 0. So

µe(x) > 0 for ae < x < be

and

µe(x) = 0 for 0 ≤ x ≤ ae and be ≤ x ≤ 1.
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We have the idea to impose the condition that τ+(x) = τ−(x) = 0 for 0 ≤ x < ae and be < x ≤ 1. It will insure
that U described by (3.28) satisfies

U(x) = 0 for 0 ≤ x < ae or be < x ≤ 1.

In other word, the function vanishes identically (in x) outside the support (in x) of the characteristic line with
level (or label) e. This idea is the main difference with the construction in zones + and -.
Let us take

τ+(x) =
1

µe(x)
exp

(
−λ
∫ x

ae

µe(s)
−1ds

)
, ae < x < be.

So one has locally

(iH0)τ+(x)Uµe(x) = λτ+(x)Uµe(x), ae < x < be.

Similarly take

τ−(x) =
1

µe(x)
exp

(
λ

∫ x

ae

µe(s)
−1ds

)
, ae < x < be,

so that

(iH0)τ−(x)U−µe(x) = λτ−(x)U−µe(x), ae < x < be.

Therefore U in (3.28) satisfies

(iH0)U(x) = λU(x), x 6= ae, be. (3.29)

There is a divergence at x = ae and x = be, since µe(ae) = µe(be) = 0. More precisely for ae < x < be

µe(x) =
√

2(ϕ(x)− ϕ(ae) ≈
√

2ϕ′(ae)
√
x− ae, for x ≈ a+e (3.30)

and

µe(x) =
√

2(ϕ(x)− ϕ(be) ≈
√
−2ϕ′(be)

√
be − x, for x ≈ b−e . (3.31)

In particular U might not be even in Vloc. For the simplicity of the proof, we make a stronger assumption with
respect to the hypothesis 8.
Assumption 16. The electric potential is a 1-periodic function, is smooth ϕ ∈ C2(I), and is strictly monotone{

ϕ′(x) > 0 for 0 < x < x0,
ϕ′(x) < 0 for x0 < x < 1.

(3.32)

Proposition 17. Make assumption 16. Let e be in the range (3.27). Consider

λk,e =
−2iπk

te
for k ∈ Z, te = 2

∫ be

ae

µ(s)−1ds

and

Ue,k(x) =
1

teµe(x)
exp

(
2iπk

∫ x
ae
µe(s)

−1ds

te

)
Uµe(x) (3.33)

+
1

teµe(x)
exp

(
−2iπk

∫ x
ae
µe(s)

−1ds

te

)
U−µe(x), x ∈ (ae, be),

with Ue,k(x) = 0 for x ∈ [0, ae) ∪ (be, 1].
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Then one has the regularity Ue,k|n ∈ L
p(I) for all n ∈ N and 1 ≤ p < 1

2 and AUe,k ∈ C0(I)N. Moreover Ue,k is
a generalized eigenvector, more precisely one has that

(iH0)Ue,k(x) = λk,eUe,k(x) (3.34)

in Lp(I)N for 1 ≤ p < 1
2 .

Proof. The proof proceeds in three steps.
• For x ∈ (a, b), one has Ue,k = (0, α0, α1, . . . )n∈N with

αn(x) =
1

teµe(x)
exp

(
2iπk

∫ x
ae
µe(s)

−1ds

te

)
ψn(µe(x)) +

1

teµe(x)
exp

(
−2iπk

∫ x
ae
µe(s)

−1ds

te

)
ψn(−µe(x))

and αn(x) = 0 for x in the complement, that is for x ∈ [0, ae) ∪ (be, 1]. Since µe has at most a square root
singularity at ae and be, it is clear that αn ∈ Lp(I) for all n ∈ N and 1 ≤ p < 1

2 .
• Next one has that

AUe,k(x) =
1

te
exp

(
2iπk

∫ x
ae
µe(s)

−1ds

te

)
Uµe(x)−

1

te
exp

(
−2iπk

∫ x
ae
µe(s)

−1ds

te

)
U−µe(x), x ∈ (ae, be). (3.35)

So

lim
x→a+e

AUe,k(x) =
1

te

(
Uµe(ae) − U−µe(ae)

)
=

1

te
(U0 − U0) = 0.

Since Ue,k(x) = 0 for x < ae, one has the continuity of AUe,k at ae. Similarly

lim
x→b−e

AUe,k(x) =
1

te

(
exp

(
2iπk

∫ be
ae
µe(s)

−1ds

te

)
Uµe(be) − exp

(
−2iπk

∫ be
ae
µe(s)

−1ds

te

)
U−µe(be)

)

=
1

te

(
(−1)kU0 − (−1)kU0

)
= 0.

Since Ue,k(x) = 0 for be < x, one has the continuity of AUe,k at be. Therefore one has indeed AUe,k ∈ C0(I)N.
• Since AUe,k is continuous, the derivative in the sense of distribution of AUe,k is almost everywhere equal to the
point wise derivative. At inspection of (3.35), the x-derivative has the regularity of the inverse of the square root
function. Therefore A∂xUe,k ∈ Lp(I)N for 1 ≤ p < 1

2 . One also has directly that E0(x)BUe,k has, component
by component, the regularity of the derivative of the square root function. That is E0(x)BUe,k ∈ Lp(I)N in
the same range 1 ≤ p < 1

2 . One also has of course λe,kUe,k ∈ Lp(I)N. Considering the eigenvalue equation is
satisfied almost everywhere (3.29), it show the last result. The proof is ended.
For the simplicity of the analysis, we add one condition on the electric potential ϕ.
Assumption 18. The electric potential is strictly concave at the maximum, that is ϕ′′(x0) < 0.
Proposition 19. In the interval (−ϕ+,−ϕ−) the function e 7→ te goes from t+(−ϕ+) = 2π/

√
2 to t+(−ϕ−).

Proof. We only have to determine the value of t+(−ϕ+). Make assumption 18. For e = −ϕ+ + ε, we linearize the

function ϕ at second order near its maximum and write without giving the non essential details

te(−ϕ+ + ε) =
2√
2

∫
ε+ 1

2ϕ
′′(x0)s2>0

ds√
ε+ 1

2ϕ
′′(x0)s2

+ o(ε)

=
2√
2

∫
1−s2>0

ds√
1− s2

+ o(ε) =
4√
2

sin−1(1) + · · · = 2π√
2

+ o(ε).

The proof is ended.
The next property will be essential to show the structural well-posedness of an original integral equation derived
in the sequel.
Proposition 20. Assume the function x 7→

√
ϕ+ − ϕ(x) is strictly concave separately in [0, x0) and in (x0, 1].

Then te is strictly increasing in the interval (−ϕ+,−ϕ−).
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Proof. One has the decomposition

√
2te =

∫ x0

ae

dx√
e+ ϕ(x)

+

∫ be

x0

dx√
e+ ϕ(x)

, e+ ϕ(ae) = e+ ϕ(be) = 0.

We firstly study the second term
∫ be
x0

dx√
e+ϕ(x)

. To simplify the notations we set e = e+ϕ+ ∈ (0, ϕ+ −ϕ−) and

ψ(z) = ϕ(x)− ϕ+ = ϕ(x)− ϕ(x0) ≤ 0. With these notations the second term is∫ be

x0

dx√
e+ ϕ(x)

= H(e) :=

∫ be

x0

dx√
e+ ψ(x)

.

Set the change of variable ψ(x) = −eu2 for x0 ≤ x ≤ 1 and 0 ≤ u ≤ 1. One has ψ′(x)dx = −2eudu. So

H(e) =

∫ 1

0

2u√
1− u2

gu(e)du, gu(e) =

√
e

−ψ′(ψ−1(−eu2)
.

The derivative is

d

de
gu(e) =

1

−2
√
eψ′(z)

+
√
e
ψ′′(z)ψ′(z)−1(−u2)

ψ′(z)2
, ψ(z) = −eu2,

that is

d

de
gu(e) =

1

−2
√
eψ′(z)

(
1− 2

ψ′′(z)ψ(z)

ψ′(z)2

)
At the same time one has

√
−ψ′ = − ψ′

2
√
−ψ so

2
√
−ψ
′′

= − ψ′′√
−ψ

+
1

2

(ψ′)2

(−ψ)
3
2

= −1

2

(ψ′)2

(−ψ)
3
2

(
1− 2

ψ′′ψ

(ψ′)2

)
.

Therefore the strict concavity of
√
−ψ =

√
ϕ(x0)− ϕ(x) yields an increasing e 7→ gu(e) which turns into a

strictly increasing H(e). The same result for the second integral
∫ x0

ae
dx√
e+ϕ(x)

. The proof is ended.

3.4. Completness. We claim the following.
Theorem 21. Let U ∈ V . Then the spectral decomposition holds

U = U(·) · e0e0 +
∑
k∈Z

∫ ∞
e=−ϕ−

(
U,U+

e,k

)
U+
e,ktede (3.36)

+
∑
k∈Z

∫ ∞
e=−ϕ−

(
U,U−e,k

)
U−e,ktede+

∑
k∈Z

∫ −ϕ−
−ϕ+

(U,Ue,k)Ue,ktede,

with the Plancherel relation

‖U‖2V = (U, e0)
2

+
∑
k∈Z

∫ ∞
−ϕ−

∣∣∣(U,U+
e,k

)∣∣∣2 tede (3.37)

+
∑
k∈Z

∫ ∞
−ϕ−

∣∣∣(U,U−e,k)∣∣∣2 tede+
∑
k∈Z

∫ −ϕ−
−ϕ+

|(U,Ue,k)|2 tede.

Proof. The proof is performed for U ∈ W0 by a direct computation. By density of W0 in V , it will prove the
result in V . Notice that U ∈ W0 has only a finite number of non zero components which are all in H1(I):
since Ue,k ∈ Lp(I)N for 1 ≤ p < 1

2 , it is enough to get the integrability and summability needed to give sense
to (U,Ue,k). Note also that the formulas (3.36) and (3.37) are equivalent, we will prove only the first one. A
last remark is that (3.37) can be checked for different lines independently one to the other: indeed U,U+

e,k, . . .
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are infinite vectors. The method of the proof is by successive changes of variables and the final use of the
completeness of the Hermite functions.
We begin we the analysis of

K1 =
∑
k∈Z

∫ ∞
−ϕ−

(
U,U+

e,k

)
U+
e,k(x)tede

=

∫ ∞
−ϕ−

(∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp

(
2iπk

∫ x
0

ds
µe(s)

−
∫ y
0

ds
µe(s)

te

)
dy

teµe(y)

)
Uµe(x)

de

µe(x)
.

The notation · is understood as the weak product of the vector U(y) which has only a finite number of non zero
components since U ∈W0 and the infinite vector Uµe(y). We make a change of variable y → ŷe such that

ŷe =
1

te

∫ y

0

ds

µe(s)
, dŷe =

dy

teµe(y)
.

We also set x̂e = 1
te

∫ x
0

ds
µe(s)

. One has that

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp

(
−2iπk

∫ x
0

ds
µe(s)

−
∫ y
0

ds
µe(s)

te

)
dy

teµe(y)
(3.38)

=
∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (−2iπk(x̂e − ŷe)) dŷe = U(x) · Uµe(x)

using standard properties of the Fourier transform, such as the Dirac comb formula∑
k∈Z

exp (2iπk(x− y)) = δ(x− y). (3.39)

A lengthier verification of the identity is possible with smooth test functions. One obtains

K1 =

∫ ∞
−ϕ−

U(x) · Uµe(x)
1

µe(x)
Uµe(x)de.

The definition of µe, namely 1
2µe(x)2 − ϕ(x) = e, yields dµe(x) = de

µe(x)
for every x. Since it is independent of

x, we will write dλ = dµe(x). Therefore one can recast as

K1 =

∫ ∞
√
ϕ(x)−ϕ−

U(x) · UλUλdλ

where Uλ has been defined in (3.13). With exactly the same method one obtains for the third term in (3.36)

K2 =
∑
k∈Z

∫ ∞
−ϕ−

(
U,U−e,k

)
U−e,k(x)

de

µe(x)
=

∫ ∞
√
ϕ(x)−ϕ−

U(x) · U−λU−λdλ =

∫ −√ϕ(x)−ϕ−
−∞

U(x) · UλUλdλ.

With a little more technicalities detailed in the next proposition, one obtains also

K3 =

∫ √ϕ(x)−ϕ−
−
√
ϕ(x)−ϕ−

U(x) · UλUλdλ. (3.40)

Therefore using the orthonormality properties of the Hermite functions, one gets

K1 +K2 +K3 =

∫ ∞
−∞

U(x) · UλUλdλ = U(x)− U(x) · e0e0

from which the claim is proved.
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Proposition 22. The formula (3.35) holds.
Proof. To be more precise, we note 0 < ae < be < 1 the boundaries of the interval described in (3.30-3.31).
Since Uµe is now defined in (3.33) as the difference of two terms, full expansion yields four contributions. So

K3 =

∫ −ϕ−
−ϕ+


∑
k∈Z

∫ be

ae

U(y) · Uµe(y) exp

(
2iπk

∫ x
ae

ds
µe(s)

−
∫ y
ae

ds
µe(s)

te

)
dy

teµe(y)︸ ︷︷ ︸
=D1

Uµe(x)
de

µe(x)

+

∫ −ϕ−
−ϕ+


∑
k∈Z

∫ be

ae

U(y) · U−µe(y) exp

(
−2iπk

∫ x
ae

ds
µe(s)

−
∫ y
ae

ds
µe(s)

te

)
dy

teµe(y)︸ ︷︷ ︸
=D2

U−µe(x)
de

µe(x)

+

∫ −ϕ−
−ϕ+


∑
k∈Z

∫ be

ae

U(y) · U−µe(y) exp

(
2iπk

∫ x
ae

ds
µe(s)

+
∫ y
ae

ds
µe(s)

te

)
dy

teµe(y)︸ ︷︷ ︸
=D3

Uµe(x)
de

µe(x)

+

∫ −ϕ−
−ϕ+


∑
k∈Z

∫ be

ae

U(y) · Uµe(y) exp

(
−2iπk

∫ x
ae

ds
µe(s)

+
∫ y
ae

ds
µe(s)

te

)
dy

teµe(y)︸ ︷︷ ︸
=D4

U−µe(x)
de

µe(x)
.

We consider the change of variable ŷe = 2
te

∫ y
ae

ds
µe(s)

, with dŷe = 2dy
teµe(y)

. Notice that ŷe ∈ [0, 1]. The same

notation is used for x̂e ∈ [0, 1].
• It yields for the first term

D1 =
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (iπk(x̂− ŷ)) dŷe.

Splitting between even and odd k, one has

D=
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (2iπk(x̂e − ŷe)) dŷe

+
1

2
exp (−iπx̂e)

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (iπŷe) exp (2iπk(x̂e − ŷe)) dŷe.

Use the Dirac comb (3.39) on both terms. It yields

D1 =
1

2
U(x) · Uµe(x) +

1

2
exp (−iπx̂)

(
U(x) · Uµe(x) exp (iπx̂)

)
= U(x) · Uµe(x).

• One has for similar reasons D2 = U(x) · U−µe(x).
• The same change of variable in the third term yields

D3 =
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (iπk(x̂e + ŷe)) dŷe
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=
1

2

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (2iπk(−(1− x̂e) + ŷe)) dŷe

+
1

2
exp (iπx̂e)

∑
k∈Z

∫ 1

0

U(y) · Uµe(y) exp (iπŷe) exp (2iπk(−(1− x̂e) + ŷe)) dŷE .

Notice that the change of variable is such that there exists x ∈ (ae, be) such that

x̂e =
2

te

∫ be

be+ae−x̂

ds

µe(s)

so that

1− x̂e = 1− 2

te

∫ be

be+ae−x

ds

µe(s)
=

2

te

∫ be+ae−x

ae

ds

µe(s)
=

2

te

∫ be

ae

ds

µe(s)
− 2

te

∫ be

be+ae−x

ds

µe(s)
=

2

te

∫ be+ae−x

ae

ds

µe(s)
.

In other words 1− x̂e corresponds to be + ae − x̂. Therefore one can write with the Dirac comb technique

D3 =
1

2
U(be + ae − x) · Uµe(be+ae−x)

+
1

2
exp (iπx̂)U(be + ae − x) · Uµe(be+ae−x) exp (+iπ(1− x̂)) = 0

after simplifications.
• Similarly D4 = 0.
• So one can write

K3 =

∫ −ϕ−
−ϕ+

U(x) · Uµe(x)Uµe(x)
de

µe(x)
+

∫ −ϕ−
−ϕ+

U(x) · U−µe(x)U−µe(x)
de

µe(x)

=

∫ √ϕ(x)−ϕ−
0

U(x) · UλUλdλ+

∫ 0

−
√
ϕ(x)−ϕ−

U(x) · UλUλdλ =

∫ √ϕ(x)−ϕ−
−
√
ϕ(x)−ϕ−

U(x) · UλUλdλ.

The results proceeds by summation of D1, D2, D3 and D4. It ends the proof.
The previous result can easily be transformed into a spectral representation formula for iH0. We just give the
result. One has the result

iH0U =
∑
k∈Z

∫ ∞
e=−ϕ−

(
U,U+

e,k

)
λe,kU

+
e,ktede (3.41)

+
∑
k∈Z

∫ ∞
e=−ϕ−

(
U,U−e,k

)
λe,kU

−
e,ktede+

∑
k∈Z

∫ −ϕ−
−ϕ+

(U,Ue,k)λe,kUe,ktede.

One has an associated Plancherel relation

‖H0U‖2V =
∑
k∈Z

∫ ∞
−ϕ−

∣∣∣(U,U+
e,k

)∣∣∣2 |λe,k|2 tede (3.42)

+
∑
k∈Z

∫ ∞
−ϕ−

∣∣∣(U,U−e,k)∣∣∣2 |λe,k|2 tede+
∑
k∈Z

∫ −ϕ−
−ϕ+

|(U,Ue,k)|2 |λe,k|2 tede.

This formula can actually be used to give a meaning to the largest space such that summability and integrability
hold in all previous formulas.
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4. Generalized eigenvectors of iH. We now construct the eigenvectors of iH

iHV +
e,k = λe,kV

+
e,k

by a perturbation method. We start from the representation formula (3.36) rewritten as

U = U(·) · e0e0 +
∑
z

∑
k∈Z

∫ (
U,Uze,k

)
Uze,kt

z
ede

z (4.1)

where z is the index of the zone, that is z = +, z = − or z = c in the central zone.
The main idea is to assume a representation under the form

V +
e,k = U+

e,k + a(x)e0 +
∑
z

∑
p∈Z

∫
bzs,pU

z
s,pt

z
sds

z. (4.2)

where a and bzs,p are unknown. Note that a and bzs,p depend also on e, k and the index of the zone z = +. One
has

iHV +
e,k = iH0V

+
e,k + iKV +

e,k =

= λe,kU
+
e,k +

∑
z

∑
p∈Z

∫
bzs,pλ

z
s,pU

z
s,pt

z
sds

z + iKa(x)e0 + iKU+
e,k + iK

∑
z

∑
p∈Z

∫
bzs,pU

z
s,pt

z
sds

z.

More precisely since K = exp(ϕ/2)D

iHV +
e,k = λe,kU

+
e,k +

∑
z

∑
p∈Z

∫
bzs,pλ

z
s,pU

z
s,pt

z
sds

z − α exp (ϕ(x)/2) a(x)e2

+α

U+
e,k · e2 +

∑
z

∑
p∈Z

∫
bzs,pU

z
s,p · e2tzsdsz

 e0.

On the other hand one has

λe,kV
+
e,k = λe,kU

+
e,k + λe,ka(x)e0 +

∑
z

∑
p∈Z

∫
bzs,pλe,kU

z
s,pt

z
sds

z.

The eigenequation yields∑
z

∑
p∈Z

∫
bzs,p

(
λzs,p − λe,k

)
Uzs,pt

z
sds

z = α exp (ϕ(x)/2) a(x)e2

+α exp (ϕ(x)/2)

 1

α
exp (−ϕ(x)/2)λe,ka(x)− U+

e,k · e2 −
∑
z

∑
p∈Z

∫
bzs,pU

z
s,p · e2tzsdsz

 e0.

The right hand side is a linear combination of e0 and e2, so we identify this relation has an equality between
functions in V for which (3.36) applies. The equality of the coefficients writes

bxs,p
(
λxs,p − λe,k

)
=
(
α exp (ϕ(x)/2) a(x)e2, U

z
s,p

)
,

1

α
exp (−ϕ(x)/2)λe,ka(x)−

∑
p∈Z

∫ ∞
e=−ϕ−

b+s,pU
+
s,p · e2tsds = U+

e,k · e2. (4.3)

From now on, the main question is the solvability of this system. To continue the discussion, we make a
difference between λe,k 6= 0 and λe,k=0. In the homogeneous case, it will be clear that vanishing eigenvalues
play no role for linear Landau damping since they are naturally eliminated from the discussion.
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4.1. An integral equation. One eliminates bzs,p in (4.3) with

bxs,p =

(
α exp (ϕ(x)/2) a(x)e2, U

z
s,p

)
λxs,p − λe,k

and plug in the second equation. It yields the integral equation

1

α
exp (−ϕ(x)/2)λe,ka(x)−

∑
z

∑
p 6=0

P.V.

∫ (
α exp (ϕ(x)/2) a(x)e2, U

z
s,p

)
λzs,p − λe,k

Uzs,p · e2tzsdsz (4.4)

− 1

λe,k

∑
z

∫ (
α exp (ϕ(x)/2) a(x)e2, U

z
s,0

)
Uzs,0 · e2tzsdsz = U+

e,k · e2.

The singular integrals are interpreted principal values [29], similar to the Hilbert transform. The other integral
for p = 0 are convergent. The case where λe,k → 0 is not as singular as it appears at first sight, see discussion
below and remark 24.

4.2. Another family of eigenvector in the null space. The null space if defined by HV = 0. All
generalized eigenvectors with λ+e,k = 0 are in the null space. However in view of the fact that all functions
a(x)e0 ∈ V are in the null space of H0, it is natural to think that similar eigenvectors exists for H. It is the
case as shown below.

Start from the representation V (x) = f(x)e0 + αg(x)e1. A direct compassion shows that

0 = iHV =
(
−A∂x + E0(x)B +

√
n0(x)D

)
(f(x)e0 + g(x)e1)

=
√
n0(x)Df(x)e0 + (−A∂x + E0(x)B) g(x)e1.

In view of the definition of the matrices, one gets 0 = −α
√
n0(x)f(x)e2 − αg′(x)e2 − 1

2E0(x)αg(x)e2 =

α
(
−
√
n0(x)f(x)− g′(x)− 1

2E0(x)g(x)
)
e2 rewritten as exp (ϕ(x)/2) f(x) = −g′(x) + 1

2ϕ
′(x)g(x). Since f, g

and ϕ are 1-preriodic functions, the solution is

f = − (exp (−ϕ/2) g)
′
.

Such vectors will be denoted as

Vg = − (exp (−ϕ/2) g)
′
(·)e0 + αg(·)e1. (4.5)

This family is directly linked to the Gauss law.

Proposition 23. Assume U is orthogonal to Vg for all g ∈ H1(I)per. Then U satisfies the Gauss law.

Proof. By definition (3.6) of U , one has that

0 = (U, Vg) =

∫
I

(
− (exp (−ϕ(x)/2) g(x))

′
F (x) + αg(x)u0(x)

)
dx

=

∫
I

(
exp (−ϕ(x)/2) g(x)F ′(x) + αg(x)

∫
R

1

α
exp

(
−v

2

4

)
u(x, v)dv

)
dx.

Since it is true for all g, it shows that F ′(x) = − exp (ϕ(x)/2)
∫
R

1
α exp

(
−v

2

4

)
u(x, v)dv, which is the Gauss law

(2.6). The proof is ended.

4.3. Comment on the structural well posedness of the integral equations. With the proposed
approach, the construction of the generalized eigenvectors relies on the solution of an integral equation. To have
a better understanding we write them more explicitly in the case of study with the three zones.
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One has the explicit formulas

zone +: U+
s,p(x) · e2 = 1

tsα
exp

(
−2iπk

∫ x
0
µs(t)

−1dt

ts

)
exp

(
−µe(x)2

4

)
,

zone -: U−s,p(x) · e2 = 1
tsα

exp
(

2iπk
∫ x
0
µs(t)

−1dt

ts

)
exp

(
−µe(x)2

4

)
,

zone c: Us,p(x) · e2 = 1I{ae<x<be}
1
tsα

exp

(
−2iπk

∫ x
ae
µs(t)

−1dt

ts

)
exp

(
−µe(x)2

4

)
+1I{ae<x<be}

1
tsα

exp

(
2iπk

∫ x
ae
µs(t)

−1dt

ts

)
exp

(
−µe(x)2

4

)
= 1I{ae<x<be}

2
tsα

cos

(
2πk

∫ x
ae
µs(t)

−1dt

ts

)
exp

(
−µe(x)2

4

)
.

(4.6)

Using that 1
2µe(x)− ϕ(x) = e (it is the characteristic equation (3.19)), one gets

λe,ka(x) +
∑
p∈Z

P.V.

∫ ∞
e=−ϕ−

∫
I
a(y) exp

(
−2iπp

∫ y
x
µs(t)

−1dt

ts

)
dy

λs,p − λe,k
exp(−s)ds

ts
(4.7)

+
∑
p∈Z

P.V.

∫ ∞
e=−ϕ−

∫
I
a(y) exp

(
2iπp

∫ y
x
µs(t)

−1dt

ts

)
dy

λs,p − λe,k
exp(−s)ds

ts

+
∑
p∈Z

P.V.

∫ −ϕ−
e=−ϕ+

∫ be
ae

2a(y) cos
(

2πp
∫ y
0
µs(t)

−1dt

ts

)
dy

λs,p − λe,k
cos

(
2πp

∫ x
0
µs(t)

−1dt

ts

)
exp(−s)ds

ts

= i
1

te
exp

(
−2iπk

∫ x
0
µs(t)

−1dt

ts

)
exp (−e/2) .

Remark 24. Note that λe,k = − 2iπk
te

. In the case k 6= 0, it seems that there is a degeneracy for te → +∞. But
this degeneracy can be eliminated since the same 1/(te) show up in the right hand side.
Remark 25. To construct V −e,k and V ce,k, it is sufficient to change the right hand side.
Nevertheless two conditions seem necessary for this equation to make sense: one needs that the integrals written
as principal values [29] make sense individually (we call this structural well-posedness); one needs the sums to
be convergent. To save place we made no distinction between p = 0 and p 6= 0, so that all integrals are written
as principal values.
Proposition 26 (Structural well-posedness). Make the assumption 18. Then the equation (4.7) is structurally
well-posed.
Proof. One has to check the integrability at the boundaries of the integrals, and the monotony of λs,p.

Propositions 13 and 19 show that the weights exp(−s)ds
ts

are integrable near the limit points of the integral.
Except for p = 0 which poses no real problem, the variation of λs,p − λe,k is monotone in the two first integrals
so the principal values make sense immediatly. Concerning the third integral one can invoke proposition 20,
so te is strictly monotone in the interval (−ϕ+,−ϕ−). Moreover the weight 1/(te) vanishes at −ϕ− and the
integral vanishes at −ϕ+ since in this case ae = be = x0. Therefore all integrals/principal values make sense
individually. The proof is ended.
For iµ = λ and µ ∈ R, let us define the operator

Tµ(a) =
∑
p∈Z

P.V.

∫ ∞
e=−ϕ−

∫
I
a(y) exp

(
−2iπp

∫ y
x
µs(t)

−1dt

ts

)
dy

λs,p − iµ
exp(−s)ds

ts

+
∑
p∈Z

P.V.

∫ ∞
e=−ϕ−

∫
I
a(y) exp

(
2iπp

∫ y
x
µs(t)

−1dt

ts

)
dy

λs,p − iµ
exp(−s)ds

ts
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+
∑
p∈Z

P.V.

∫ −ϕ−
e=−ϕ+

∫
I

2a(y) cos
(

2πp
∫ y
0
µs(t)

−1dt

ts

)
dy

λs,p − iµ
cos

(
2πp

∫ x
0
µs(t)

−1dt

ts

)
exp(−s)ds

ts

and the right hand side

bkµ(x) = i
1

te
exp

(
−2iπk

∫ x
0
µs(t)

−1dt

ts

)
exp (−e/2) , iµ =

−2iπk

te
.

The equation writes

iµaµ + Tµ(aµ) = bkµ. (4.8)

Remark 27. The equation (4.8) poses important difficulties. It is nevertheless possible in certain cases to show
the summability in L(L2(R)) of the series that define Tµ. In this work we do not pursue in this direction and
focus more on the exact solution in the homogeneous case where everything becomes much simpler. Moreover
some of the methods which can be used to show the summability in the general situation are by comparison with
the homogeneous case which is detailed below.

5. The homogeneous case ϕ ≡ 0. If ϕ(x) = 0 for all x, the problem is homogeneous in space and all
calculations become explicit because of the orthogonality of usual Fourier modes. The third integral vanishes
since ϕ− = ϕ+. Moreover ts = 1√

2s
and

1

ts

∫ x

0

ds

µ(s)
= x ∀s.

Proposition 28. The solution of the integral equation is a(x) = γ exp (2iπkx) with(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
γ = 2iπk exp

(
−λ

2

4

)
. (5.1)

Remark 29. The principal value is bounded [6]∣∣∣∣P.V. ∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

∣∣∣∣ ≤ (2π)
1
2 , ∀λ ∈ R.

So γ and a are well defined for k 6= 0.
Proof. Plug in the integral equation (4.4) and obtain after simplification due to the orthogonality of usual
Fourier modes

−2iπk
√

2eγ − P.V.
∫ ∞
0

γ
√

2s

−2iπk
√

2s− (−2iπk)
√

2e
exp(−s)ds

+P.V.

∫ ∞
0

iγ
√

2s

2iπk
√

2s− (−2iπk)
√

2e
exp(−s)ds =

√
2e exp (−e/2)

that is

−4π2k2
√

2eγ −

(
P.V.

∫ ∞
0

√
2s√

2s−
√

2e
exp(−s)ds

)
γ

−

(
P.V.

∫ ∞
0

√
2s

−
√

2s−
√

2e

exp(−s)ds
ts

)
γ = −2iπk

√
2e exp (−e/2) .

Make the change of variable
√

2e = λ,
√

2s = µ > 0 in the first integral and −
√

2s = µ < 0 in the second
integral

4π2k2λγ+

(
P.V.

∫ ∞
0

µ

µ− λ
exp

(
−µ

2

2

)
µdµ

)
γ+

(
P.V.

∫ ∞
0

µ

−µ− λ
exp

(
−µ

2

2

)
µdµ

)
γ = 2iπkλ exp

(
−λ

2

4

)
.
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One obtains (
4π2k2λ+ P.V.

∫ ∞
−∞

µ2

µ− λ
exp

(
−µ

2

2

)
dµ

)
γ = 2iπkλ exp

(
−λ

2

4

)
.

Note that

P.V.

∫ ∞
−∞

µ2

µ− λ
exp

(
−µ

2

2

)
dµ = λP.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

One gets after simplification by λ the simpler expression(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
γ = 2iπk exp

(
−λ

2

4

)
.

The proof is ended.
So, up to the fact that the problem is posed in I = [0, 1] instead of [0, 2π], the generalized eigenvectors are the
same as the ones in in [6] (moreover with k changed in −k due to a different normalization).
Proposition 30. The generalized eigenvectors satisfy(

4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
V +
e,k (5.2)

=

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
Uλ exp (2iπkx)

+2iπk exp

(
−λ

2

4

)
exp (2iπkx)− exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
exp (2iπkx)

and (
4π2k2 + P.V.

∫ ∞
−∞

µ

µ+ λ
exp

(
−µ

2

2

)
dµ

)
V −e,k (5.3)

=

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ+ λ
exp

(
−µ

2

2

)
dµ

)
Uλ exp (2iπkx)

+2iπk exp

(
−λ

2

4

)
exp (2iπkx)− exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
exp (2iπkx) .

Proof. Considering the eigenvector (4.2), one has that

V +
e,k = U√2e exp (2iπkx) + γe0 exp (2ikx)

+

P.V. ∫ ∞
0

γµ exp
(
−µ

2

4

)
−2iπk(2s)

1
2 + 2iπk(2e)

1
2

U√2s

1√
2s
ds

 exp (2iπkx)

+

∫ ∞
0

γµ exp
(
−µ

2

4

)
2iπk(2s)

1
2 + 2iπk(2e)

1
2

exp(−s)U−√2s

1√
2s
ds

 exp (2iπkx) .

The same change of variable λ =
√

2e (and µ =
√

2s) yields

V +
e,k = Uλ exp (2iπkx) + γe0 exp (2iπkx)
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− γ

2iπk

(
P.V.

∫ ∞
0

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
exp (2iπkx)− γ

2iπk

(∫ ∞
0

µ

−µ− λ
exp

(
−µ

2

4

)
U−µdµ

)
exp (2iπkx)

= Uλ exp (2iπkx) + γe0 exp (2iπkx)− γ

2iπk

(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
exp (2iπkx) .

Another more explicit form is possible with (5.1). After multiplication by 4π2k2 +P.V.
∫∞
−∞

µ
µ−λexp

(
−µ

2

2

)
dµ,

it writes (
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
V +
e,k (5.4)

=

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
Uλ exp (2iπkx)

+2iπk exp

(
−λ

2

4

)
exp (2iπkx)− exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
exp (2iπkx)

which is the claim. A similar verification yields the other formula. The proof is ended.
The spectral completeness of the eigenvectors V ±e,k can be proved, the difficulty being to find the measure.
Hopefully we can use a formula proved in [24]. To simplify and unify the notations, we note the right hand side
of (5.2-5.3)

Vλ,k =

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
Uλ

+2iπk exp

(
−λ

2

4

)
e0 − exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµdµ

)
. (5.5)

This definition is for the Fourier mode k 6= 0 and λ ∈ R.

Set εkI (λ) = 1
4π2k2λ exp

(
−λ

2

2

)
,

εkR(λ) = 1 +
1

π
P.V.

∫
R

εI(µ)

µ− λ
dµ =

1

4π2k2

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
,

|εk(λ)|2 = |εkR(λ)|2 + |εkI (λ)|2

and v0,k = (−2iπk, α, 0, 0, . . . )t which is exactly (4.5) for g = exp (2iπkx). Notice that for all λ

Vλ,k · v0,k = −4π2k2 exp

(
−λ

2

4

)
+ α

(
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
1

α
exp

(
−λ

2

4

)

−α exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
1

α
exp

(
−µ

2

4

)
exp

(
−µ

2

4

)
dµ

)
= 0

which is interpreted as the standard orthogonality condition between eigenvectors (with different eigenvalues)
of an hermitian operator.
Theorem 31. For all k 6= 0, and for all W,Z ∈ l2 one has

W ·W =
|W · v0,k|2

4π2k2 + α2
+

∫
R

|W · Vλ,k|2

(2πk)4 |εk(λ)|2
dλ.

Remark 32. This formula is identified as a representation of the identity for the spectral representation of
unbounded hermitian operators, which is a key object in scattering theory.
The purely technical proof, based on the inverse formula in [24], is postponed to the appendix.
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6. Moller wave operators. Once the eigenvectors are constructed, it is possible to define in the general
case formally a Moller wave operator as

LU =
∑
z

∑
p

∫
qzs,p

(
U, V zs,p

)
Uzs,pt

z
sd
z
s (6.1)

where qzs,p is a weight which guarantees the summability of the formula. Under this form the Moller operator
is just a change of basis formula.
Remark 33. The wave operators are traditionally defined as unitary operators [15, 19]. In the homogeneous
case, this can be achieved with a convenient choice of the weight qzs,k dictated by the completeness Theorem 31.
Nevertheless we do not pursue in this direction since it is not needed for the analysis below.
The main formal property is the following.
Theorem 34. Assume U is solution to ∂tU = iHU . Then W = LU is solution to ∂tW = iH0W .
Proof. Indeed

∂tW =
∑
z

∑
p

∫
qzs,p

(
iHU, V zs,p

)
Uzs,pt

z
sd
z
s = i

∑
z

∑
p

∫
qzs,p

(
U,HV zs,p

)
Uzs,pt

z
sd
z
s

= i
∑
z

∑
p

∫
qzs,p

(
U, V zs,p

)
λzs,pU

z
s,pt

z
sd
z
s =

∑
z

∑
p

∫
qzs,p

(
U, V zs,p

)
iH0U

z
s,pt

z
sd
z
s = iH0W.

The proof is ended.

7. Morrison transform and linear Landau damping. In the homogeneous case, the Moller wave
operator defined with the general change of basis function boils down to a simple integro-differential operator
for a kinetic function. Consider u(x, v) = U(x) · Uv and Lu(x, v) = (LU)(x) · Uv.
Proposition 35. Consider the homogeneous case. Take qzs,k = 4π2k2 + P.V.

∫∞
−∞

µ
µ−λexp

(
−µ

2

2

)
dµ. Assume

the Gauss law ∂xF (x) = −
∫
u(x, v)M(v)dv is satisfied .

Then one has the formula

Lu =

(
−∂xx +

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− v
exp

(
−µ

2

2

)
dµ

))
u(x, v)

−v exp

(
−v

2

4

)(
P.V.

∫
R

1

µ− v
exp

(
−µ

2

4

)
u(x, µ)dµ

)
which is the Morrison transform [6, 24].
Proof. The Fourier decomposition holds in the homogeneous case. Using (5.5) one gets

LU =
∑
p

∫
R

(U, Vλ,p)Uλ exp (2ipx) dλ.

One has

(U, Vλ,p) =

(
U,

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
Uλ exp (2ipx)

+2iπk exp

(
−λ

2

4

)
exp (2ipx) e0 − exp

(
−λ

2

4

)(
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
Uµ exp (2ipx) dµ

))
.

Using the Gauss law one gets

(U, Vλ,p) =

(
U,

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
Uλ exp (2ipx)

−λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)
Uµ exp (2ipx) dµ

))
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=

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
(U,Uλ exp (2ipx))

−λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)
(U,Uµ exp (2ipx) dµ

)
.

Therefore

LU =

∫
R

∑
p

[(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
(U,Uλ exp (2iπpx))

−λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)∑
p

∫
R

(U,Uµ exp (2iπpx)) dµ

)]
Uλ exp (2ipx) dλ,

that is

Lu(x, λ) =
∑
p

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
(U,Uλ exp (2iπpx)) exp (2ipx)

−
∑
p

λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)∑
p

∫
R

(U,Uµ exp (2iπpx)) dµ

)
exp (2ipx)

=

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
U · Uλ − λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)
U · Uµdµ

)

=

(
4π2p2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
u(x, λ)− λ exp

(
−λ

2

4

)(
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)
u(x, µ)dµ

)
.

The proof is ended.
The kinetic counterpart of the formal proposition 34 is as follows.
Proposition 36. Take u that satisfies

∂tu+ v∂xu+ vME = 0

together with the Gauss law ∂xF (t, x) +
∫
R u(t, x, v)M(v)dv = 0. Then h = Lu satisfies the transport equation

in free space

∂th+ v∂xh = 0. (7.1)

Proof. Let us start from ∂tu+ v∂xu+ vM(v)E = 0. Since ∂tL = L∂t one has ∂th+L (v∂xu) +L (vM(v)E) = 0.
The second term is

L (v∂xu) = v∂x ((−∂xx + q(v))u)− vM(v)P.V.

∫
R

1

w − v
w∂xu(x,w)M(w)dw

= v∂xLu− vM(v)

∫
R
∂xu(x,w)M(w)dw = v∂xLu− vM(v)∂x

∫
R
u(x,w)M(w)dw

where we have used that w
w−v = v

w−v + 1. The last term is

L (vM(v)E) = vM(v)(−∂xx + q(v))E − EvM(v)P.V.

∫
R

w

w − v
M(w)2dw
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= vM(v)(−∂xx + q(v))E − EvM(v)q(v) = −vM(v)∂xxE.

The Gauss law ∂xE +
∫
R u(w)M(v)dw = 0 implies cancellations in the sum of these two terms which simplifies

into L (v∂xu) + L (vM(v)E) = v∂xLu = v∂xh. The proof is ended.
This formula finally yields a proof of the linear Landau damping phenomenon for an initial data with no
contribution on the Fourier mode k = 0. In this case it is known that one can write

E(t, x) =

∫
I

∫
R
Kx(y, v)u(t, y, v)dydv

where Kx is a smooth kernel [6] in the range of L∗. One gets formally

E(t, x) = (u,Kx) =
(
Lu,L−∗Kx

)
=
(
exp (iH0t)Lu0, L

−∗Kx

)
=

∫
I

∫
R
u0(t, y − vt, v)(L−∗Kx)(y, v)dydv.

It is easy to prove under this form that the electric field tends to zero for t→ +∞, with a rate that is function
of the regularity of Lu0. Details are in [25, 24, 6].
Remark 37. In the general case, the use of the Moller operator is ultimately a consequence of the well-
posedness of the integral equation (4.3) or (4.7). A necessary condition seems to be that the travel time is a
strictly monotone function of the characteristic label. Further research will devoted to the study of this equation.
Remark 38. The restriction of a Bolztmannian sationary state can probably be relaxed using other orthogonal
polynomials [6]. The multivalued case, that is f0(x, v) = F (v2/2 − ϕ(x)) with a multivalued F , needs probably
different ideas.
Remark 39. The use of the methods pursued in this work in conjunction with non linear techniques such as
[20, 21, 22, 23, 26, 28, 10, 11] is an open problem. We also quote possible connections with other techniques
such as [8, 3].

Appendix A. Proof of Theorem 31.
The proof is performed in several steps.
• The vector W ∈ l2 is decomposed as W =

W ·v0,k
4π2k2+α2 v0,k + Ŵ . The orthogonality W · v0,k = 0 yields that

W ·W =
|W · v0,k|2

4π2k2 + α2
+ Ŵ · Ŵ . (A.1)

So it remains to prove that Ŵ · Ŵ =
∫
R

|W ·Vλ,k|2

(2πk)4|εk(λ)|2 dλ.

• This is actually a consequence of Theorem (G4) in [24]. Let us use the notations of the reference and restrict
the proof to its algebraic aspects.
Define the Hilbert transform H[f ](λ) = 1

π

∫
R

1
µ−λf(µ)dµ and the operators G and Ĝ by

G(g) = εkRg + εKI H[g] and Ĝ(g) =
1

|εk|2
(
εkRg − εKI H[g]

)
.

The formula of Theorem (G4) writes Ĝ(G(g)) = g from which we deduce G(Ĝ(g)) = g. It yields the integral
form ∫

R
Ĝ(g)(λ)G∗(h)(λ)dλ =

∫
R
g(λ)h(λ)dλ (A.2)

with natural integrability conditions for which we refer to [24].

• Define û(λ) = Ŵ · Uλ and g(λ) = exp
(
−λ

2

4

)
û(λ). One has that

Ĝ(g)(λ) =
1

|εk|2
(
εkRg − εKI H[g]

)

=
exp

(
−λ

2

4

)
4π2k2|εk|2

((
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
û(λ)
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−λ exp

(
−λ

2

4

)
P.V.

∫
R

1

µ− λ
exp

(
−µ

2

4

)
û(µ)dµ

)

=
exp

(
−λ

2

4

)
|εk|2

((
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
û(λ)−

exp

(
−λ

2

4

)
P.V.

∫
R

µ

µ− λ
exp

(
−µ

2

4

)
û(µ)dµ+ exp

(
−λ

2

4

)∫
R

exp

(
−µ

2

4

)
û(µ)dµ

)

=
exp

(
−λ

2

4

)
4π2k2|εk|2

(
Ŵ ·

(
Vλ,k − 2iπk exp

(
−λ

2

4

)
e0

)
+ exp

(
−λ

2

4

)∫
R

exp

(
−µ

2

4

)
û(µ)dµ

)
.

Since one has that

exp

(
−λ

2

4

)∫
exp

(
−µ

2

4

)
u(µ)dµ = exp

(
−λ

2

4

)∫
exp

(
−µ

2

4

)
W · Uλdµ = exp

(
−λ

2

4

)
αW · e1

it yields

Ŵ ·
(
−2iπk exp

(
−λ

2

4

)
e0

)
+ exp

(
−λ

2

4

)∫
exp

(
−µ

2

4

)
u(µ)dµ

= exp

(
−λ

2

4

)
W · (−2iπke0 + αe1) = exp

(
−λ

2

4

)
W · v0,k = 0.

Therefore

Ĝ(g)(λ) =
exp

(
−λ

2

4

)
4π2k2|εk|2

Ŵ · Vλ,k. (A.3)

• Define h(λ) = exp
(

+λ2

4

)
û(λ). Then

G∗(h) =
exp

(
λ2

4

)
4πk2

((
4π2k2 + P.V.

∫ ∞
−∞

µ

µ− λ
exp

(
−µ

2

2

)
dµ

)
û(λ)

− exp

(
−λ

2

4

)
P.V.

∫
µ

µ− λ
exp

(
−µ

2

4

)
û(µ)dµ

)
that is

G(g)(λ) =
exp

(
+λ2

4

)
4π2k2

Ŵ · Vλ,k. (A.4)

• Plug (A.3-A.4) in (A.2) ∫
R

1

(2πk)4|εk|2
∣∣∣Ŵ · Vλ,k∣∣∣2 dλ =

∫
g(λ)h(λ)dλ

=

∫
exp

(
−λ

2

4

)
û(λ)exp

(
+
λ2

4

)
û(λ)dλ =

∫ ∣∣∣Ŵ · Vλ∣∣∣2 dλ = Ŵ · Ŵ

using the orthogonality of the Hermite functions (3.14). Plug in (A.1). The proof is ended.
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