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Gradient Scan Gibbs Sampler:
an efficient algorithm for high-dimensional

Gaussian distributions
O. Féron∗, F. Orieux and J.-F. Giovannelli

Abstract—This paper deals with Gibbs samplers that include
high dimensional conditional Gaussian distributions. It proposes
an efficient algorithm that avoids the high dimensional Gaussian
sampling and relies on a random excursion along a small
set of directions. The algorithm is proved to converge, i.e.
the drawn samples are asymptotically distributed according
to the target distribution. Our main motivation is in inverse
problems related to general linear observation models and their
solution in a hierarchical Bayesian framework implemented
through sampling algorithms. It finds direct applications in semi-
blind / unsupervised methods as well as in some non-Gaussian
methods. The paper provides an illustration focused on the
unsupervised estimation for super-resolution methods.

I. INTRODUCTION

A. Context and problem statement

Gaussian distributions are common throughout signal and
image processing, machine learning, statistics,. . . being con-
venient from both theoretical and numerical standpoints.
Moreover, they are versatile enough to describe very diverse
situations. Nevertheless, efficient sampling including these
distributions is a cumbersome problem in high dimensions and
this paper deals with this question.

Our main motivation is in inverse problems [1], [2] and
the methodology resorts to a hierarchical Bayesian strategy,
numerically implemented through Monte-Carlo Markov Chain
algorithms and more specifically the Gibbs Sampler (GS).
Indeed, consider the general linear direct model y = Ax+n,
where y, n and x are the observation, the noise and the
unknown image and A is a given linear operator. Consider,
again, two independent prior distributions for n and x that
are Gaussian conditionally to a vector θ, namely the hyper-
parameter vector. The estimation of both x and θ relies on
the sampling of the joint posterior p(x,θ|y), and this is the
core question of the paper. It commonly requires the handling
of the high dimensional conditional posterior p(x|θ,y) that is
Gaussian with given mean m and precision Q.

The framework considered in this paper directly covers non-
stationary and inhomogeneous Gaussian models for image
and noise. The paper also has fallouts for non-Gaussian
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models based on conditionally Gaussian ones involving aux-
iliary / latent variables1 (e.g., location or scale mixtures of
Gaussian) for edge preserving [3]–[5] and for sparse sig-
nals [6], [7]. It also includes other hierarchical models [8], [9]
involving labels for inversion-segmentation. This framework
also includes linear variant direct models and some non-linear
direct models, based on conditional linear ones, e.g. bilinear
or multilinear. In addition, it covers a majority of current
inverse problems, e.g. unsupervised [5] and semi-blind [10],
by including hyperparameters and acquisition parameters in
the vector θ.

Large scale Gaussian distributions are also useful for In-
ternet data processing, e.g. to model social networks and to
develop recommender systems [11]. They are also widely
used in epidemiology and disease mapping [12], [13] as they
provide a simple way to include spatial correlations. The
question is also in relation to spatial linear regression with
(smooth) spatially varying parameters [14]. In these cases the
question of efficient sampling including Gaussian distributions
in high dimensions becomes crucial and it is all the more true
in the “Big Data” context.

In the following we address the general problem of sampling
from a joint distribution p(x,θ) where the conditional distri-
bution p(x|θ) is a high-dimensional Gaussian distribution.

B. Existing approaches

The difficulty is directly related to handling the high-
dimensional precision Q. The factorization (Cholesky, square
root,. . . ), diagonalization and inversion of Q could be used
but they are generally unfeasible in high dimensions due to
both computational cost and memory footprint. Nevertheless,
such solutions are practicable in two famous cases.
• If Q is circulant or circulant-block-circulant an efficient

strategy [15], [16] relies on its diagonalization computed
by FFT. More generally, an efficient strategy exists if Q
is diagonalizable by a fast transform, e.g. discrete cosine
transform for Neumann boundary conditions [17], [18].

• When Q is sparse, a possible strategy [13], [19], [20]
relies on a Cholesky decomposition and a linear system
resolution. Another strategy is a GS [21] that simultane-
ously updates large blocks of variables.

1It is based on the fact that for a couple of random variables (U, V ), the
conditional law for U |V is Gaussian and the marginal law for U is non-
Gaussian. A famous example is a Gaussian variable with precision under a
Gamma distribution: the resulting marginal follow a Student distribution.
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In order to address more general cases, solutions founded on
iterative algorithms for objective optimization or linear system
resolution have recently been proposed.

1) An efficient algorithm has been proposed by several
authors [6], [17], [18], [22], [23] (previously used in
applications [8], [10]). It is founded on a Perturbation-
Optimization (PO) principle: adequate stochastic per-
turbation of a quadratic criterion and optimization of
the perturbed criterion. However, in order to obtain a
sample from the right distribution, an exact optimization
is needed, but in practice an empirical truncation of
the iterations is implemented, leading to an approximate
sample. [24] introduces a Metropolis step in order to
asymptotically retrieve an exact sample and then to
ensure, in a global MCMC procedure, the convergence
to the correct invariant distribution.

2) In [25], [26] the authors propose a Conjugate Direction
Sampler (CDS) based on two crucial properties: (i) a
Gaussian distribution admits Gaussian conditional distri-
butions and (ii) a set of mutually conjugate directions
w.r.t. Q is available. The key point of the algorithm is to
sample along these mutually conjugate directions instead
of optimizing as in the classical Conjugate Gradient
optimization algorithm.

In the first case, the only constraint on Q is that a sample
from N (0,Q) must be accessible, which is often the case
in inverse problem applications. In the second case, Q must
have only distinct eigenvalues to make the CDS give an
exact sample. Otherwise it leads to an approximate sample
as described in [26].

The proposed algorithm uses the same approach as the CDS
and extends the efficiency to, theoretically, any matrix Q.

C. Contribution

The existing methods described above and the proposed
one are both founded on a Gibbs sampler. However, the
existing ones attempt to sample the high dimensional Gaussian
component x ∈ R

N whereas the proposed method does
not. Our main contribution is to avoid the high dimensional
sampling and only requires small dimensional sampling. More
precisely, given a subspace D ⊂ R

N , the objective is to
sample the sub-component of x according to the subspace D.
It must be sampled under the appropriate conditional distribu-
tion π(xD|x\D,θ), with the decomposition x = (xD,x\D).
The algorithm takes advantage of the ease of calculating the
conditional pdf of a multivariate Gaussian distribution, when
D is appropriately built, as explained in section II. These ideas
are strongly related to other existing works.
• If the subset D is composed of only one direction in the

canonical coordinates, the algorithm amounts to a pixel-
by-pixel GS [3].

• The marginal chain x(t) can also be viewed as the one
produced by a specific random scan sampler [27]–[29].
The random scans are related to the random choice of D,
depending on the current value θ(t).

• Other algorithms based on optimization principles [26],
[30] aim at producing a complete optimization. On the

the other hand, in essence, the proposed approach only
requires a few steps of the optimization process.

• A similar idea is at work in Hamiltonian (or Langevin)
Monte Carlo [31]–[34] (see also [35]): the proposed
distribution takes advantage of an ascent direction of the
target to increase the acceptation probability. Here, the
exact distribution is sampled, so the proposal is always
accepted.

However, to our knowledge, the proposed algorithm does
not directly join the class of existing strategies. One con-
tribution of this paper is to give sufficient assumptions for
convergence, i.e. the samples are asymptotically distributed
according to the joint pdf p(x,θ).

D. Outline

Subsequently, Section II presents the proposed algorithm
and section III gives an illustration through an academic
problem in super-resolution. Section IV presents conclusions
and perspectives.

II. GRADIENT SCAN GIBBS SAMPLER

In this section we describe the proposed algorithm: a GS
with a high dimensional conditional Gaussian distribution.
The objective is to generate samples from a joint distribution
p(x,θ), where x ∈ RN is highly dimensional and p(x|θ) is
a Gaussian distribution N (mθ,Q

−1
θ ):

p(x|θ) = (2π)−N/2(detQθ)1/2 exp−Jθ(x) (1)

with the potential Jθ defined as:

Jθ(x) =
1

2
(x−mθ)tQθ(x−mθ). (2)

All the other variables of the problem are grouped into θ ∈ Θ
and we assume that the sampling from p(θ|x) is tractable
(directly or with several steps of the GS, including Metropolis-
Hastings steps).

A. Preliminary results

This section presents classical definitions and results, mostly
based on [25], needed to provide convergence proof and
links between matrix factorization and optimization / sampling
procedures.

Definition 1. Consider Q a N×N symmetric definite positive
matrix. A set {dn, n = 1, . . . , N} of non-zero vectors in RN

such that: dt
nQdm = 0 for n,m = 1, . . . , N, n 6= m is

said mutually conjugate w.r.t. Q. 4

A mutually conjugate set {d1, . . . ,dN} w.r.t. Q is a basis
of RN , then, for all x ∈ RN :

x =

N∑
n=1

αndn with αn =
dt
nQx

dt
nQdn

.

So, if x ∼ N (m,Q−1) is a Gaussian random vector with
mean m and precision Q, then the αn are also Gaussian:

αn ∼ N
(
dt
nQm

dt
nQdn

;
1

dt
nQdn

)
(3)
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and reciprocally if the αn are distributed under (3) then x ∼
N (m,Q−1).

In particular, let x0 ∈ RN be a “current” point and d1 ∈
R
N a given “direction”. One can find d2, . . . ,dN such that
{d1, . . . ,dN} is mutually conjugate w.r.t. Q and x0 writes:

x0 =

N∑
n=1

α0
n dn.

Consider now the ND-dimensional subset

D(x0) =

{
N∑
n=1

αndn, αn ∈ R, n ≤ ND, αn = α0
n, n > ND

}

=
{
x0 +

ND∑
n=1

(αn − α0
n)dn, (α1, . . . , αND

) ∈ RND

}
We are interested in the conditional pdf p(x|x ∈ D(x0)). The
following result and its proof can be found in [25].

Proposition 1. A sample x̃ according to p(x|x ∈ D(x0)) can
be obtained by:

1) sample independently the set (α̃1, . . . , α̃ND
) with:

α̃n ∼ N
(
dt
nQ(x0 −m)

dt
nQdn

;
1

dt
nQdn

)
, n = 1, . . . , ND

2) compute x̃ = x0 −
∑ND

n=1 α̃n dn

B. Gradient Scan Gibbs Sampler (GSGS)

In the following we propose a GS in order to sample
the joint probability p(x,θ). The principle is to sample, at
each iteration of the GS, only ND directions of x instead of
sampling the whole high dimensional variable. The chosen
first direction of the set D will be the gradient of the potential
of p(x|θ), with a stochastic perturbation to ensure, in the
general case, the convergence of the resulting Markov chain.
The following directions are chosen so as to get a mutually
conjugate subset with respect to the precision of p(x|θ).

We call our proposed algorithm the Gradient Scan Gibbs
Sampler (GSGS) which is described by Algorithm 1. In this
algorithm the chosen first sampling direction d1 is given by the
gradient of the potential of p(x|θ), with an additional random
perturbation ε̃ that follows a probability density p(ε). In fact,
we expect the gradient to be a good direction towards regions
of high probabilities. Also, the gradient is easily computable
and so gives an easy rule to sample from any current point
x. Moreover, the other conjugate directions are iteratively
computable as described in the Conjugate Direction Sampling
(CDS) algorithm [25] used to get an approximated sample
from a Gaussian distribution. In fact, the GSGS is embedding
steps of the CDS in a global GS.

The objective is now to study the convergence properties of
the GSGS. We begin with two classical results.
• If the Markov chain is aperiodic, φ−irreducible for some

nonzero measure φ2, and has an invariant probability π,

2In all the paper we will consider φ as the Lebesgue measure and we will
omit it for simplicity.

Algorithm 1 : Gradient scan Gibbs sampler (GSGS).

Define an initial point x(0), a number ND and a stopping
criterion. Iterate .

1: sample θ(t) ∼ p(θ|x(t−1))

2: set Qt = Qθ(t) and mt = mθ(t) , and compute the
gradient g = ∇Jθ(x(t−1)) = Qt(x

(t−1) −mt)

3: sample a perturbation ε̃ ∼ p(ε)

4: compute a set of ND mutually conjugate directions
(d1, . . . ,dND

) w.r.t. Qt such that

d1 = g + ε̃

5: sample independently the set (α̃1, . . . , α̃ND
) with:

α̃n ∼ N
(

dt
ng

dt
nQtdn

;
1

dt
nQtdn

)
, n ≤ ND

6: compute x(t) = x(t−1) −
∑ND

n=1 α̃n dn

7: t← t+ 1.
until the stopping criterion is reached.

then it converges to π from π-almost every starting point
(cf. Theorem 4.4 of [36]).

• Moreover, if the Markov chain is Harris recurrent, then
it converges to π from all starting point [36], [37].

The Harris recurrence of GS, or more generally Metropolis-
within-Gibbs samplers is well studied in [37]. In particular,
the Theorem 12 and Corollary 13 of [37] ensures that if the
Markov chain produced by the GSGS is irreducible then it is
Harris recurrent. Consequently, in the following we focus on
showing that the Markov chain is aperiodic, irreducible and
with stationary distribution p(x,θ).

It is trivial to see that the Markov chain (x(t),θ(t))t≥0,
produced by the GSGS, is aperiodic since for any non-
negligible subset A ∈ RN including x(t−1), P(x(t) ∈ A) > 0.
The existence of an invariant probability and the irreducibility
can be shown by thinking of a random scan GS for the
marginal component (x(t))t≥0.

Proposition 2. The Markov chain produced by Algorithm 1
admits p(x,θ) as an invariant distribution, even without
perturbations of the gradient direction (i.e. ε̃ = 0).
Moreover, if the density p(ε) is supported on RN , the Markov
chain produced by Algorithm 1 is irreducible, and therefore
its law converges to p(x,θ).

Proof. see appendix A.

Proposition 2 then shows that the joint probability p(x,θ)
remains an invariant distribution in the limit case where the
first direction d1 is exactly the gradient of p(x|θ), without
random perturbation. However the perturbation is needed to
ensure the irreducibility (and then the convergence) of the
chain.

If the gradient is not perturbed, the mutually conjugate
set D is then given by a deterministic function of θ(t) and
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x(t−1). In this case, we need more assumptions to ensure the
Markov chain to be irreducible. For example, we can have the
following result.

Proposition 3. Suppose the following conditions are satisfied:
H-1 The function θ 7→ Qθ is continuous
H-2 ∀(x,θ) ∈ RN ×Θ and ∀r > 0, P(B(θ, r)|x) > 0, with

B(θ, r) the ball in Θ, centered in θ, of radius r.
H-3 ∀x ∈ RN , ∃θ ∈ Θ such as:

H-3.1 Qθ has N distinct eigenvalues,
H-3.2 x−mθ is not orthogonal to any eigenvector of Qθ,

Then the Markov chain produced by Algorithm 1 without the
perturbation step 3 (ε̃ = 0) is irreducible.

Proof. see appendix B

The conditions described in Proposition 3 are very restric-
tive and, in particular, condition H-3.1 is difficult, if not
impossible, to prove in practice. This condition ensures that
every non-negligible subset of RN can be reached with a non-
zero probability. It can be interpreted in the framework of
Krylov spaces as in [26]. For example, if there is t such as
the Krylov space

KN (Qθ(t) ,x(t)) := span
(
x(t),Qθ(t)x(t), . . . ,QN

θ(t)x
(t)
)

is of rank N then the Markov chain is irreducible. This
condition can be weakened in our case because the Gaussian
parameters mθ(t) and Qθ(t) are changing since θ is changing
at each iteration of the GS. Therefore a sufficient condition
to ensure the irreducibility of the chain can be expressed as
follows:

Proposition 4. If there is T > N such as the union of Krylov
spaces

∪Tt=1KN (Q
(t)
θ ,x(t)) ∪ KN (Q

(t)
θ ,m

(t)
θ )

is of rank N then the Markov chain built by the GSGS without
perturbation of the gradient is irreducible.

Proof. The condition implies that for any non-negligible sub-
set A ⊂ R

N , P
(
x(T ) ∈ A|x(0)

)
> 0, which ensures the

irreducibility.

The issue of determining general conditions, as in Propo-
sition 3, is an open problem at this time. The fact that
the condition described in Proposition 4 is satisfied, highly
depends on the model’s characteristics. That is why the GSGS
(with the random perturbation step 3) is the one that ensures,
in all cases, the convergence of the Markov chain to the joint
distribution p(x,θ).

The above results do not allow us to get any convergence
rate of the Markov chain. The latter is, in fact, very important
to ensure in practice the efficiency of the estimators produced
by simulations in finite time. In particular, the geometric
ergodicity [38] is a very well known property that gives
a Central Limit Theorem and ensures the Markov chain to
quickly converge and give estimations of standard errors.
However the Algorithm 1 aims to be general while the precise
study of geometric convergence (especially to quantify the
convergence rate) would need to specify the distributions on

the parameters θ and on the perturbation ε. At this time, only
weak assumptions are considered on these probabilities and
the next section discusses the different choices of p(ε) from
a feasibility point of view.

C. Choice of p(ε)

As previously specified, the only condition to ensure the
convergence of the GSGS in the general case, is to choose a
distribution p(ε) supported in RN . In practice we also expect
a sample from p(ε) to be easily accessible. A natural choice is
the Gaussian iid distribution N (0, IN ), IN being the N ×N
identity matrix. This was already studied in [39] in the case of
only sampling from a Gaussian distribution p(x) and where
results are shown in small dimensions.

Our empirical studies in high dimension (one example
is shown in section III) incited us to choose the Gaussian
distribution N (0,Qθ), when it is possible. The sampling from
this distribution may actually be easily computable, provided
that Qθ has, for example, the specific factorization form
described in [30]:

Qθ =

K∑
k=1

Mt
kR
−1
k Mk

In this case, the sampling from N (0,Qθ) is easily computable
by using the Perturbation Optimization (PO) algorithm [30].
The latter consists in (i) randomly modifying the potential
Jθ(x) to get a perturbed potential J̃θ and (ii) optimizing
J̃θ. The first step of this optimization procedure consists in
computing the gradient ∇J̃θ and it is trivial to show that it can
be decomposed: ∇J̃θ(x) = ∇Jθ(x) +ε, with ε ∼ N (0,Qθ).
Therefore, the perturbed gradient d1 of the GSGS, with a
random perturbation ε ∼ N (0,Qθ), can be obtained by using
the PO algorithm truncated to one step of the optimization
procedure.

Although, at this time, this choice is empirical we may have
some intuition to recommend, when it is possible, the distribu-
tion N (0,Qθ). The first direction d1 is related to the gradient
of Jθ, in accordance with the objective to get a direction
towards regions of high probability. This gradient is mostly
driven by the highest eigenvalues of Qθ. The perturbation ε is
only needed to ensure the GSGS convergence, but the objective
is to keep a direction towards high probability regions. The
sampling from N (0,Qθ) seems to be a good compromise:
it gives values of ε mostly driven by the highest eigenvalues
of Qθ and then the resulting direction d1 still continues to
encourage the exploration space of high probability.

We may also notice that some relaxations of the GSGS are
possible, following classical arguments of a random scan GS.
For example, it is not necessary to sample the perturbation
from p(ε) at each iteration, it is sufficient to do this an infinite
number of times to ensure the chain to be irreducible.3 As we
will see in section III, a low frequency sampling of ε can
improve the algorithm’s efficiency.

3From any point
(
x(t),θ(t)

)
, let s > t be the closest next time where

ε is sampled, then for any non-negligible subset A ∈ RN × Θ, we have
P (x(t), A) > 0.
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III. UNSUPERVISED SUPER RESOLUTION AS A LARGE
SCALE PROBLEM

A. Problem statement

The paper details an application of the proposed GSGS
to a super-resolution problem (identical to the one presented
in [30], [40]): several blurred, noisy and down-sampled (low
resolution) observations of a scene are available to retrieve the
original (high resolution) scene [41], [42].

The usual direct model reads: y = Ax + n = SHx + n.
In this equation, y ∈ R

M collects the pixels of the low
resolution images (five 128 × 128 images, i.e. M = 81920)
and x ∈ RN collects the pixels of the original image (one
256 × 256 image, i.e. N = 65536). The noise n ∈ R

M

accounts for measurement and modeling errors. H is a N×N
circulant-block-circulant convolution matrix accounting for the
optical and the sensor parts of the observation system. Here
it is a square window of 5-pixel-width. S is a M ×N matrix
modeling motion (here translation) and decimation: it is a
down-sampling binary matrix indicating which pixel of the
blurred image is observed.

The noise is chosen to be n ∼ N (0, γ−1n I). Regarding
the object, the chosen prior accounts for smoothness: x ∼
N (0, γ−1x DtD) where D is the N ×N circulant convolution
matrix of the Laplacian filter. The hyperparameters γn and γx
are unknown and the assigned priors are conjugate : Gamma
distributions γn ∼ G (αn;βn) and γx ∼ G (αx;βx). They
are weakly informative for large variances and uninformative
Jeffreys’ prior when the (αx, βx) tends to (0, 0). As a conse-
quence, the full posterior pdf writes

p(x, γx, γn|y) ∝ p(y|x, γn)p(x|γx)p(γx)p(γn) (4)

∝ γαn+N/2−1
n γαx+(M−1)/2−1

x

exp
[
−γn‖y − SHx‖2/2

]
exp [−βnγn]

exp
[
−γx‖Dx‖2/2

]
exp [−βxγx] .

The conditional law of the image writes

p(x|y, γx, γn) ∝ exp
[
−γn

2
‖y − SHx‖2 − γx

2
‖Dx‖2

]
.

Accordingly the negative logarithm gives the criterion

Jγx,γn(x) =
γn
2
‖y −Ax‖2 +

γx
2
‖Dx‖2

and the gradient

∇Jγx,γn(x) = γnA
t(Ax− y) + γxD

tDx

= Q(x−m)

with m = Q−1γx,γnγnA
ty, and the Hessian

Qγx,γn = ∇2Jγx,γn(x) = γnA
tA + γxD

tD

B. Gibbs sampler

The posterior pdf is explored by the proposed GS in
Algorithm 2, based on the GSGS, that iteratively updates γn,
γx and a sub-component of x. Regarding the hyperparameters,
the conditional pdf are Gamma and their parameters are easy
to compute.

Algorithm 2 : GSGS for super-resolution.

Set t = 1, define an initial point x(0), and repeat
1: Sample γ(t)n ∼ p

(
γn|y,x(t−1)) as

G
(
N

2
;

2

‖y − SHx(t−1)‖2

)
.

and γ(t)x ∼ p
(
γx|y,x(t−1)) as

G
(
M − 1

2
;

2

‖Dx(t−1)‖2

)
.

2: Set Qt = Q
γ
(t)
x ,γ

(t)
n

and compute the gradient

g(t) = ∇Jγx,γn
(
x(t−1)

)
= Qt(x

(t−1) −m)

3: Sample a perturbation ε(t) ∼ N (0,Qt)
4: Compute a set of ND mutually conjugate directions
{d1, . . . ,dND

} with the first being d1 = g(t) + ε(t).
5: Sample independently the set (α̃n)n=1,...,ND

with:

α̃n ∼ N
(

dng
(t)

dnQtdn
;

1

dnQtdn

)
6: Compute x(t) ← x(t−1) −

∑ND

n=1 α̃n dn.
7: t← t+ 1.

until the stopping criterion is reached.

The set of mutually conjugate directions w.r.t. Qγx,γn , at
step 4 of Algorithm 2, is computed by the Gram-Schmidt
process applied to gradient, as usually found in conjugated
gradient optimization algorithm. The procedure is similar
to the algorithm described in [26]. Finally the estimator is
the posterior mean computed as the empirical mean of the
samples.

Despite the convergence proof with almost any law for the
perturbation ε (provided that the density p(ε) is supported in
R
N ), some tuning is necessary to practically obtain a good

space’s exploration. In practice, Step 3 has a major influence
and, as already discussed in section II-C, we observe that a
working perturbation corresponds to those of the PO algorithm
[30]

ε(t) = γ(t)n

−1/2
Atεn + γ(t)x

−1/2
Dtεx

where ε× are two Gaussian normalized random vectors, lead-
ing to a Gaussian perturbation ε(t) of covariance Qt. However,
the proposed algorithm has numerous advantages over the PO
algorithm. First the proposed algorithm has a convergence
proof because it does not suffer from truncation, even in the
extreme case with ND = 1. Second the perturbation has
the sole constraint of having RN as support. Moreover a
perturbation is not required at each iteration.

C. Numerical results

The posterior law (4) has been explored with the following
four algorithms or settings.
• The adaptive RJ-PO algorithm [40], directly tuned with

the acceptance probability, here chosen to be 0.9. This
acceptance probability leads to an average number of
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PO RJ-PO GSGS(150) GSGS(20) GSGS(2)
γ̂n 0.9725 0.9718 0.9694 0.9694 0.7078
σ̂γn 0.0061 0.0063 0.0061 0.0063 0.0062
γ̂x 1.05 e-03 1.07e-03 1.06e-03 1.29e-03 9.62e-03
σ̂γx 1.5e-05 3.7e-05 1.7e-05 2.4e-05 6.2e-03

loop [s.] 3.4 2.4 2.4 0.5 0.1
total [s.] 515 362 353 72 9

Table I: Hyperparameter estimates and estimation variances
for γn = 1.

around 150 iterations of the conjugate gradient algorithm
to compute the proposal, and with 6% of rejected sam-
ples.

• The PO algorithm [30] with a number of 150 iterations
for the optimization.

• Algorithm 2 with ND = 150. The idea is to build an
algorithm close to RJ-PO’s computing time.

• Algorithm 2 with ND = 20. The idea is to show that our
algorithm offers the possibility to reduce the number of
iterations while still offering a good exploration and with
guaranteed convergence.

• Algorithm 2 with ND = 2. The idea is to show a very
fast algorithm that offers a partially correct exploration.
This case is particular in the sense that the perturbation
is done only once for the whole algorithm.

The posterior mean (PM) estimations of the high-resolution
image are given in Fig. 1 as well as the posterior standard devi-
ation (PSD). From these results we can say that all algorithms
provide similar quality for the image estimation. The same
statement can be made for the standard deviation. However
the posterior standard deviation with ND = 2 seems incorrect.
A possible interpretation is that the perturbation vector ε is
simulated only once during the whole algorithm. Thus, the
space is surely not sufficiently explored and the covariance
estimation is severely biased. Indeed, since ε× are drawn only
once, the stochastic explorations are limited to the conjugate
direction plus the two directions εx and εn. However the mean
estimation does not seem to be affected and this algorithm is
able to provide very quickly a good estimation of the image
and hyperparameter values. We must notice that in our test
with ND = 10 the chain converged to a close, but wrong
distribution, giving good results in the image but an slightly
underestimation of γn.

The chains of the hyperparameters are illustrated in Fig. 2.
Figs. 2a and 2c represent the samples as a function of the
iterations. We observe that, except for ND = 2, all the chains
have the same behavior with the same convergence period.
The ND = 2 has slower (in terms of the number of iterations)
convergence but reaches the same stationary distribution.

Figs. 2b and 2d represent the samples as a function of time
(in seconds). The chain behavior of algorithms PO, RJ-PO and
GSGS(150) is very similar. This result is obvious since these
algorithms compute almost the same number of gradients per
iteration. That said, we see that for ND = 20 and ND = 2, the
impact on the convergence time is significant. Table I shows
some quantitative results. In particular the case ND = 20 is
five times faster than RJ-PO.

PO RJ-PO GSGS(20) GSGS(2)
γ̂n 9.9e-03 9.9e-03 9.9e-03 9.9e-03
σ̂γn 6.0e-05 6.05e-05 4.8e-05 5.5e-05
γ̂x 1.86e-03 1.84e-03 4.86e-03 2.29e-03
σ̂γx 3.2e-04 3.2e-04 7.2e-04 3.4e-05

Table II: Hyperparameter estimates and estimation variances
for γn = 1e− 02.

In addition, Table II shows the estimated values of the
hyperparameters with a higher noise level. Again the results
are close with a good estimation of γn.
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Figure 2: Chains of hyper parameters γx and γn.

To illustrate the effect of the perturbation for good space
exploration, Fig. 3 shows the results when no perturbations
ε(t) are introduced and with ND = 10. In this case, the
hypotheses of Proposition 2 are no longer verified and those
of Proposition 3 cannot be verified in practice. Moreover, the
results show that both the covariance and the hyperparameters
are wrongly estimated. This effect leads to an over-regularized
image. A possible explanation is that the conjugate directions
of the GSGS explore in a privileged way the directions of
small variance (highest eigenvalues of Q).

Regarding the computational cost, all the presented algo-
rithms are dominated by the cost of the matrix-vector product
Qx. The cost thus depends on the specific problems and
the structure of Q in the same way as for the conjugate
gradient algorithm. For super-resolution problems, the cost
of the matrix-vector product is almost equal to two discrete
Fourier transforms of images. That said, the total number of
matrix-vector products is related to ND and the number of
Gibbs iterations. Moreover, the computational cost is linear
with respect to ND.

The main concluding comment is that the proposed algo-
rithm allows a great improvement in the convergence time of
the GS. However the speed improvement can come with a bad
covariance estimation if the number ND of directions for the
image x is not sufficient.
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Figure 1: Image results.

IV. CONCLUSION

The handling of high-dimensional distribution, especially
Gaussian, appears in many linear inverse and estimation
problems. With growing interest in “Big Data” and non
stationary problems this task becomes critical. Moreover, the
uncertainty around the estimated values, or the confidence
interval, remains one of the difficult points combined with
the hyperparameter estimation for automatic method designs.

The main contributions of this paper are (i) the proposition
of a new algorithm in the class of the Gibbs samplers, able

to address the case of high-dimensional Gaussian conditional
distributions, and (ii) the convergence proof of the algorithm.
It relies on a random excursion along a small set of directions
instead of working with high dimensional distributions. The
directions are appropriately chosen according to the gradient
of the potential of the distribution.

This new algorithm is shown to be an efficient alternative
to existing work like the PO-type algorithms: we ensure the
theoretical convergence of the algorithm and, in some cases,
we can show a drastic computing-time improvement.

The convergence of the algorithm is proved, provided
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Figure 3: Results without perturbation and ND = 20.

that a random perturbation around the gradient direction is
introduced. Even if in theory the only condition to ensure
convergence is to choose a perturbation distribution supported
in the whole space, it appears in practice that the results
are sensitive to the choice of the distribution. Moreover, the
choice of the Gaussian distribution N (0,Qθ) is the only case
where the algorithm is more efficient than the PO and RJ-
PO algorithms. The objective of further work will be to better
understand this sensitivity and the open problem of the choice
of the perturbation’s distribution.

In further work the objective will be to study the conver-
gence rate of the GSGS. In particular, the geometric ergodicity
is an important property that ensures a fast convergence and
allows us to give estimations of standard errors. The geometric
ergodicity of Gibbs samplers has long been studied [43] and
a lot of results are shown in the Gaussian case [44], as well
as for applications in Bayesian hierarchical models [45], also
in the case of joint Gaussian and Gamma distributions [46],
[47], the latter being close to our illustration example.

Also, one has to choose the number ND of mutually con-
jugate directions to sample at each iteration of the algorithm.
In theory, this does not affect the convergence properties of
the algorithm. As a perspective, one can propose an automatic
choice of ND, following the work in [40] for the RJ-PO. A
research field could be the study of the algorithm’s efficiency
with respect to the eigenvalues of Q in the high dimensional
case.

The proposed algorithm is somewhat independent of the
chosen direction. The use of a preconditioner to compute
direction, as in preconditioned conjugate gradient, should
improve the computational cost by an ND parameter smaller
than at the present time. It depends, however, on each problem
addressed.

From an experimental standpoint an additional assessment
of the proposed method could rely on a numerical comparison
with other existing approaches, for instance Hamltonian or

Langevin algorithm [31]–[34].

This paper is focused on linear conditionally Gaussian
models. By use of hidden variables, the algorithm should
also be able to work with non Gaussian models that are still
conditionally Gaussian.

APPENDIX

A. Proof of Proposition 2

This appendix is devoted to prove Proposition 2. It is mainly
inspired by the proofs presented in [28] (see also [27], [29]) for
different random scan strategies in order to sample p(x|θ). The
only difference is that the random choice is not according to a
set of coordinates of x in the canonical basis, but according to
a mutually conjugate set with respect to a current matrix Qθ.
Therefore the same arguments as detailed in [28] can be used
to prove the irreducibility: if the support of the density p(ε)
is RN , all the directions can be explored in one step of the
algorithm. Therefore any y ∈ RN can be reached in one step
by taking, for example, d1 = x(t−1) − y, α̃1 = 1, α̃n = 0,
n = 2, . . . , ND. Using classical continuity arguments, we can
deduce that the probability of reaching any open ball B(y, r),
centered in y of radius r, conditional to any current point x(t),
is strictly positive, which ensures the chain to be irreducible.

The rest of the proof focuses on the fact that p(x,θ) is an
invariant probability of the chain. We use the same arguments
and notations of [28]. Let x ∈ RN and a set D of mutually
conjugate directions with respect to a definite positive matrix
Q. We decompose x = (xD,x\D) which is always possible
as explained in section II-A.

Define (x′,θ′) ∈ RN × Θ a current point and (x′,θ′) ∈
R
N ×Θ the point obtained by Algorithm 1 with the transition

Kernel:

P (x,θ|x′,θ′) = π(θ|x′,θ′)π(xD|x\D,x′,θ)δ(x\D − x′\D)

with π denoting any conditional probability and δ is the
Dirac function. The objective is to show that if (x′,θ′) is
distributed according to the joint distribution p, then (x,θ) is
also distributed according to p.

Let A ⊂ RN be a measurable set. The following lines are
the result of the definition of the transition Kernel, the use
of the general product rule, and of sequential integration with
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respect to θ′, x′D and x′\D:

P((x,θ) ∈ A)

=

∫
1A(x,θ)P (x,θ|x′,θ′)p(x′,θ′)dxdθdx′dθ′

=

∫
1A(x,θ)π(θ|x′,θ′)π(xD|x\D,x′,θ) . . .

. . . δ(x\D − x′\D)p(x′,θ′)dxdθdx′dθ′

=

∫
1A(x,θ)p(x′,θ)π(xD|x\D,x′,θ) . . .

. . . δ(x\D − x′\D)dxdθdx′

=

∫
1A(x,θ)p(x′\D,θ)π(xD|x\D,x′\D,θ) . . .

. . . δ(x\D − x′\D)dxdθdx′\D

=

∫
1A(x,θ)p(x\D,θ)π(xD|x\D,θ)dxdθ

=

∫
1A(x,θ)p(x,θ)dxdθ

Hence the joint probability p(x,θ) is an invariant probabil-
ity of the Markov chain produced by Algorithm 1.

B. Proof of Proposition 3
This appendix is dedicated to prove Proposition 3. Let

(x(0),θ(0)) ∈ R
N × Θ be a current point and (x(t),θ(t))

the point produced by the chain of Algorithm 1 at iteration
t. The objective is to prove that for any non-negligible subset
A ⊂ R

N × Θ, there is T ≥ 0 such as P((x(T ),θ(T )) ∈
A|x(0),θ(0)) > 0. Using the hypothesis H-2, it is sufficient to
prove that for any non-negligible subset Ax ∈ RN , there is
T ≥ 0 such as:

P(x(T ) ∈ Ax|x(0),θ(0)) > 0 (5)

Given x(0), we denote by θ the corresponding element that
respects conditions H-3. It is sufficient to prove the Proposition
in the following framework:
F-1 θ(N+1) = θ(N) = . . . = θ(0) = θ,
F-2 mθ = 0,
F-3 Qθ = diag(q1, . . . , qN ) is diagonal.
Indeed, if we prove the inequality (5) with fixed θ for N + 1
iterations, continuity arguments using conditions H-1 and H-
2 will end the proof of the Proposition. The simplifications
F-2 and F-3 can be assumed by a change of variable y(t) =
x(t)−mθ and by considering the basis of RN formed by the
eigenvectors of Qθ.

In this simplified framework, the chain of Algorithm 1
produces x(t), t = 1, . . . , N + 1, such as:

x(t) = (I− α(t)Qθ)(I− α(t−1)Qθ) . . . (I− α(1)Qθ)x(0),

with I the identity matrix in R
N and, noting x =

(x1, . . . , xN )t, we have, for n = 1, . . . , N :

x(t)
n = (1− α(t)qn)(1− α(t−1)qn) . . . (1− α(1)qn)x(0)

n . (6)

The hypothesis H-3.2 ensures that x
(0)
n 6= 0, n = 1, . . . , N ,

therefore we can assume without loss of generality that x(0)
n =

1, n = 1, . . . , N , and equation (6) is, in this case:

x(t)
n = (1− α(t)qn)(1− α(t−1)qn) . . . (1− α(1)qn). (7)

The following Lemma proves that any point in RN can be
reached by the chain in N + 1 iterations.

Lemma 1. For any y ∈ RN , there is α = (α(1), . . . , α(N+1))
such as x(N+1) = y, where x(N+1) is defined by (7) with
t = N + 1.

Proof. This can be done by interpreting it as an interpolation
problem: given y ∈ RN , the objective is to show that there is
a polynomial PN+1

α such as:

PN+1
α (qn) = yn, n = 1, . . . , N (8)
PN+1
α (0) = 1 (9)

with PN+1
α defined by the right hand side of (7) with t = N+

1. The constraint (9) is due to the specific form of PN+1
α . Also

the fact that the parameters α(n) must be real, implies that the
polynomial PN+1

α must have only real roots. It is well known
that there is a polynomial of degree N that respects (8) and (9).
Let us denote by Q such a polynomial. But the roots of Q may
be complex. However we can show that there is a polynomial
of degree N + 1 with real roots that respects the conditions
(8) and (9). Indeed, let us consider the polynomial Q and a
polynomial R of degree N+1 such as R(q1) = R(q2) = . . . =
R(qN ) = R(0) = 0. Therefore any polynomial Pτ = Q+τR,
τ ∈ R, respects conditions (8) and (9), and it is trivial to show
that for τ∗ sufficiently large, the polynomial Pτ∗ has all its
roots r∗n ∈ R, n = 1, . . . , N . Therefore, taking PN+1

α = Pτ∗ ,
i.e. α(n) = 1/r∗n ends the proof of the lemma.

Using this lemma and the continuity of PN+1
α with respect

to α, it is trivial to prove (5) and then the Proposition.
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