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Carrier-grade networks comprise several layers where different protocols coexist. Nowadays, most of these networks have different control planes to manage routing on different layers, leading to a suboptimal use of the network resources and additional operational costs. However, some routers are able to encapsulate, decapsulate and convert protocols and act as a liaison between these layers. A unified control plane would be useful to optimize the use of the network resources and automate the routing configurations. Software-Defined Networking (SDN) based architectures, such as OpenFlow, offer a chance to design such a control plane. One of the most important problems to deal with in this design is the path computation process. Classical path computation algorithms cannot resolve the problem as they do not take into account encapsulations and conversions of protocols. In this paper, we propose algorithms to solve this problem and study several cases: Path computation without bandwidth constraint, under bandwidth constraint and under other Quality of Service constraints. We study the complexity and the scalability of our algorithms and evaluate their performances on real topologies. The results show that they outperform the previous ones proposed in the literature.

I. INTRODUCTION

Carrier-grade networks generally encompass several layers involving different technologies and protocols. To support some services, such as a Virtual Private Network (VPN), a path across network equipments must be identified and the equipments be configured accordingly. Under stringent requirements of Quality of Service (QoS -e.g., end-to-end delay, geographic zone avoidance, etc.), computing such a path within a single layer is not always possible. Hence, one of the key challenges is to determine the end-to-end path that uses the appropriate adaptation functions over the protocols: The mapping from a protocol to another being realized through encapsulation (e.g., Ethernet over IP/MPLS [START_REF] Martini | RFC4448 -Encapsulation Methods for Transport of Ethernet over MPLS Networks[END_REF]), decapsulation (the reverse operation) or conversion (e.g., IPv4 to IPv6 [START_REF] Baker | RFC6144 -Framework for IPv4/IPv6 Translation[END_REF]) functions. Consequently, the path computation process should take into account the adaptation function capabilities of the network equipments in order to ensure path feasibility: If a protocol is encapsulated in another one, it must be decapsulated (or unwrapped) further in the path. If several encapsulations are nested, the corresponding decapsulations must occur in the right order. Here, the multi-layer context should be taken in a broad sense: Presence of several protocols and technologies that can be nested, encapsulated, converted, etc.
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Dealing with protocol heterogeneity becomes increasingly important nowadays. In addition to the IPv4/IPv6 migration, this heterogeneity appears in tunneling, some architectures (e.g., The Pseudo-Wire architecture [START_REF] Bryant | RFC3985 -Pseudo Wire Emulation Edge-to-Edge[END_REF] allows the emulation -and thus the encapsulation -of lower layer protocols over Packet-Switched Networks), hybrid networks (e.g., National Research and Education Networks -NRENs -which may have optical and IP interconnection points), and last but not least, most carrier-grade networks, which have separate control planes for IP and Transport layers. In all these contexts, a unified control plane would be very useful for optimizing the network resources and reduce operational and management costs.

OpenFlow is a chance to design such a control plane. Some previous works [START_REF] Das | Packet and circuit network convergence with openflow[END_REF], [START_REF] Liu | Field trial of an openflow-based unified control plane for multilayer multigranularity optical switching networks[END_REF] present an OpenFlow-based architecture to achieve this challenge, but they only focus on the convergence of packet and circuit networks. Other works tackle the traffic engineering problem in SDNs but circumscribe it on a single layer [START_REF] Agarwal | Traffic engineering in software defined networks[END_REF] or in the IPv4/IPv6 migration context [START_REF] Li | Flexible traffic engineering: When openflow meets multi-protocol ip-forwarding[END_REF]. However, an important problem to solve remains the path computation process in a multi-layer context. Taking into account the adaptation functions is not trivial and classical algorithms such as Dijkstra's one [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] cannot achieve the task as they do not handle these functions.

Here, we design several algorithms to compute shortest paths dealing with protocol changes and adaptation functions.

Our contributions:

1) We widely generalize the model and the polynomial algorithms described in Lamali et al. [START_REF] Lamali | Path computation in multilayer multi-domain networks[END_REF], [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF] to perform path computation in multi-layer networks (without bandwidth constraint). Our model takes into account all possible types of protocol changes (encapsulation, conversion, etc.) and any additive metric. We drastically improve the algorithm complexity and realize the first implementation, showing their efficiency on two real topologies. 2) For simulation purposes, we empirically study the distribution of adaptation functions over the network nodes and its impact on feasible path existence. We exhibit a phase transition phenomenon, i.e., a gap where the probability of existence of a feasible path hugely increases. 3) We prove that path computation in multi-layer networks under bandwidth constraint is NP-complete even with two protocols and on symmetric graphs, thus improving a result of Kuipers and Dijkstra [START_REF] Kuipers | Path selection in multi-layer networks[END_REF].

We also obtain results on the complexity of some subproblems: It is polynomial on Directed Acyclic Graphs (DAG) and the general problem is not approximable. We propose a new heuristic to resolve the problem and show its efficiency through simulations. 4) We propose the first algorithm to perform path computation in multi-layer networks under several QoS constraints by adapting the Self-Adaptive Multiple Constraints Routing Algorithm (SAMCRA -Van Mieghem and Kuipers [START_REF] Mieghem | Concepts of exact QoS routing algorithms[END_REF]) to the multi-layer context. We study its scalability through simulations.

The paper is organized as follows: Section II describes the problem of path computation in multi-layer networks and recalls the related work; Section III formalizes the problem and describes our model of multi-layer network; Section IV proposes algorithms to perform path computation without bandwidth constraint and shows their efficiency through simulations, it also studies the phase transition phenomenon in multi-layer networks; Section V studies the complexity of path computation under bandwidth constraint and proposes heuristic solutions to tackle the problem; Section VI proposes the first algorithm computing paths under additive QoS constraints and studies its scalability; finally, Section VII concludes the paper.

II. PATH COMPUTATION IN MULTI-LAYER NETWORKS

A. Connectivity in multi-layer networks

We aim to present the different concepts of path computation in multi-layer networks through an example. While this example relates to multi-domain multi-layer networks, the underlying problem of path computation is the same as in a single domain network 1 . Figure 1 (inspired by the Inter-Provider Reference Model [START_REF] Bocci | RFC5659 -An Architecture for Multi-Segment Pseudowire Emulation Edge-to-Edge[END_REF]) depicts a network involving multiple domains and adaptation function capabilities of network equipments: A company owning a Local Area Network (LAN) wishes the Virtual Machines (VMs) of a data-center to be within the same routing domain (for instance through a Layer 2 VPN or a Generic Routing Encapsulation tunnel). Hence, the switches of the LAN and the VMs of the datacenter must communicate through Ethernet datagrams and a path has to be determined across the Domains 1 and 2.

On Figure 1 1 The algorithms presented in this paper can be applied in a single-domain or a multi-domain context. For the latter, however, a mechanism for sharing the network information (such as the topology) is needed. This can be done through a PCE for example [START_REF] Farrel | RFC4655 -A Path Computation Element (PCE)-Based Architecture[END_REF].

This configuration leads to a decapsulation of an IPv6 packet from an Ethernet datagram (by the border router of Domain 2) whereas at this stage the datagram encapsulates IPv4 packets. This example depicts the constraints to comply with when computing a multi-layer (and multi-domain, in this case) path: Being physically linked is not sufficient to establish connectivity. Protocol continuity (by analogy with wavelength continuity in optical networks) must hold and the adaptation functions should occur in the right order. Moreover, feasible paths can involve loops and their subpaths are not necessary feasible [START_REF] Kuipers | Path selection in multi-layer networks[END_REF], [START_REF] Dijkstra | A path finding implementation for multi-layer networks[END_REF]. Nowadays, such paths are manually determined and configurations are operated and applied by scripts.

B. Related work

The initial works dealing with protocol and technology heterogeneity circumscribed the problem at the optical layer. For instance, Chlamtac et al. [START_REF] Chlamtac | Lightpath (Wavelength) Routing in Large WDM Networks[END_REF] described a model and algorithms to compute a path under wavelength continuity constraints. Zhu et al. [START_REF] Zhu | A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks[END_REF] addressed the same problem in WDM mesh networks tackling traffic grooming issues. In [START_REF] Gong | Optimal and Efficient End-to-End Path Computation in Multi-Layer Networks[END_REF], Gong and Jabbari provided an algorithm to compute an optimal path under constraints on several layers: wavelength continuity, label continuity, etc. However, the models of these past works are not adapted to the problem of nested encapsulation and decapsulation capabilities for which a kind of stack mechanism is needed. In [START_REF] Dijkstra | A multi-layer network model based on ITU-T G.805[END_REF], Dijkstra et al. addressed this issue in the context of the ITU-T G.805 recommendations on adaptation functions. They stressed the lack of solutions on path computation. Kuipers and Dijkstra [START_REF] Kuipers | Path selection in multi-layer networks[END_REF] demonstrated that the problem of path computation with encapsulation and decapsulation capabilities is NP-complete under bandwidth constraint. They proposed a Breadth-First Search (BFS) algorithm that explores all possible paths until finding a feasible one. In [START_REF] Lamali | Path computation in multilayer multi-domain networks[END_REF], [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF], Lamali et al. demonstrated that the problem is polynomial if the bandwidth constraint is relaxed. Their approach was to model the network as a Push-Down Automaton and to use automata and language theory tools to compute a shortest feasible path, but only considering the number of hops or adaptation functions. More recently, Iqbal et al. [START_REF] Iqbal | Technology-aware multidomain multi-layer routing[END_REF] underlined the need of path computation algorithms in NRENs. They proposed a new matrixbased model for multi-layer networks and algorithms based on k-shortest paths and LOOK-AHEAD methods. However, the model deals with technologies2 instead of protocols. Thus, the nested protocols are not transparent to the nodes. Moreover, the proposed exact algorithm is exponential and can compute only loopless feasible paths.

C. Proposed approach

Our goal is to study the path computation problem in a multi-layer context and to propose efficient algorithms to resolve it. To this end, we focus on three cases: Path computation without bandwidth constraint (by adapting the language theoretic approach of Lamali et al. [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF]), under bandwidth constraint (by using graph transformation in order to overcome the problem complexity) and under several QoS constraints. The simulations showing the efficiency of our algorithms follow a methodology based on the probabilistic distribution of the adaptation functions over the nodes.

III. MODEL AND PROBLEM FORMALIZATION

This section describes a mathematical model of multi-layer networks and formalizes the notion of path feasibility.

A. Multi-layer network model

Notation convention. In order to avoid confusion, lowercase letters denote protocols (e.g., a, b, c, x, y) or functions (e.g., f, h, ). Capital letters denote nodes and links (e.g., U, V, E). Finally, calligraphic letters denote sets (e.g., G, V, E).

We consider a multi-layer network as a 4-tuple N = (G, A, F, h) where: E) is a directed graph modeling the network topology. The set of nodes V models the routers of the network. The set of edges E models the physical links between the routers.

• G = (V,
• A = {a, b, c, . . . } is the set of protocols available in the network, but not necessarily at each router.

• For each node U ∈ V, F(U ) is the set of adaptation functions available on node U . These functions are:

• Conversion: A protocol a is converted into a protocol b without any change of the possible underlying protocols. This function is denoted by (a → b). E.g., Wavelength conversion on the optical layer, IPv4 to IPv6, etc. • Passive function: A protocol a is left as it is. It is a classical retransmission without any protocol change and can be considered as a special case of protocol conversion where a = b. Thus it is denoted by (a → a).

• Encapsulation: A protocol a is encapsulated in a protocol b. It is denoted by (a → ab). • Decapsulation: A protocol a is decapsulated from a protocol b. It is denoted by (a → ab). • h : V × F × V → + is the weight function. The value h(U, f, V ) (where U, V ∈ V and f ∈ F(U )
) is the cost of using the link (U, V ) with the adaptation function f on U . Hence, function h allows representing any additive metric either associated only to the links or to both links and adaptation functions.

B. Path feasibility

Let (S, D) be a pair of nodes in G corresponding to the source and the destination of the path to be computed. We consider a path from S to D as a sequence of nodes and adaptation functions Sf

0 U 1 f 1 U 2 f 2 . . . U n f n D where each U i , i = 1, . . . , n, is a node and each f i is an adaptation function (f 0 being fictitious). A path is feasible if: 1) The sequence SU 1 U 2 . . . U n D is a path in G = (V, E)
and each f i ∈ F(U i ); 2) Each encapsulated protocol is decapsulated before reaching D according to its encapsulation order and protocol continuity must hold (i.e., if the sequence contains a function

f i s.t. f i = (a → b), a, b ∈ A, then f i+1 = (b → a ) or f i+1 = (b → ba ) or f i+1 = (a → a b), a ∈ A).
Actually, the protocol sequences of feasible paths can be characterized as a well-parenthesized language [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF].

IV. PATH COMPUTATION WITHOUT BANDWIDTH

CONSTRAINT

This section proposes a polynomial algorithm to resolve the path computation problem without bandwidth constraint and evaluates it through simulations.

A. A polynomial algorithm for path computation

Lamali et al. [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF] proposed a language theoretic approach to compute a shortest feasible path (involving encapsulations and decapsulations of protocols) in a multi-layer network. The metric considered was the number of hops or of encapsulations in the path. The approach comprises the following steps: 1) Consider the set of protocols as an alphabet and convert the multi-layer network into a Push-Down Automaton (PDA); 2) If the considered metric is the number of encapsulations, transform the automaton in order to bypass passive transitions; 3) Convert the PDA to a Context-Free Grammar (CFG); 4) Compute the shortest word generated by the CFG. It is the protocol sequence of a shortest path; 5) Compute a shortest path from this sequence.

We made several improvements to these algorithms:

• The PDA building is modified in order to support protocol conversion by adding a new transition type;

• The PDA transitions are weighted in order to reflect the weight function. Thus, our algorithm computes the shortest path according to any additive metric (instead of just the number of hops or encapsulations);

• The PDA transformation is no longer useful thanks to the weight function: Simply put h(U, f, V ) = 1 (where U, V ∈ V and f ∈ F(U )) for all triples where f is an encapsulation, and h(U, f, V ) = 0 for all other triples. It is also possible to set different weights to each type of encapsulation and minimize the path cost according to these weights;

• The conversion of the PDA into a CFG is adapted:

As in [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF], each transition from the PDA is converted into a production rule set in the CFG according to a method described in [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF]. However, the transition weights are assigned to the corresponding production rules;

• Step 4 is different: Since the production rules are weighted, the goal is no longer to compute the shortest word but the word having the minimum weight derivation tree. This is done thanks to Knuth's algorithm described in [START_REF] Knuth | A Generalization of Dijkstra's Algorithm[END_REF]. This word corresponds to the protocol sequence of a shortest path to compute;

• The algorithm computing the path matching the protocol sequence is modified in order to take into account the weights.

Due to the lack of space, we cannot detail our improved algorithm. The interested reader can find it (together with its correctness proof and complexity study) in Appendix A.

Additionally to these improvements, the algorithm complexity is drastically decreased. In [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF], Step 4 has a complexity of O(|A| 8 × |V| 7 ) in the worst case, which is the highest complexity in the whole process. Implementing Knuth's algorithm with Fibonacci heaps gives an O(|Q| log |Q| + |R|) complexity, where |Q| is the number of nonterminals in the CFG and |R| is the number of production rules [START_REF] Fredman | Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms[END_REF]. Since

|Q| = O(|A| 3 × |V| 2 ) and |R| = O(|A| 5 × |V| 2 × |E|) (see Appendix A
), the complexity of the whole process is:

O |A| 5 × |V | 2 × |E| This is a significant improvement compared to the complexity O(|A| 8 × |V| 7 ) in [10].

B. Simulations

We implemented our algorithm (called PDA) and compared it to a classical BFS approach.

1) Networks used for the simulations and methodology: Large multi-layer topologies are generally not available. Some public ones as the Internet2 network [START_REF] Summerhill | The new internet2 network[END_REF] are not large enough to show the scaling of our algorithm. Thus we performed simulations on two topologies described in [START_REF] Mahajan | Inferring link weights using end-to-end measurements[END_REF]: Since these topologies are not layered, the adaptation functions are randomly allocated to the nodes. For an alphabet A, there are 3|A| 2 possible adaptation functions (for each ordered pair of protocols: a conversion, an encapsulation and a decapsulation). For each node U , each of these adaptation functions is available on U with probability p. The source and the destination nodes are the diameter extremities, which corresponds to 5 (resp. 10) hops for Topology T 1 (resp. T 2).

• Topology T 1 is
2) Phase transition in path feasibility: Depending on the network topology and the adaptation function distribution, there is not always a feasible path. It is interesting to know the probability of a feasible path existence according to probability p in order to set appropriate parameters for the simulations. In case of path existence, knowing the probability that the shortest one involves loops allows comparing the different algorithms (some of them allow loops and others do not). To compute this probability, we performed 200 runs for each value of p and counted the number of times there was a feasible path.

Figure 2 shows the evolution of feasible path existence probability according to p and the proportion of shortest paths that involve loops. Not surprisingly, the probability of feasible path existence grows according to p. On both topologies, the probability of path existence reaches 50% when p = 0.22 and follows a phase transition phenomenon. For example, in the interval p ∈ [0.10, 0.38], the probability of path existence in Topology T 1 grows from 5% to 90%. This interval is the most suitable to perform simulations. The phase transition phenomenon also holds with more than 2 protocols. The more the number of protocols is high, the more the phase transition is shifted to the left. If there are few feasible paths (for small p), the probability that the shortest ones involve loops is high. However, this probability quickly decreases. For example, for p > 18%, the proportion of shortest paths involving loops is less than 20% in Topology T 1. The trend of this proportion is not clear in T 2, however it is less than 21% if p > 0.22. The phase transition phenomenon can be seen in [START_REF] Iqbal | Technology-aware multidomain multi-layer routing[END_REF]. But the results consider only loopless paths and the distribution deals with technologies rather than adaptation functions.

3) Simulation results: Our algorithm is compared to a classical BFS which explores all possible paths until reaching the destination. During the exploration process, all dominated 3 paths are deleted. BFS can be seen as a version of the algorithm in [START_REF] Kuipers | Path selection in multi-layer networks[END_REF] where the bandwidth constraint is relaxed. The first results showed that BFS algorithm is extremely slow even for small values of p (processing time of the order of several hours). It was impossible to perform a comparison with our algorithm. Due to this tremendous running time, we fixed a maximum length to the explored paths by BFS algorithm. If a path exceeds 10 hops (resp. 14 hops) on Topology T 1 (resp. T 2), it is deleted and no more considered. We performed 100 runs for each value of p and averaged the processing time. Figure 3 shows the processing time of PDA algorithm and BFS algorithm on Topologies T 1 and T 2 according to the values of p. For small values of p (< 0.22 for T 1 and < 0.04 for T 2) BFS algorithm is faster than PDA. However, the processing time of BFS explodes. We cannot put it on Figure 3 because it would be unreadable. For example, the processing time of BFS algorithm on Topology T 2 for p = 0.24 is more than 14 minutes, while that of PDA algorithm is 10 seconds. On Topology T 1, for p = 0.38, the processing time of BFS algorithm is more than 7 minutes, while that of PDA algorithm is 7 seconds. These results show that our algorithm clearly outperforms the BFS approach.

V. ADDRESSING BANDWIDTH CONSTRAINT

This section studies the complexity of path computation under bandwidth constraint and proposes heuristic solutions to resolve the problem.

A. Problem formalization

For Traffic Engineering purposes, a feasible path may be constrained by a minimal bandwidth. But it is possible that feasible paths in a multi-layer network involve loops (i.e., involving the same link several times but using different protocols). It implies that the bandwidth constraint is no longer prunable: Even if the links with not enough bandwidth are deleted by topology filtering prior to path computation, other links can have enough bandwidth if they are selected once but not if more. For example, if a link has a capacity of 10Gbps and the bandwidth constraint is 5Gbps, then this link cannot 3 In this context, a path dominates another one if they have the same extremities and the same protocol stack, and the first path is shorter. be crossed more than twice. The (optimization) problem of computing the shortest path in a multi-layer network under bandwidth constraint is defined as follows:

min h(P) = (U,f,V )∈P h(U, f, V ) s.t.      P is a feasible path between S and D min E∈P q b (E) nb(E) ≥ q min b (1)
where nb(E) is the number of times a link E is crossed by path P, q b (E) is the bandwidth capacity of E and q min b is the bandwidth constraint.

B. Path computation complexity under bandwidth constraint

The bandwidth constraint impacts the complexity of feasible path computation. In a single-layer network, computing a path under bandwidth constraint is trivial: It suffices to prune all the links without enough bandwidth. This is no longer possible in a multi-layer network. In fact, the decision problem is NP-complete as shown by Kuipers and Dijkstra [START_REF] Kuipers | Path selection in multi-layer networks[END_REF]. But this proof does not work on symmetric directed graphs 4 . However, most communication networks are symmetric. We show that the decision version of the problem remains NPcomplete even with two protocols and in a symmetric graph.

Consider the following problem:

Problem (1'). Given a multi-layer network N = (G = (V, E), A, F, h), a function assigning to each link E ∈ E an available bandwidth q b (E), a bandwidth constraint q min b and a pair S and D of nodes in V. Is there a feasible path from S to D satisfying the bandwidth constraint? Proposition 1: Problem (1') is NP-complete with two protocols even if G = (V, E) is a symmetric directed graph.

Proof: Clearly, the problem is in NP. Thus, we only detail the proof of NP-hardness.

First consider the problem of finding a Hamiltonian path in a symmetric directed graph between two nodes S and D . Call this problem SYM-HAM. SYM-HAM is NP-complete (for a detailed proof, see Appendix B). Now we provide a polynomial reduction from SYM-HAM to Problem (1') restricted to symmetric directed graph and two protocols. Given an instance of SYM-HAM, i.e., a symmetric directed graph H = (V , E ) and a pair of nodes (S , D ), we build an instance of Problem (1'), i.e., a network N = (G, A, F, h) and a pair of nodes (S, D) as following:

Step 1: Splitting the nodes. For each node U ∈ V , four nodes U 1 , U 2 , U 3 and U 4 are created in G. Links (U i , U i+1 ) and (U i+1 , U i ) are created for i = 1, . . . , 3. For each link

(U , V ) ∈ E , a link (U 1 , V 1 ) is created in G. This step is illustrated on Figure 4.
Step 2: Adding a tail. G = (V, E) is augmented by a set C = {C 0 , . . . , C n+1 } of nodes (n = |V |), where C 0 = S is the source node. There are a link (C i , C i+1 ) and a link (C i+1 , C i ) for i = 0, . . . , n. Moreover, there is also a link

Node

Adaptation functions from C n+1 to S 1 (the first node resulting from the splitting of S ) and conversely. Figure 5 shows this construction. Finally, two nodes X and D are added, as well as the four links (D 1 , X), (X, D 1 ), (X, D) and (D, X) (recall that D 1 is the first node resulting from the splitting of D , see Step 1).

Ci, i = 1 . . . n (a → aa) Cn+1 (a → ab) U1 s.t. U ∈ V (b → bb), (a → ab) U2 s.t. U ∈ V (b → bb), (a → a) U3 s.t. U ∈ V (a → ab), (a → a) U4 s.t. U ∈ V (a → aa) X (a → ab)
Step Now, we prove that there is a Hamiltonian path from S to D in H if and only if there is a feasible path from S to D in N that satisfies the bandwidth constraint. First, assuming that there is a Hamiltonian path from S to D in H, we construct a feasible path P in N as follows: Starting from S in N , P crosses the tail and each C i (i = 1 . . . n) adds an occurrence of protocol a in the stack of encapsulated protocols. Then crossing C n+1 adds b as current protocol. Thus, at the end of the tail, there are n + 1 encapsulated protocols a (the one emitted by S and n occurrences added in the tail) and the current protocol is b. Following the same node order as in the Hamiltonian path, replace each occurrence of a node U ∈ V (including S and D ) in the Hamiltonian path by the sequence:

U 1 (b → bb)U 2 (b → bb)U 3 (a → ab)U 4 (a → aa)U 3 (a → a) U 2 (a → a)U 1 (a → ab) (2) 
Thus, at node U 1 an encapsulation of protocol b occurs, at U 2 protocol b is decapsulated, at U 3 it is decapsulated again, and at U 4 protocol a is decapsulated. Path P then crosses passively nodes U 3 and U 2 , and finally encapsulates protocol b at U 1 . Thus, at each time the path crosses a Sequence (2), then one occurrence of protocol a is removed from the protocol stack. Crossing all U 4 s.t. U ∈ H removes all encapsulated occurrences of protocol a except the first one. When the path leaves D 1 to reach node X, the current protocol is b and there is a last occurrence of protocol a which is encapsulated.

Finally, node X decapsulates protocol a from protocol b and node D receives protocol a as emitted by S. Thus, P is a feasible path, and each link is crossed at most once, the bandwidth constraint is satisfied.

Conversely, we show that from any feasible path P satisfying the bandwidth constraint in N , one can extract a Hamiltonian path between S and D in H. A feasible path must cross all nodes U 4 s.t. U ∈ V in order to decapsulate all occurrences of protocol a encapsulated when crossing the tail. Thus, it involves Sequence (2) for all U ∈ V . By removing the tail part and the nodes X and D from P and replacing each occurrence of Sequence (2) by the corresponding node U , the resulting path starts from S and crosses all the nodes in H before reaching D . The only problem is the possibility that there are other sequences than Sequence (2) in the remaining path. There are two possible cases:

• An incomplete Sequence (2) where U 4 is not reached (e.g., U 1 f U 2 f U 3 f U 2 f U 1 )
: This cannot happen because such a sequence forbids to reach U 4 later, and thus one encapsulated occurrence of protocol a is never decapsulated and P cannot be feasible. Such a sequence cannot occur after an occurrence of Sequence (2) on the same nodes because if a node U i (i = 2, 3) is reached in a Sequence (2) it cannot be reached again due to the bandwidth constraint.

• A sequence U 1 f V 1 f W 1 : Let P be a feasible path from S to D containing a sequence U 1 f V 1 f W 1
(where U 1 and W 1 may be the same node). These three nodes can only encapsulate protocol a or b in protocol b. Thus, after crossing such a sequence, there are three occurrences of protocol b on the top of the protocol stack. However, in network N , there is no possible sequence of nodes and adaptation functions able to decapsulate protocol b three consecutive times. Thus, P is not feasible.

Thus, if a feasible path exists, then it contains only one occurrence of Sequence (2) for each node U ∈ V . Replacing each Sequence (2) by the corresponding node in V induces a Hamiltonian path in H. This concludes the proof.

Unfortunately, the previous negative result implies:

Corollary 1: Problem (1) is not approximable (unless P = NP).

Proof: Since the existence of a feasible path (independently of its cost) is NP-complete to decide, any polynomial approximation algorithm would imply P = NP.

On the other hand, the problem is tractable on some particular topologies: Proof: The NP-completeness of Problem (1') results from the fact that the bandwidth constraint is not prunable when feasible paths involve loops. In a DAG, every link is involved at most once in a feasible path due to the absence of cycles. Thus the bandwidth constraint is prunable and the problem can be resolved using the method described in Section IV. 

C. DAG Heuristic

As seen in Section IV-B2, shortest feasible paths involving loops are infrequent (for p > 20%). Combining this fact with Corollary 2 suggests a heuristic to compute feasible path under bandwidth constraint: Convert the network into a DAG and perform the PDA algorithm to compute a shortest feasible path. DAG Conversion. The network is converted into a DAG in the following way:

1) Set the number 0 to node S and |V| -1 to node D (recall that S and D are the extremities of the graph diameter); 2) Perform a BFS algorithm starting from node S and number the nodes in the visit order. The nodes at the same distance from S are visited randomly, thus performing several times this heuristic does not always give the same node numbering and the same DAG; 3) Delete all the links that start at a node and end at a node with a smaller number.

The DAG heuristic is as follows:

1) Convert the network into a DAG; 2) Prune the links without enough bandwidth; 3) Perform the PDA algorithm of Section IV.

D. Simulations

We study the efficiency of the DAG heuristic (called DAG-PDA) and compare it with the algorithm of Kuipers and Dijkstra [START_REF] Kuipers | Path selection in multi-layer networks[END_REF]. The latter is an exact (and thus exponential) algorithm that performs a BFS and explores all the paths that are not dominated and that satisfy the bandwidth constraint. As in Section IV-B3, the BFS algorithm is slow. Thus, we also compare our algorithm with DAG-BFS algorithm, where the network is converted into a DAG before performing the BFS. The simulation conditions (parameters, topology, number of runs, etc.) are the same as in Section IV-B3. The bandwidth capacity of the links is randomly and uniformly selected in the set {1, 2, . . . , 10}. The bandwidth constraint is set to 2.

1) Comparison of the feasibility ratio:

Converting the network topology into a DAG deletes some feasible paths in the original network. We measure how much feasible paths are lost by comparing the probability of feasible path existence before and after the DAG conversion according to the probability of existence of adaptation functions (p). Figure 6 shows that the probability of feasible path existence is shifted to the right after the DAG conversion. The ratio Probability of feasible path existence in Ti Probability of feasible path existence in DAG Ti (i = 1, 2) is clearly decreasing and is less than 50% if p > 0.34, which is important but balanced by the improvement of the processing time.

2) Comparison of the processing time: Figure 7 shows the processing time of DAG-PDA, DAG-BFS and BFS algorithms on both topologies according to the probability of existence of an adaptation function. BFS algorithm is slow even for small values of p. For p < 0.3 (resp. 0.4) on Topology T 1 (resp. T 2), DAG-BFS is faster than DAG-PDA. Beyond these values, the processing time of DAG-BFS explodes. For example, for p = 0.5, the processing time of DAG-BFS is more than 35 minutes on Topology T 1 and more than 53 minutes on Topology T 2, while that of DAG-PDA is 3.8 seconds on T 1 and 24 seconds on T 2. These results show that the DAG-PDA algorithm is clearly faster when there is a significant number of adaptation functions, but the exponential DAG-BFS algorithm is faster if there are few of them (for small values of p).

VI. PATH COMPUTATION UNDER QOS CONSTRAINTS

A. Multi-constrained feasible path

Let N be a multi-layer network. Each link E = (U, V ) is associated to a set of m additive QoS metrics q(E) = (q 1 (E), . . . , q m (E)) in addition to its available bandwidth q b (E). These additive metrics can be the delay, logarithm of the packet-loss, etc.

Let q min b be the bandwidth constraint and q max = (q max 1 , q max 2 . . . , q max m ) be a vector of QoS constraints, the problem of computing a shortest feasible path under these constraints is formalized as:

min h(P) = (U,f,V )∈P h(U, f, V ) s.t.              P is a feasible path between S and D min E∈P q b (E) nb(E) ≥ q min b E∈P (q i (E) × nb(E)) ≤ q max i , i = 1 . . . m (3) 

B. Complexity of multi-constrained feasible path computation

The problem of QoS multi-constrained path computation (on a single layer) is well studied. It is well-known that the decision version associated to this problem is NP-complete, even with 2 additive and/or multiplicative constraints [START_REF] Wang | Quality-of-Service Routing for Supporting Multimedia Applications[END_REF]. Van Mieghem and Kuipers [12] gave an exponential time algorithm but showed that the instances that really require an exponential computation time are infrequent. The classical multi-constrained path problem is a particular case of Problem 3, corresponding to the case where there is only one protocol and passive transitions. Thus the decision version associated to Problem 3 is also NP-complete.

C. ML-SAMCRA

As computing a multi-layer path under QoS constraints is NP-complete, any algorithm able to solve this problem is exponential in the worst case (unless P = NP). We propose to adapt the Self-Adaptive Multiple Constraints Routing Algorithm (SAMCRA) to the multi-layer context in order to compute a shortest feasible path under QoS constraints.

SAMCRA is an exact QoS routing algorithm proposed by Van Mieghem and Kuipers [START_REF] Mieghem | Concepts of exact QoS routing algorithms[END_REF]. It computes the shortest path under several (additive) QoS constraints but it ignores the feasibility constraint as defined in our paper. SAMCRA has an exponential worst case complexity, but it exhibits a reasonable processing time in practice.

1) The main concepts of SAMCRA: The idea of SAMCRA is to maintain a path list from the source node S to all other nodes until reaching the destination node D. It progressively removes the paths that do not comply with the QoS constraints. The main concepts of SAMCRA are:

• Non-linear path length: In SAMCRA, the path length is defined as a non-linear function of the QoS parameters of each link. It reduces the solution space to scan but the algorithm can apply with any metric. Hence, it is not a strict requirement.

• The k-shortest path algorithm: The k-shortest path algorithm maintains the list of the paths that are not (yet) removed from the path list.

• Non-dominance: A multi-constrained path P dominates another path P if ∀i, E∈P q i (E) ≤ E∈P q i (E) (i.e., if P is better than P for each QoS parameter). A path P is non-dominated if there is no path which dominates it. The concept of nondominance induces a partial order over the paths. It avoids the exploration of several paths thus substantially reducing the average complexity of SAMCRA.

The path length definition is not impacted by the multi-layer context and using a linear path length function is not forbidden. The k-shortest path algorithm is not impacted either. However, the concept of dominance must be redefined to meet the path feasibility constraint and to take into account possible loops.

2) Extension of the non-dominance definition: A multilayer path is characterized by its nodes but also by its protocol stack at the destination node. Thus in the algorithm path list, each path should be stored with its protocol stack at its final node. A multi-layer path can involve the same link several times. Before checking if this path complies with some QoS parameters, the parameters of each link should be multiplied by the number of times this link is involved in the path. The bandwidth constraint is not prunable in multi-layer context, the new non-dominance definition should take it into account.

A path P dominates a path P if the four following conditions are satisfied: • E∈P q i (E) × nb P (E) ≤ E∈P q i (E) × nb P (E) ∀i = 1, . . . , m

• min E∈P q b (E) nb P (E) ≥ min E∈P q b (E) nb P (E)
• P and P have the same final node;

• P and P have the same protocol stack at this node.

Where nb P (E) (resp. nb P (E)) is the number of times the link E is involved in path P (resp. P ). According to this new definition of non-dominance, ML-SAMCRA explores all the possible paths until reaching the destination node with satisfactory QoS parameters. Along the exploration, it removes all paths that are dominated or not feasible.

D. Simulations

We know study the efficiency of ML-SAMCRA through simulations and check if it is as scalable in a multi-layer context as SAMCRA in a single layer context. Figure 8 shows the processing time of ML-SAMCRA on Topologies T 1 and T 2 according to the probability of existence of an adaptation function (p). The results show that for p > 0.08 (resp. 0.10) on Topology T 1 (resp. T 2) the processing time explodes (more than 1 minutes). Clearly, ML-SAMCRA does not scale above these values. There are two reasons:

1) The paths are less comparable in term of the new non-dominance definition: They should have the same protocol stack. As there are less dominated paths, the algorithm complexity increases; 2) Taking into account loops increases the number and the length of the paths, which also increases the algorithm complexity.

So, path computation under QoS constraints in multi-layer networks is more complex than in single layer networks. Thus, exact algorithms are suitable only for small instances.

VII. CONCLUSION

Most of carrier-grade networks manage their different layers thanks to separate control planes. Designing a unified control plane would allow the network resources to be optimized and the operational management costs to be reduced. One key problem to address is path computation taking into account the protocol heterogeneity and the multi-layer context dealing with encapsulation, conversion and decapsulation of protocols. This paper tackles this issue by partitioning it into three cases: Path computation without bandwidth constraint, under bandwidth constraint and under additive QoS constraints. For the first case, we widely generalized polynomial algorithms in the state of the art and decreased their complexity. Through simulations, we showed that they outperform previous approach in the literature. For the second case, we obtained several time complexity results and proposed efficient heuristics. Finally, we designed the first algorithm to resolve the third case. In future works, we plan to design heuristics to deal with additive QoS metrics, as the exact approach seems to be not scalable. The problem of efficient generation of random topologies being widely open, it would be interesting to analytically study the phase transition phenomenon in order to generate topologies having a suitable number of feasible paths.
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A technology is an exhaustive description of the protocol stack at some node, e.g., IP over Ethernet over ATM.

A symmetric directed graph is a graph where a link (U, V ) exists if and only if the reverse link (V, U ) exists.

APPENDIX A POLYNOMIAL ALGORITHMS FOR PATH COMPUTATION IN MULTI-LAYER NETWORKS

The sequence of protocols involved in a feasible multilayer path is a context-free language. Based on this fact, Lamali et al. [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF] used automata and language theory tools to compute the shortest feasible path in hops or in adaptation functions. We improve their algorithm in order to compute the shortest path according to any additive metric. We also substantially reduce its complexity.

A. Theoretical language aspects of multi-layer paths

Considering a path P = Sf 0 U 1 f 1 U 2 f 2 . . . U n f n D, let H P = f 1 . . . f n denotes the sequence of adaptation functions along P. Let define as an alphabet the set A = {a | a ∈ A} and the set A = {a | a ∈ A}.

T P = x 1 . . . x n+1 is the sequence of protocols used along path P. It is called the trace of P. For each x i : Here, some additional definitions are needed. The set of protocol conversions available on node U is denoted by CO(U ). The set of encapsulations available on node U is denoted by EN (U ) and the set of decapsulations available on node U is denoted by CO(U ).

In(U ) (resp. Out(U )) is the set of protocols that node U can receive (resp. send). More formally:

Obviously, several paths can have the same trace. The set of traces of the feasible paths in a network N is a context-free language but it is not regular as the encapsulations and decapsulations should be balanced. In fact, it is a well-parenthesized language, and thus requires a stack to be recognized and computed. PDAs are the classical tools to recognize contextfree languages. Using weighted PDAs allows associating a weight to each link and adaptation function in order to model any additive metric.

B. Definition of WPDA

A weighted PDA (WPDA) is a 8-tuple PDA = (S, Σ, Γ, δ, Q 0 , Z 0 , S F , ω) where S is the set of states, Σ is the input alphabet, Γ is the stack symbol set (i.e., stack alphabet) not necessarily different from Σ, δ is the set of transitions, Q 0 is the initial state, Z 0 is the initial stack symbol, S F is the set of final (accepting) states and ω is a weight function over the set of transitions (i.e., ω

where Q i is the state of PDA before the transition, Q j is the state after the transition, x ∈ Σ∪{ } is an input symbol, α ∈ Γ is the symbol which is popped from the top of the stack, and β ∈ Γ * is the symbol sequence which is pushed on the top of the stack.

Remark. WPDAs are more often formalized as 6-tuples PDA = (S, Γ, M, q 0 , Z 0 , S F ) where M, called the Push-Down transition matrix, is a matrix over a semiring of formal power series. The input alphabet Σ, the transitions set δ and the weight function ω are expressed by a single entity M ∈ ((R Σ * ) S×S ) Γ * ×Γ *

, where R Σ * denotes the collection of all power series from Σ * into a semiring R. For simplification purposes, we opted for defining a WPDA as a classical PDA with a weight function over the transition set. For the theoretical foundations of WPDAs, the interested reader can refer to [START_REF] Petre | Algebraic Systems and Pushdown Automata[END_REF].

C. From the graph to the WPDA Algorithm 1 converts a multi-layer network N with a specified pair of nodes (S, D)

Computing a feasible path requires to know the current protocol and the last encapsulated one (in order to know if a decapsulation can be performed). Thus Algorithm 1 creates a state U x for each node U and each protocol x ∈ In(U ). Being in state U x indicates that the current protocol is x. The last encapsulated protocol is the one on the top of the stack.

The conversion functions (x → y) between node U and node V are turned into transitions (U x , x, α, α , V y ) in the WPDA. The encapsulation functions (x → xy) are converted into pushes of x on the stack (U x , x, α, xα , V y ) and the decapsulation functions into pops of x from the stack 

) there is a transition:

This transition recognizes the i-th letter of the trace T P . It is easy to show by induction that T P is accepted by the automaton.

Conversely, if a trace T P is accepted by a transition sequence t 1 . . . t n where each t i = ((U i ) x , x, α, β , (U i+1 ) y ). Then there is an adaptation function:

The weight of a path P = Sf 0 U 1 f 1 U 2 f 2 . . . U n f n D is defined as the sum of the weights of its links and its adaptation functions. It is denoted by h(P)

We define the weight of a transition sequence as the sum of the weights of each transition (i.e., ω({t 1 , t 2 , . . . , t n }) = n i=1 ω(t i )). The weigh of a word w, denoted by ω(w), is the weight of the transitions that accept w in PDA. But as PDA may be nondeterministic, it is possible that several transition sequences accept the same word. Thus we consider only the sequence of transitions of minimum weight that accepts w. More formally, ω(w) = min t1,...,tn∈δ ω({t 1 , . . . t n }) s.t. {t 1 , . . . t n } accepts w.

Lemma 1: If PDA accepts the trace T P of a path P, then ω(T P ) = h(P * ), where P * is the path of minimum weight having T P as trace.

Proof: By definition, ω(T P ) = ω({t 1 , . . . , t n }), where {t 1 , . . . , t n } is the transition sequence with minimal weight which accepts T P . From {t 1 , . . . , t n }, it is possible to build the path P * (inversing the conversion in Algorithm 1) such that T P * = T P and h(P * ) = ω(T P ). Suppose that ∃P s.t. T P = T P and h(P ) < ω(T P ), then it is possible to build from P a sequence of transitions that corresponds to the links and adaptation functions involved in P (as in Algorithm 1). Let this sequence be t 1 . . . , t n . The weight of each transition t i corresponds to the weight of an adaptation function associated to a link in P . The weight of t 1 . . . , t n is then less than ω(T P ), and by Proposition 2, this sequence accepts T P . This is inconsistent with the definition of ω(T P ).

D. Computing the minimal weight trace

In order to compute the minimum weight trace and its corresponding path, PDA is converted into a weighted Context-Free Grammar (WCFG).

1) From the WPDA to a WCFG: A WCFG is a CFG with a weight function over the set of production rules. The conversion of a PDA into a CFG is well-known. The conversion of a WPDA into a WCFG is done in the same way, in addition the weight of each transition is assigned to the corresponding production rules (called rules in Algorithm 2) in the WCFG.

Algorithm 2 is an adaptation of the general method described in [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF].

• Σ is the alphabet or set of terminals (the same as the WPDA input alphabet),

• [Q 0 ] is the initial symbol (initial nonterminal, or axiom),

• R is the set of production rules,

• π : R → + is the weight function over the set of production rules. 2) The minimum weight derivation tree: Generating the minimum weight trace (and then the minimum weight path) requires to build its derivation tree. Let [X] be a nonterminal, we define ([X]) as the sum of the weights of the productions needed for, starting from [X], deriving a word in Σ * . Thus ([Q 0 ]) is the weight of the minimum weight trace.

The function is

Knuth's algorithm [START_REF] Knuth | A Generalization of Dijkstra's Algorithm[END_REF] can be adapted to compute the minimum weight derivation tree of a grammar. This corresponds to the weight of T P , where P is the shortest path to compute.

The adapted algorithm maintains a list of production rules and updates the [X] according to the formula above. The sketch of the algorithm is as follows:

• For each production rule [X] → α 1 . . . α n update ([X]) as follows:

The algorithm terminates when all the [X] have the right value and no additional update is possible. Implementing this algorithm with Fibonacci heaps leads to a O(|Q| log |Q|+|R|) complexity [START_REF] Fredman | Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms[END_REF], which corresponds to

With the correct values of [X], it is trivial to generate the word with the minimum weight derivation tree.

E. Deriving the shortest path from its trace

Algorithm 3 is a generalization of an algorithm proposed in [START_REF]Path computation in multi-layer multi-domain networks: A language theoretic approach[END_REF]. It takes as input the minimum weight trace T P accepted by PDA and computes the path P that matches it 5 . Algorithm 3 starts on nodes [START_REF] Martini | RFC4448 -Encapsulation Methods for Transport of Ethernet over MPLS Networks[END_REF] = S then checks at each step all the links in E which match the current letter (protocol) in T P . If T P = x 1 x 2 . . . x n (x i ∈ A ∪ A ∪ A), then at each step i, the algorithm starts from each node U in nodes[i] and adds to links[i] all the links (U, V ) which match x i . Each V is added in nodes[i + 1]. The value weights[(U, V ), i] 5 It is possible that several paths match the trace. In this case the path can be chosen randomly or according to a load-balancing policy.

is the cost of using link (U, V ) at step i. It corresponds to the weight h(U, f i , V ) where f i is the adaptation function used at step i. When the trace T P is completely covered, a classical shortest path algorithm from S to D in the graph (nodes, links, weights) computes the minimum weight path. Proof: First, it is clear that SYM-HAM is in NP. Thus, we prove its NP-hardness by providing a polynomial reduction from the Hamiltonian path problem in undirected graphs to SYM-HAM. Consider an undirected graph H = (V , E ) and a pair of nodes (S , D ). It is NP-complete to know whether there is an undirected Hamiltonian path between S and D . The reduction builds an instance of SYM-HAM as follows: A graph G = (V, E) where V = V . For each undirected edge (U, V ) in H, create the directed links (U, V ) and (V, U ) in G.

Let P = SU 1 U 2 . . . U n D be a Hamiltonian path in H. For each edge (U i , U i+1 ) in H, one can take the corresponding directed link (U i , U i+1 ) in G and construct a Hamiltonian path in G. Now let P = SU 1 U 2 . . . U n D be a (directed) Hamiltonian path in G. By replacing each link (U i , U i+1 ) by the corresponding undirected edge (in H), one obtains a path visiting all the nodes exactly once in H (as G and H have the same set of nodes). Thus, the obtained path is a Hamiltonian path in H.

So H admits an undirected Hamiltonian path between S and D if and only if G admits a directed Hamiltonian path from S to D.