
HAL Id: hal-01252511
https://hal.science/hal-01252511v1

Submitted on 22 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation of S-LAM Descriptions from
UML/MARTE for the DSE of Massively Parallel

Embedded Systems
Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, Mohamed

Abid

To cite this version:
Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, Mohamed Abid. Automatic Gener-
ation of S-LAM Descriptions from UML/MARTE for the DSE of Massively Parallel Embedded Sys-
tems. Roger Lee. Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing 2015, 612, Springer, pp.195-211, 2016, Studies in Computational Intelligence, 978-3-319-
23509-7. �10.1007/978-3-319-23509-7_14�. �hal-01252511�

https://hal.science/hal-01252511v1
https://hal.archives-ouvertes.fr

Automatic Generation of S-LAM Descriptions
from UML/MARTE for the DSE of Massively
Parallel Embedded Systems

Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed
Abid

Abstract Massively Parallel Multi-Processors System-on-Chip (MP2SoC) archi-
tectures require efficient programming models and tools to deal with the massive
parallelism present within the architecture. In this paper, we propose a tool which
automates the generation of the System-Level Architecture Model (S-LAM) from
a Unified Modeling Language-based (UML) model annotated with the Modeling
and Analysis of Real-Time and Embedded Systems (MARTE) profile. The S-LAM-
based description of the MP2SoC architecture is conformed to the IP-XACT stan-
dard. The integration of our generator within a co-design framework provides the
specification of the whole MP2SoC system using UML and MARTE. Then, gradual
refinements allow the execution of a rapid prototyping process.

1 Introduction

Recent trends in High-Performance Computing (HPC) architectures show that, due
to the end of processor frequency scaling, performance increases are mostly gained
by employing more processor cores [1]. This trend draws attention to the effective-
ness of Massively Parallel Multi-Processors System-on-Chip (MP2SoC) architec-
tures in the HPC domain. Designers of high performance MP2SoC are facing many
critical design challenges including:

M. Ammar · M. Baklouti · M. Abid
CES Laboratory, National Engineering School of Sfax, Sfax, Tunisia
e-mail: manel.ammar@ceslab.org

M. Pelcat · K. Desnos
IETR, INSA Rennes, CNRS UMR 6164, UEB, Rennes, France
e-mail: mpelcat@insa-rennes.fr

1

2 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

1.1 Raising the level of abstraction of the specification

The raising complexity of embedded systems creates a need for intensive speci-
fication task. In the history of design flows, changes in design productivity were
always related to raising the level of abstraction in design entry. In the 1970s, the
highest level of abstraction was a transistor schematic. 10 years later, design entry
had moved up from transistors to gates. Then, with the appearance of Hardware
Description Languages (HDL) other levels of abstraction were proposed including
the Register-Transfer Level (RTL) and the behavioral level. In the beginning of the
2000s, and with the emergence of new languages (mainly SystemC) for the descrip-
tion of systems, a higher level of abstraction was created named the system-level.
Current research targeting the Model Driven Engineering (MDE) methodology [2]
shows the effectiveness of this methodology in the domain of System-on-Chip (SoC)
design. Describing complex systems using models, which is the primary issue of
MDE, leads to the creation of a higher level-of-abstraction: the model level. This
level is mainly based on the Unified Modeling Language (UML) [3] and a domain-
specific profile dealing with a specific type of systems: embedded systems.

1.2 Reusing IP blocks

Historically, design reuse has proven its utility in the SoC design field as system
complexity continuously increases [4]. However, there is one important challenge
in adopting this methodology: the lack of formal characterization of platforms. As
a result, platforms should be formally defined in terms of semantics to facilitate
verification, automatic design, reuse and interoperability between Electronic De-
sign Automation (EDA) tools. IP-XACT [5] was created to face this challenge. It
describes electronic components and their designs in an Extensible Markup Lan-
guage (XML) format that facilitates exchanging IPs between different EDA tools
for complex SoC design. IP-XACT was standardized by the SPIRIT Consortium.

1.3 Building well structured methodologies

Methods and tools used in the specification and design space exploration of HPC
architectures aim at managing the increasing complexity of hardware architectures
specification task while promoting IP reuse through the IP-XACT standard. Current
hardware specification efforts within the MDE community can be summarized in
two key points:

• Modeling IP-XACT designs in UML and annotating models with IP-XACT spe-
cific stereotypes

Automatic Generation of S-LAM Descriptions from UML/MARTE 3

• Applying UML as high-level specification methodology and link it with IP-
XACT in a lower-level of abstraction using MDE transformation rules

The work presented in this paper is an effort towards the second key point. Ac-
tually, we propose a new approach that takes advantage from UML as high-level
modeling language combined with the Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) profile [6] and introduces another level that facili-
tates IP integration, architecture generation and system analysis. This level is based
on the System-Level Architecture Model (S-LAM) [7] which conforms to the IP-
XACT standard. S-LAM proposes a simple description of MP2SoC architectures
at system-level while reducing the architecture simulation complexity. This paper
presents the MARTE to S-LAM generator, able to generate from a UML/MARTE
description of the MP2SoC architecture, the corresponding S-LAM description re-
quired for running a system-level rapid prototyping process.

This paper is organized as follows: related works dedicated to hardware resource
modeling and IP-XACT integration are highlighted in Section 2. Section 3 intro-
duces our framework for the co-design of MP2SoC embedded systems. Section 4
details our proposed S-LAM generator including the implemented meta-models and
transformation rules. Finally, Section 5 gives some experimental results.

2 Related Work

In recent years, there has been an extensive interest in merging MDE-based frame-
works and metadata IP reuse approaches. Initial efforts targeting to combine UML
design entries with IP-XACT have been gaining traction [8, 9, 10]. These efforts
aim to choose the adequate profile that covers the specification of complex hardware
platforms on the one hand, and to implement the adequate mapping that generates
the required IP-XACT description of the architecture on the other hand.

2.1 Using UML profiles for HW resource modeling

UML is a general language but its extensibility, introduced with UML 2.0 via the no-
tion of profiles, extends the language to domain-specific problems. More precisely,
UML started to be adopted as a standard in the domain of real-time and embedded
systems during the past years. Several profiling mechanisms aiming to use UML in
SoC design and especially in hardware specification have been proposed including
UML for SoC [11] and Omega-RT [12] profiles. With the ever increasing demand
and complexity of embedded systems, a new profile has emerged. This standardized
profile, named MARTE [6], is structured around two central concerns, modeling the
characteristics of embedded systems and annotating the models to support the analy-
sis of the system features. Defining accurate semantics for time and Hw/Sw resource
modeling and supporting real-time and embedded systems co-design flows are the

4 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

major goals of the MARTE profile. These two goals can be achieved using the MDE
foundations when defining embedded system design flows. This explains the use of
MARTE and MDE in the proposed co-design flow. In one hand, MDE facilitates
automatic transformations from one abstraction level to a lower one, for simulation
or implementation purposes. In the other hand, it promotes the integration of differ-
ent tools thanks to transformation techniques. As a result, analysis tools, verification
tools and modeling tools can be coupled in a single co-design flow.

2.2 Merging UML and IP-XACT in MDE-based design flows

Several works have shown the importance of integrating IP-XACT while taking ad-
vantage from MDE principles in their design flows. In [8] a MARTE-based method-
ology that exploits IP-XACT to specify and automatically generate Dynamic Partial
Reconfiguration (DPR) SoC designs was proposed. MARTE models of the plat-
form are parsed executing a chain of model transformations to obtain an IP-XACT
description of the system that can be used in the Xilinx EDK (Embedded Design
Kit) environment. In the COMPLEX framework [9], the IP-XACT description of
the architecture can be automatically generated from the UML/MARTE model us-
ing the MARTE to IP-XACT (MARTIX) code generator [10]. Then, an executable
model can be built from the IP-XACT platform description for functional valida-
tion and performance estimation. In another work [13], IP-XACT was used as input
point in an MDE-based approach aiming to generate SystemC code. The authors
propose a multi-level design flow that integrates extensions of the IP-XACT stan-
dard and different meta-models. Comparing these related works with our approach,
we can observe that none of them uses IP-XACT for the high-level design space
exploration of MP2SoC systems. Moreover, these works try to exploit the whole IP-
XACT metadata targeting low-level simulations. On the contrary, our approach is
based on a simplified sub-set of IP-XACT, named S-LAM, for the high-level analy-
sis of MP2SoC.

3 A co-design framework integrating the S-LAM generator

Our proposed approach, depicted in Figure 1, is a complete EDA tool for the co-
specification, design space exploration and code generation of MP2SoC systems
that relies on Object Management Group (OMG) standards and MDE techniques.
Being based on the Eclipse framework, front-end, transformation engine and back-
end tools are grouped together in a fully-integrated flow.

Automatic Generation of S-LAM Descriptions from UML/MARTE 5

Application)and)
SW)deployment

Architecture)and)
HW)deployment

SW/HW
allocation

UML)
meta-model)and)
MARTE)profile

<<conformsDto>>

P
ap

yr
u

sD
m

od
el

er
U

M
L

/M
A

R
T

E
DF

ro
n

t-
en

d

UML2MARTE
(M2M)

MARTE)
meta-model))

Application)
generic)model

Allocation)
generic)model

Architecture)
generic)model

MARTE)to
ΠSDF)(M2M))

MARTE)to
S-LAM)(M2M))MARTE)to)

Scenario)(M2T))

<<conformsDto>> <<conformsDto>><<conformsDto>>

S-LAM)
model)

ΠSDF)
model)

S-LAM)to)slam)
files)(M2T))

ΠSDF))to)pi)
files)(M2T))

.slam)
files)

.pi
files)

ΠSDF)
meta-model))

<<conformsDto>>

S-LAM)
meta-model))

<<conformsDto>>

S-LAMD
generator

ΠSDFD
generator

Automatic)mapping)
and)scheduling

P
R

E
E

S
M

Dr
ap

id
p

ro
to

ty
p

in
gD

to
ol

Db
ac

k
-e

n
d

Performance
estimation

T
ra

n
sf

or
m

at
io

n
De

n
gi

n
e

QVTO QVTO

QVTO

Acceleo Acceleo

Acceleo

Scenario
file

<<entry>>

<<entry>>

<<entry>>

Fig. 1 The S-LAM generator in the context of the co-design flow

3.1 UML/MARTE front-end

The proposed co-design flow uses UML/MARTE and the associated Papyrus tool
[14] as modeling front-end. This high-level modeling front-end allows a user to
graphically specify an embedded system conforming to the UML meta-model and
the MARTE profile. Our methodology defines four sub-models to be specified and
associated in a unified UML/MARTE based-model: application, architecture, allo-
cation, and deployment sub-models.

3.1.1 Application sub-model

Contains the structural specification of a given data-intensive application where
computations are defined as a set of interconnected tasks inside a UML composite
structure diagram. Application constraints and properties are defined in this sub-
model including execution time value of each task using the «swSchedulableRe-

6 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

source» stereotype from the MARTE Software Resource Modeling (SRM) sub-
profile. The MARTE Repetitive Structure Modeling (RSM) sub-profile is used to
model the parallel computations and the multidimensional data structures in the ap-
plication. In addition, the Generic Component Modeling (GCM) sub-profile helps
to define data flow ports and connectors.

3.1.2 Architecture sub-model

Gathers a number of interconnected resources specifying the hardware components
of an embedded system in a structural way. Therefore, the composite structure di-
agram is used to model the hierarchic structure of MP2SoC. Stereotypes from the
MARTE Hardware Resource Modeling (HRM) sub-profile are exploited to indi-
cate which kind of hardware component each UML element represents («HwPro-
cessor» «HwMemory» «HwCommunicationResource» stereotypes). Properties of
hardware processing resources, storage resources and communication resources are
also specified using tagged values of these stereotypes. Multidimensional parallel
resources of massively parallel MP2SoC architectures are specified using the RSM
sub-profile. Ports and interconnections between hardware resources are annotated
with stereotypes from the GCM sub-profile.

3.1.3 Allocation sub-model

Defines the allocation constraints which associate tasks from the application sub-
model with resources from the architecture sub-model. To allocate tasks to hard-
ware components, the MARTE alloc sub-profile is used. In fact, UML dependencies
between class instances of the application and the architecture are annotated with
«allocate» or «distribute» stereotypes helping to map each task to a component or
a repetition of a task to a group of components. The allocation is partial and de-
fines only mapping constraints since the rapid prototyping tool automatically makes
mapping decisions.

3.1.4 Deployment sub-model

Describes the deployment of the software and the hardware components on IPs
using the UML deployment diagram. The UML deployment mechanism and the
MARTE profile lack aspects that allow the deployment of IPs on a component of
the SoC. For this reason, our flow proposes an additional profile, the Deployment
profile to facilitate deploying elementary components with IPs. The proposed pro-
file facilitates both the high-level modeling of IPs and the automatic generation
of the S-LAM system description. The «HwIP» stereotype, from the Deployment
profile, models an IP deployed on a component of the architecture facilitating the

Automatic Generation of S-LAM Descriptions from UML/MARTE 7

generation of S-LAM descriptions. It gathers a set of attributes used to specify a
component description in the S-LAM standard.

3.2 Transformation engine

Three transformation engines were developed inside the transformation engine:

• The πSDF generator: produces πSDF graphs of the data-parallel application to
facilitate the analysis of modern data-intensive applications running on MP2SoC
architectures. The implementation of the πSDF generator is detailed in [15].

• The S-LAM generator: produces an S-LAM description of the architecture (cf.
Section IV).

• The MARTE to Scenario transformation: produces a scenario file for the rapid
prototyping framework. This scenario gathers systems constraints and properties
aiming to guide the rapid prototyping process.

3.3 PREESM tool back-end

The generated πSDF graphs of the application, S-LAM description of the archi-
tecture and scenario file can be automatically analyzed and processed using the
PREESM [7] rapid prototyping tool for automatic allocation, scheduling [16], sys-
tem performance estimation [7] and finally code generation.

4 The S-LAM generator

The implementation of a transformation flow in the MDE approach relies on the
definition of ad-hoc meta-models for each abstraction level. For this reason, two
meta-models are proposed in the context of the S-LAM generator: the MARTE
meta-model and the S-LAM meta-model. In addition, model-to-model (M2M) and
model-to-text (M2T) transformations were defined inside the transformation chains
as depicted in Figure 1. In our approach, M2M transformation rules are defined us-
ing the QVTO language [17] and M2T transformation rules are described using the
Acceleo tool [18].

8 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

4.1 MARTE meta-model relevant parts used in the S-LAM
generator

The input of each transformation chain in the proposed framework is a UML model
compliant with the MARTE profile. Generating a MARTE model (conforming to
the MARTE meta-model) from a profiled UML model (conforming to the UML
meta-model) is a typical transformation in a UML/MARTE-based framework. The
developed UML2MARTE transformation corresponds to a bridge connecting the
specification of the system and the developed generators. This transformation is out
of the scope of this paper. The open-source Ecore version of the MARTE meta-
model provided with the source code of Papyrus and extended with the Deployment
elements is used as the input of the S-LAM generator.

4.1.1 Conserving the hierarchical structure of MP2SoC with GCM
meta-model

The GCM package from the MARTE profile defines a rich base of notations help-
ing to annotate ports, interconnections, etc. However, supporting component-based
models remains most important when focusing on moving up from specification pur-
poses, where the MARTE profile is employed as a foundation, to successive trans-
formations for DSE, where the MARTE meta-model is used as starting point. The
GCM meta-model can preserve the hierarchical structure of a model without losing
any detail since it represents an abstraction of the UML structured classes. A hierar-
chical component in MARTE is a StructuredComponent that encloses instances of
other components, presented using the AssemblyPart element. Two assembly parts
are connected via their ports (FlowPort element) using connectors. Connectors be-
tween two AssemblyParts are named AssemblyConnectors.

4.1.2 Capturing repetitive structures in the RSM meta-model

The RSM meta-model extends the basic concepts of the MARTE meta-model by
providing meta-classes that capture shaped multiplicities and link topologies of in-
tensive computation embedded systems. This meta-model proposes high-level meta-
modeling mechanisms that express all the available parallelism of the hardware exe-
cution platform precisely and in a compact manner. These mechanisms are oriented
toward two features: capturing the regularity of an MP2SoC system structure (com-
posed of a repetition of structural elements) and denoting the topologies of links
between hardware components of the system.

Automatic Generation of S-LAM Descriptions from UML/MARTE 9

4.1.3 Capturing system properties in the HRM meta-model

The Hw_Logical meta-model is the relevant part from the HRM meta-model used
in the S-LAM generator as it gathers the set of hardware resources that are central
to the MP2SoC platform definition. Properties of memories (size), communication
networks (speedup) and processors can then be captured inside the meta-classes of
this meta-model.

4.1.4 Capturing IP properties in the Deployment meta-model

The Ecore version of the current MARTE meta-model was extended to enable its
merging with the Deployment meta-model. Properties of each IP can be then de-
duced in the generated MARTE model from the «hwIP» stereotype and captured
inside the hwIP meta-class.

4.2 The S-LAM meta-model

At high-levels of abstraction, a detailed description of each hardware resource is not
necessary to succeed a rapid prototyping process. For this reason, the S-LAM meta-
model does not use the entire IP-XACT meta-model, but it exploits a sub-set of
concepts that capture the needed information for the exploration phase. This sub-set
includes two meta-models: the component meta-model and the design meta-model.

4.2.1 The component meta-model: simplifying IP description for DSE

A component, according to the IP-XACT standard, specifies a single hardware IP
and details the required information for the integration of this IP including its inter-
faces and its internal structure. Assuming that a specification approach that ignores
the implementation details of each component of the hardware architecture while
detailing its primary properties makes the system-level exploration process faster
and gives satisfactory solutions, the S-LAM component meta-model defines only
three component types: operators, enablers and communication nodes. These com-
ponents are efficient enough to specify a massively parallel embedded architecture
that gathers processing elements (operators), local and shared memories (enablers)
and regular and irregular communication networks (communication nodes).

4.2.2 The design meta-model: supporting hierarchy and composition

The S-LAM design meta-model, depicted in Figure 2, describes a design as a set
of component instances (ComponentInstance element), links (Link element), hier-

10 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

Design
pathu:uEString
containsComponentInstance.EString*u:uEBoolean
containsComponent.VLNV*u:uEBoolean
getComponentInstance.EString*u:uComponentInstance
getComponent.VLNVTEClass*

ComponentInstance
instanceNameu:uEString
repetitionSizeu:uEString
isHierarchical.*u:uEBoolean

VLNVedElement

Link

uuidu:uEString
directedu:uEBoolean

DataLink ControlLink

HierarchyPort

ComInterface
nameu:uEString

VLNV
vendoru:uEString
libraryu:uEString
nameu:uEString
versionu:uEString

Component

HierConnection
componentInstances

0..1

links
0..1

hierarchyPorts
0..1

vlnv
1

sourceInterface
1

destinationInterface
1

srcCompInstance
1destCompInstance

1
externalInterface

1

internalInterface
1

internalCompInstance
1

busType
1

hierarchyConnections
0..1

component
1

interfaces
0..1

instances
0..1

refinements
0..1

Fig. 2 S-LAM design meta-model

archy ports (HierarchyPort element) and hierarchy connections (HierConnection
element). Both Design and Component elements are identified using their VLNV
which specifies the vendor, the containing library, the element name, and the ver-
sion number of a given IP. Each component instance in the design refers to the
initial component description. These component instances can be connected using
two types of connection elements: Link and HierConnection. While links are point-
to-point connections between communication interfaces (ComInterface element) of
the component instances, hierarchy connections connect sub-designs or components
from different hierarchical levels using hierarchy ports. The original Ecore version
of the S-LAM meta-model [7] was extended to allow the specification of a repetition
of the same IP. The repetitionShape attribute was added to the ComponentInstance
meta-class allowing to specify the repetition shape of a given component instance.

4.3 M2M mapping rules: from MARTE model to S-LAM model

The basic UML to MARTE and MARTE to S-LAM implemented QVTO mappings
are sketched in Figure 3.

4.3.1 Building the hierarchical structure of S-LAM

The S-LAM generator navigates the MARTE-compliant model and produces one
S-LAM model. This model is produced if and only if the S-LAM generator finds at
least one StructuredComponent in the MARTE model. Then, the hierarchical struc-

Automatic Generation of S-LAM Descriptions from UML/MARTE 11

UML::Property
OpartSinsideSaShierachicalSclass-S

GCM::
AssemblyPartS

slam::
ComponentInstanceS

UML::Port
OportSinsideSaShierachicalSclass-S

GCM::FlowPort
OofSaSStructuredComponent-S

slam::
HierarchyPortS

UML::Connector
ObetweenStwoSparts-S

GCM::AssemblyConnector
ObetweenSAssemblyParts-S

slam::DataLink
orSslam::ControlLink

UML::Property
OpartSinsideSaShierachicalSclass-S

GCM::
AssemblyPartS

slam::ComponentS

UML::Port
OportSinsideSaSpart-S

GCM::FlowPort
OofSanSAssemblyPart-S

slam::ComInterfaceS

UML::Property
OstereotypedSHwProcessor-S

GCM::AssemblyPart
OwithSaSHwProcessor

classifierTypeExtensionS
slam::Compoonent::OperatorS

UMLSmeta-model MARTESmeta-model S-LAMSmeta-model

DesignS

UML::Class
OwithSparts-S

GCM::
StructuredComponentS

slam::DesignS

ComponentS

Fig. 3 Mappings between UML, MARTE and S-LAM meta-models

ture of the S-LAM model is created based on the Design meta-model. First, each
StructuredComponent is transformed into a Design. Each AssemblyPart within the
StructuredComponent becomes a ComponentInstanse inside the Design element.
Moreover, if the shape of the AssemblyPart is superior to one, the repetitionSize at-
tribute of the ComponentInstance will take the value of the shape element, indicat-
ing a repetition of a hardware component instance. Examining each StructuredCom-
ponent, the S-LAM generator looks for the AssemblyConnectors which associate
AssemblyParts, and produces DataLinks or ControlLinks depending on the Assem-
blyParts type (HwProcessor, HwMemory, etc.). In addition, AssemblyConnectors
linking an AssemblyPart with the StructuredComponent itself are transformed into
HierarchicalConnections. For the production of HierarchyPorts, the generator ex-
plores the ports set of a given StructuredComponent, and transforms each FlowPort
into a HierarchyPort.

4.3.2 Generating the interface set of each component instance and deducing
its type

For each AssemblyPart of the StructuredComponent, the S-LAM generator simulta-
neously produces a ComponentInstance and a Component. The implemented trans-
formation automates the generation of the corresponding ComInterfaces of each
Component. In fact, FlowPorts of each AssemblyPart are converted into Com-
Interfaces when mapping the corresponding AssemblyPart into Component. Fur-
thermore, the generator is able to produce the right type of Component once it

12 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

checks the classifierTypeExtension element attached to the AssemblyPart. In fact,
if the AssemblyPart is not hierarchic, it will be transformed into an Operator,
a Mem or a ComNode depending on its classifierTypeExtension (HW_Processor,
HW_Memory, HW_CommunicationResource, HW_Bus). A hierarchical Assembly-
Part is an instance of a StructuredComponent which was a hierarchical class stereo-
typed «HwResource» in the UML model. It is transformed into an Operator if it
contains in its internal structure a processor.

4.4 M2T mapping rules: from S-LAM model to S-LAM files

Figure 4 shows the main Acceleo template which is the entry point of the M2T trans-
formation. Given that this template requires an instance of the parameter Design, the
transformation will navigate in the whole model to find all the available Design el-
ements and generate one S-LAM file per Design. The produced files are named
as the Design plus the “.slam" suffix, and encloses the «spirit:design» entry. Then,
for each ComponentInstance element from the S-LAM model, the transformation
will produce one component instance inside the «spirit:componentInstances» and
«spirit:componentInstances» delimiters. At the same time, this transformation con-
trols the repetitionShape value of each ComponentInstance in order to generate N
(where N is the value defined by the repetitionShape attribute) component instances
indicating the presence of a repetition of the same component instance in the design.
The M2T transformation searches all the DataLinks and ControlLinks and produces
a set of S-LAM interconnections. It also implements a similar navigation to figure
out the list of hierarchical connections.

5 Case study

To evaluate the benefits of our framework, we conduct a series of experiments on
the M-JPEG encoder application. Originally developed for streaming multimedia
application, the M-JPEG video compression format is now considerably exploited
in video-capture devices where each video frame or video sequence is compressed
separately as a JPEG image. Compared to the recently emerged video compres-
sion standards, M-JPEG describes a relatively simple encoding workflow. But, it
is a typical streaming application that contains inherent task and data parallelism
the fact that provides rich experimentation opportunities when running on MP2SoC
architectures. Figure 5 shows the composite structure diagram of the application.
The video sequence should first be partitioned into frames (M-JPEG_encoder class).
Frames are split in blocks of 8*8 pixels and processed separately as JPEG images
(Encode_Frame class). We performed experiments by simulating the M-JPEG on
a stream of 100 and 200 frames of QCIF format (352 ∗ 288 pixels). For this rea-
son, multiplicities of tasks and ports expressed via the «Shaped» stereotype were

Automatic Generation of S-LAM Descriptions from UML/MARTE 13

[template<public<generateDesign(design<y<Design)]<
[comment<@mainL]<
[file (designMnameMtoString>pMconcat>0Mslam0pu<falseu<0UTFXk0)]<
<
<?xml<version=xIMPx<encoding=xUTFXkx?><
<spiritydesign<
xmlnsyspirit=xhttpyLLwwwMspiritconsortiumMorgLXMLSchemaLSPIRITLIMVx><
<
[designMgenerateVLNV>p/]<
<
<<<<<<spiritycomponentInstances><

<<[for (compInstanceyComponentInstance<|<selfMcomponentInstances)]<
<<<<<<[compInstanceMgenerateComponentInstance>p/]<
<<[/for]<

<<<<<<LspiritycomponentInstances><
<<<<<<<<<
<<<<<<spirityinterconnections><
<<<<<<[for (datalinkyDataLink<|<selfMlinks)]<
<<<<<<<<<<<<[datalinkMgenerateDataLink>p/]<
<<<<<<[/for]<<
<
<<<<<<[for (controllinkyControlLink<|<selfMlinks)]<
<<<<<<<<<<<<[controllinkMgenerateControlLink>p/]<
<<<<<<[/for]<

<<<<<<Lspirityinterconnections><
<
<<<<<<spirityhierConnections><
<<<<<<[for (hierconnyHierConnection<|<selfMhierarchyConnections)]<
<<<<<<<<<<<<[hierconnMgenerateHierConnection>p/]<
<<<<<<[/for]<

<<<<<<spirityhierConnectionsL><
<
<spirityvendorExtensions><
 [designMgeneratevendorExtensions>p/]<
<LspirityvendorExtensions><
<<<<
<Lspiritydesign><
[/file]<
[/template]

Fig. 4 Acceleo main template

<<swSchedulableResource>>
M-JPEG_encoder

:Read_vid <<shaped>>
:Encode_Frm

:Display_output

<<shaped,
flowPort>>
video

<<shaped,
flowPort>>
Frm_in

<<shaped,
flowPort>>
output

<<tiler>> <<tiler>>

<<swSchedulableResource>>
Encode_Frm

<<shaped>>
:Encode_block

<<shaped,
flowPort>>
block_in

<<tiler>> <<tiler>><<shaped,
flowPort>>
Frm_in

<<shaped,
flowPort>>
Frm_out

<<shaped,
flowPort>>
block_out

<<shaped,
flowPort>>
Frm_out

Fig. 5 UML/MARTE specification of the application

varied. MP2SoC, as presented in Figure 6, is composed of two clusters. While the
first cluster contains one processing element (PE), the second cluster includes a
variable number of processing elements. Processing elements inside the clusters are
homogenous. Inside each cluster, each processing element is connected to its local
memory and can communicate to other processors via a local network. The clusters
can communicate via a global interconnection network. In order to model such com-
plex system, a UML composite structure diagram is used as seen in Figure 7 . Each
hierarchic hardware resource (MP2SoC system, clusters, processing units) is speci-
fied using a hierarchic class. For the rapid prototyping of the M-JPEG application,
five configurations of MP2SoC were specified and generated varying the number of
processing units (by changing the shape value of the PU class) containing 2, 4, 8,
24 and 32 processing units in Cluster1. Executing the S-LAM generator, four .slam
files were created and visualized using the S-LAM editor as shown in Figure 8. Each
hierarchic class is transformed first into a Design element then into an .slam file.
Class instances inside the hierarchic class are mapped into operators, memories or

14 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

PE

PE

PE

PE

PE

PE

PE

PE

M

M

M

M

M

M

M

M L
oc

al
 n

et
w

or
k

Global network

Cluster1

PEM

Cluster0

Fig. 6 MP2SoC architecture

<<hwResource>>
Cluster_1

<<shaped>>
:PU

:local_network

<<shaped,
flowPort>>
PU

<<tiler>>

<<hwResource>>
MP2SoC_Architecture

:Cluster_0

<<flowPort>>
global_net

<<flowPort>>
cluster_0

<<flowPort>>
cluster_1

<<flowPort>>
global_net

:global_network :Cluster_1

<<shaped,
flowPort>>
global_net

<<hwResource>>
Cluster_0

<<flowPort>>
global_net

<<flowPort>>
pe

<<flowPort>>
local_mem

:PE_clus0 :local_mem
<<flowPort>>
global_net<<flowPort>>

local_net
<<flowPort>>
global_net

<<tiler>>

Fig. 7 UML/MARTE specification of the architecture

communication nodes. Hierarchic class instances that reference classes containing
operators are transformed into operators that reference the .slam file that describes
the internal structure of the classes themselves. Ports of the hierarchic classes be-
comes hierarchy ports. The «Shaped» annotation attached to the PU class and the
port of the Cluster1 hierarchic class allows to produce eight hierarchy ports and
link them with the eight operators with hierarchy connections in the MP2SoC con-
figuration that contains eight processing units. πSDF files and the scenario file are
also generated executing the two other transformation chains. The final step in the
proposed approach is the rapid prototyping of the πSDF/S-LAM combination us-
ing PREESM. Figure 9 shows the average speedup of the application for two video
sequence containing 100 and 200 frames respectively runnig on different MP2SoC
configurations. We notice that for the video sequence containing 200 frames, in-
creasing the PU number from 2 to 32 contributes for up to 10x M-JPEG encoder
speedup. This observation justifies the use of MP2SoC architectures.

6 Conclusion

In this paper, the S-LAM generator, a tool able to generate S-LAM description of
an MP2SoC architecture described in UML/MARTE under the proposed co-design
flow specification methodology was presented. High-level models of the complex
architecture are progressively refined enabling the production of a system-level de-

Automatic Generation of S-LAM Descriptions from UML/MARTE 15

Cluster0.slam Cluster1.slam

MP2SoC_Architecture.slam

PU.slam

references

references

references

Fig. 8 Generated S-LAM files

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Sp
e
e
d
u
p

PU number

100 Frames

200 Frames

Fig. 9 Speedup results

scription of the architecture for the design space exploration step, which is based on
the PREESM framework. The S-LAM generator reduces the modeling effort as it
starts from a co-specification of the whole MP2SoC system, including the applica-
tion and the architecture parts, and captures needed information for the generation
of IP-XACT compliant description of the architecture. Our next future work will
be concentrated on the elaboration of a use case that takes as design entry a com-
plex massively parallel application (An H.264 decoder for example) running on an
MP2SoC architecture.

16 Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed Abid

References

1. C. Engelmann, and F. Lauer, “Facilitating co-design for extreme-scale systems through
lightweight simulation," in the IEEE International Conference on Cluster Computing Workshops
and Posters, CLUSTER WORKSHOPS, 2010, pp. 1-8, September 2010.

2. D. Lugato, J-M. Bruel, and I. Ober,“Model-Driven Engineering for High Performance Com-
puting Applications," Modeling Simulation and Optimization-Focus on Applications, Shkelzen
Cakaj(Ed.), 2010.

3. Object Management Group. Unified Modeling Language specification, version 2.1. Available:
http://www.omg.org/spec/UML/2.1.2/ Infrastructure/PDF.

4. W. Ecker, W. Müller, and R. Dömer,“Hardware-dependent Software," Springer Netherlands,
pp. 1-13, 2009.

5. IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP
within Tools Flows, IEEE Std 1685-2009, Feb. 2010, pp. C1-360.

6. Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems, version 1.0. Available: http://www.omg.org/spec/MARTE/1.0/PDF/.

7. M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,“Preesm: A dataflow-based
rapid prototyping framework for simplifying multicore DSP programming," In 6th European
Embedded Design in Education and Research Conference, EDERC 2014, pp. 36-40, 2014.

8. G. Ochoa-Ruiz, O. Labbani, E.-B. Bourennane, et al, “A high-level methodology for auto-
matically generating dynamic partially reconfigurable systems using IP-XACT and the UML
MARTE profile," Design Automation for Embedded Systems, vol. 16, no. 3, p. 93-128, 2012.

9. F. Herrera, H. Posadas, E. Villar and D. Calvo, “Enhanced IP-XACT platform descriptions
for automatic generation from UML/MARTE of fast performance models for DSE," In 15th

Euromicro Conference on Digital System Design, DSD 2012, pp. 692-699, September 2012.
10. F. Herrera and E. Villar, “A Framework for the Generation from UML/MARTE Models of

IP-XACT HW Platform Descriptions for Multi-Level Performance Estimation," Proceedings of
the Forum of Design and Specification Languages, FDL’2011, November 2011.

11. Object Management Group. UML profile for System on a Chip, version 1.0. Available:
http://www.omg.org/spec/SoCP/1.0/PDF/.

12. S. Graf, I. Ober and I. Ober, “A real-time profile for UML," In International Journal on Soft-
ware Tools for Technology Transfer, vol. 8, no. 2, pp. 113âĂŞ127, 2006.

13. A. El Mrabti, F. Pétrot, and A. Bouchhima, “Extending IP-XACT to support an MDE based
approach for SoC design," In Design, Automation & Test in Europe Conference & Exhibition,
DATE’09, pp. 586-589, April 2009.

14. Papyrus, http://www.eclipse.org/papyrus/.
15. M. Ammar, M. Baklouti, M. Pelcat, K. Desnos and M. Abid,“MARTE to πSDF transformation

for data-intensive applications analysis", In Conference on Design & Architectures for Signal &
Image Processing, DASIP, October 2014.

16. M. Pelcat, P. Menuet, S. Aridhi, and J. F. Nezan,“ Scalable compile-time scheduler for multi-
core architectures," In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE’09, pp. 1552-1555, April 2009.

17. P. Guduric, A. Puder, R. Todtenhofer, “A Comparison between Relational and Operational
QVT Mappings," In the 6th International Conference on Information Technology: New Genera-
tions, ITNG ’09, pp.266-271, April 2009.

18. Acceleo, https://www.eclipse.org/acceleo/, 2015.

