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INTERACTION VERSUS ENTROPIC REPULSION FOR LOW
TEMPERATURE ISING POLYMERS

DMITRY IOFFE, SENYA SHLOSMAN, AND FABIO LUCIO TONINELLI

Abstract. Contours associated to many interesting low-temperature statistical
mechanics models (2D Ising model, (2+1)D SOS interface model, etc) can be
described as self-interacting and self-avoiding walks on Z2. When the model is
defined in a finite box, the presence of the boundary induces an interaction, that
can turn out to be attractive, between the contour and the boundary of the box.
On the other hand, the contour cannot cross the boundary, so it feels entropic
repulsion from it. In various situations of interest [4, 5, 6, 14], a crucial technical
problem is to prove that entropic repulsion prevails over the pinning interaction:
in particular, the contour-boundary interaction should not modify significantly the
contour partition function and the related surface tension should be unchanged.
Here we prove that this is indeed the case, at least at sufficiently low temperature,
in a quite general framework that applies in particular to the models of interest
mentioned above.

1. Introduction

Two-dimensional statistical mechanics models are often conveniently rewritten in
terms of contour ensembles: for instance, for the Ising model contours are curves,
separating + spins from − spins, while for the (2 + 1)-dimensional SOS interface
model, contours correspond to level lines of the interface. See Section 2.3 for various
examples. At low temperature 1/β, the ensemble of non-intersecting contours γ is
defined by the weight

w (γ) = exp
[
−β |γ|+

∑
C:C∩∆γ 6=∅

Φ (C,∆γ ∩ C)
]
, (1.1)

(the notation C ∩ ∆γ 6= ∅ essentially means that the sum is taken over all sets
C ⊂ Z2 that intersect the contour γ, see Section 2.1 for more details). The first term
β|γ| tends to make the contour as short as possible, while the “decoration term”
containing Φ can be seen as a self-interaction of the path. This self-interaction is
small for β large (see (2.2)) but on the other hand it is non-local. In this ensemble
a long contour typically has a Brownian behavior under diffusive rescaling. When
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the contour is close to the boundary of the system, as discussed in Section 2.3, the
potentials Φ are modified to some Φ̃ (that still satisfy (2.2) with the same value
for χ) and this results in an effective interaction Φ̃ − Φ with the boundary, that
may well turn out to be attractive (there is no way to control apriori its sign). On
the other hand, since the contour cannot cross the boundary of the system, it feels
entropic repulsion from it and it is not obvious whether pinning or repulsion prevails.
This issue turns out to be one of the main technical difficulties in recent studies of
fluctuations of low-temperature discrete interface models [4, 5, 14, 6]. Its treatment
in the book [7] contains a mistake. Until now, this difficulty has been bypassed via
model-dependent tricks – for example, via FKG inequalities in [4, 5, 6], but we feel
that a more general solution is called for. See Appendix A below for a simple patch
for [7].

A well known and simpler problem [9], that essentially corresponds to the situation
where γ is a directed walk and the potentials Φ act only at zero distance, can be
formulated as follows: let γ = (γn)n≥0 be a centered random walk on Z with γ0 = 0,
conditioned to be non-negative. Let us bias its law by the exponential of the number
of returns to zero, times some positive parameter ε. Then, it is known that there
exists a critical εc > 0 such that for ε > εc the walk is positively recurrent while
for ε < εc it is transient. In some particular cases, one can sharply identify [18] the
critical point, which turns out to depend crucially on the variance of the random
walk step (εc tends to zero when the variance goes to zero). The problem exposed
above boils down essentially to deciding whether the interaction Φ̃−Φ corresponds
to an ε that is below or above the critical threshold.

Our main result here (Theorem 1) is that, for β large, the pinning interaction
Φ̃−Φ, with Φ̃ and Φ satisfying (2.2) for χ > 1

2
, is not sufficient to pin the contour to

the boundary, and the contour behaves essentially as if only the entropic repulsion
were present (more precisely, the ratio of partition functions of the models with
and without pinning interaction is uniformly bounded, but more information can
be deduced on the similarity between the contour laws themselves, see discussion in
Section 2.3).

We would like to emphasize that there is a subtle point here. It is true that for β
large the pinning potential becomes exponentially small (because of (2.2)). However,
in this regime the variance of the contour steps in the direction perpendicular to
the wall is exponentially small as well! (It is due to the β|γ| term in (2.3)). As
we mentioned, in the directed walk case it is known that εc scales to zero with the
variance, so there is really a non-trivial competition to be considered in the β large
limit.

In fact, if the self-interaction Φ is just a bit stronger – for example, it still satisfies
(2.2), but with a smaller χ ≤ 1

2
– then the pinning can happen for some potential

modification Φ̃− Φ, so our result is quite sharp. To see this, consider the situation
where the endpoints of the path are (0, 0) and (L, 0) and contours γ are constrained
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in the upper half-plane, i.e. the system boundary is the horizontal line y = 0.
Assume also that Φ satisfies (2.2) with χ = 1/2 and that Φ̃(C) − Φ(C) vanishes
except when C = {x} with x a lattice site touching both the contour and the line
y = 0, in which case we put

Φ̃({x})− Φ({x}) = M exp(−β)

(this is compatible with χ = 1/2, since diam∞({x}) = 1 in (2.2)). It is known from
[7, Chapter 4] that ∑

γ

w(γ) ≤ C(β)√
L
e−L(β+O(e−β))

for β large. On the other hand, for the ensemble with modified potential Φ̃ we can
lower bound the sum

∑
γ w̃(γ) by keeping only the configuration γ that joins the

two endpoints with a straight segment of length L. Using the decay properties of Φ
and standard estimates from [7] we find then∑

γ

w̃(γ) ≥ e−L(β+O(e−β)+Me−β).

If M > 0 is chosen sufficiently large, we see that the partition function of the
modified ensemble is exponentially larger than the original one, i.e. pinning prevails.

We will prove Theorem 1 in a rather general context, i.e., we will only assume some
symmetry and decay properties of the potentials Φ (that are verified for the various
examples mentioned in Section 2.3) but we will avoid using any of the special features
of these models (FKG inequalities, etc). In the directed walk case, the problem can
be easily solved via renewal theory, since the set of return times to zero forms a
renewal sequence. This is not the case for the set of contour/boundary contacts, due
to backtracks and self-interactions of the contour. Another new difficulty is that the
pinning potential Φ̃−Φ, while weak, has infinite range, so contour-wall interactions
occur irrespective of their mutual distance (of course, the strength decays fast with
the distance). The basic idea of the proof is to identify a suitable effective random
walk structure related to the contour. Such approach was worked out in various
disguises in the framework of the Ornstein-Zernike theory [2, 3, 15]. Once this is
done, a crucial role is played by an identity of Alili and Doney [1]. This identity
relates two quantities:
– the probability for a one-dimensional random walk to go from x > 0 to y > 0 in
time T , conditionally on staying positive in between,
– the number of ladder heights of this random walk up to time T , see (7.55).

An adjustment of the above approach in the context of effective random walk
decomposition of sub-critical percolation clusters (at a fixed value of p < pc) was
worked out in [3]. In the latter case, however, the interaction between different
clusters could be bypassed, and as a result, it was not necessary to investigate its
competition with the entropic repulsion between effective random walks.
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One of the main thrusts of this work is to derive methods which, in a situation
when interaction may be attractive, enable to control degeneracy of variance versus
degeneracy of pinning as β becomes large. In principle our approach should apply
for more complicated geometries of open contours γ in (1.1) and, accordingly, for
more complicated energy functions than just |γ|. For instance it should apply for
low temperature two dimensional Blume-Capel model in the regime when there are
two stable ordered phases [12] What is important is an intrinsic renewal structure
of γ which gives rise to an effective random walk decomposition with exponentially
decaying distribution of steps. The main simplifying feature of low temperature
Ising Polymers is that there are only four basic steps (see Figure 2) one needs to
consider in order to sort out the pinning issue for a general class of interactions
subject to Assumptions (P1)-(P3) below. As a result the covariance structure of
the effective walk and, accordingly, the competition between pinning and entropic
repulsion can be quantified in somewhat explicit terms.

2. The Main Result

2.1. The contour ensemble. The interface γ is an open contour: it is a connected
collection e1, . . . , ek of bonds of the dual lattice Z2

∗ = Z2 + (1/2, 1/2), connecting
two points a 6= b ∈ Z2

∗ (we write γ : a 7→ b) such that:

(1) ei 6= ej for every i 6= j;
(2) for every i, ei and ei+1 have a common vertex in Z2

∗;
(3) if four bonds ei, ei+1 and ej, ej+1, i 6= j meet at some x ∈ Z2

∗, then ei, ei+1

are on the same side of the line across x with slope +1 (and the same holds
for ej, ej+1)

The third condition corresponds to the usual “south-west splitting rule” that is
commonly adopted for Ising-type contours [7]. Given a contour γ, we let ∆γ denote

the set of sites in Z2 that are either at distance 1/2 from γ or at distance 1/
√

2 from
it, in the south-west or north-east direction, [7]. Also we let |γ| denote the number
of bonds in γ.

Let C ⊂ Z2 be a finite subset. In what follows we will identify C with the union
∪x∈CSx of closed unit squares Sx ⊂ R2 centered at x. If C is connected, then we
denote by diam∞(C) its diameter in the ‖ · ‖∞-norm; if C is not connected, then by
convention we set diam∞(C) = ∞. Note that, with our conventions, if C is a single
point x ∈ Z2, then diam∞(C) = 1.

To every pair γ, C with γ an open contour and finite C ⊂ Z2, we assign a function
(or potential) Φ(C; γ) which we assume satisfy:

(P1) Locality: Φ depends on γ only through C ∩∆γ:

Φ(C; γ) = Φ (C,∆γ ∩ C) (2.1)

(P2) Decay: there exist some χ > 0, such that for all β sufficiently large,

|Φ (C,∆γ ∩ C)| ≤ exp {−χβ(diam∞(C) + 1)} . (2.2)
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(P3) Symmetry: Φ possesses translational symmetries of Z2, i.e. that Φ (C,∆γ ∩ C)
is unchanged if both C and γ are translated by some vector u. In addition we
assume that the surface tension τβ(x) which is defined below possesses the
full set of discrete symmetries (rotations by a multiple of π/2 and reflections
with respect to axis and diagonal directions) of Z2.

The polymer weight associated to a contour γ is defined as

w (γ) = exp
[
−β |γ|+

∑
C:C∩∆γ 6=∅

Φ (C,∆γ ∩ C)
]
, (2.3)

where the sum goes over all finite connected subsets C ⊂ Z2.

2.2. The modified potential landscape. We use notation 0∗ = (1/2, 1/2) for
the origin of the dual lattice Z2

∗. For a unit vector n define the half-plane H+,n =
{x : (x− 0∗) · n ≥ 0}. For u ∈ Z2

∗ ∩H+,n we use dn(u) ∈ N for the distance in the
‖ · ‖∞-norm from u to Hc

+,n ∩ Z2
∗. Define B+,n = {u ∈ Z2

∗ ∩H+,n : dn(u) = 1}, that
is B+,n is a lattice approximation of the boundary ∂H+,n.

The modified polymer weight w̃ (γ) is defined by the formula (2.3) , with potential
Φ replaced by some (not necessarily translation invariant) potential Φ̃, such that

• Φ̃ (C, C ∩∆γ) = Φ (C, C ∩∆γ) if C is contained in H+,n;

• Φ̃ (C, C ∩∆γ) satisfies (2.2) for all C.
Note that if Φ̃ > Φ, the modification of the potentials can introduce an attractive
interaction with the line B+,n. Nevertheless, our main result says that the model with
modified weights and with the restriction that γ stays in H+,n (we write γ ∈ P+,n)
has the same surface tension as the original one.

Theorem 1. Let Φ̃, Φ be as above. Assume that χ > 1
2

in (2.2)

and let β be large enough. For all arg(n) ∈ [−π
4
, 3π

4
], the following two surface

tensions coincide:

τ(β, n) = − lim
N→∞

1

βdN
ln
( ∑
γ:0∗ 7→xN

w(γ)
)

= − lim
N→∞

1

βdN
ln
( ∑
γ:0∗ 7→xN
γ∈P+,n

w̃(γ)
)

(2.4)

where xN is any sequence of points in B+,n whose Euclidean distance dN from the

origin diverges. In words, the (possible extra attraction) Φ̃ can not produce the
pinning of γ to the wall ∂H+,n.

A stronger result holds: there exist constants c1(β), c2(β) such that, for β large
enough,

c1(β)
∑
γ:x7→y
γ∈P+,n

w (γ) ≤
∑
γ:x 7→y
γ∈P+,n

w̃ (γ) ≤ c2(β)
∑
γ:x7→y
γ∈P+,n

w (γ) (2.5)

uniformly for all x, y ∈ B+,n.
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2.3. Examples, applications and perspectives. Here we give some applications
of our main result and mention some future generalizations. One of the main points
here is to emphasize that contour ensembles with “modified potential landscape” as
in Section 2.2 arise quite naturally in low-temperature statistical mechanics, without
any need to introduce the “landscape modification” by hand. Since this section
serves mainly as a motivation, we will skip technical details and concentrate on the
main ideas.

Consider the two-dimensional Ising model at low temperature β > βc, in the upper
half-plane H+. Put + boundary conditions on the horizontal line y = 0, except
along the segment joining A = (0, 0) to B = (L, 0), where the boundary condition
is −. Then, there is a unique open contour γ, joining A to B and contained in H+,
separating + from − spins. For β sufficiently large the weight of γ is proportional
to [7]

w̃(γ) = exp
(
− β|γ|+ Ψ̃(γ)

)
:= exp

(
− β|γ|+

∑
C:C∩∆γ 6=∅

Φ̃(C,∆γ ∩ C)
)
1γ⊂H+ (2.6)

where

Φ̃(C,∆γ ∩ C) = Φ(C,∆γ ∩ C)1C⊂H+

and the potentials Φ satisfy properties (P1)-(P3) of Section 2.1, in particular with
χ = 2 in (2.2). Actually, for the specific case of the nearest-neighbor Ising model
Φ(C,∆γ ∩ C) depends only on the first argument.

The contour ensemble with weights w̃(γ) differs from the one with weights

w(γ) = exp
(
− β|γ|+ Ψ(γ)

)
:= exp

(
− β|γ|+

∑
C:C∩∆γ 6=∅

Φ(C,∆γ ∩ C)
)
1γ⊂H+

in that the potentials Φ with C intersecting the lower half-plane are missing: since the
potentials have no definite sign, this might result in an effective attractive pinning
interaction with the boundary. If this pinning effect prevailed, the partition function
Z̃L(β) associated to the ensemble w̃(γ) would be exponentially (in L) larger than
the partition function ZL(β) associated to w(γ), which itself is known to behave
like ≈ exp(−βLτβ), with τβ the surface tension in the horizontal direction. Our
Theorem 1 shows that this does not happen (at least for β large), i.e. the surface
tension is not changed by the presence of the system boundary and actually the
ratio of partition functions is bounded.

This implies that the laws P̃ and P , associated to ensembles w̃ and w, are equiv-
alent, in the sense that an event A that has small probability (for L large) w.r.t one
of them has also small probability w.r.t. the other. Indeed, one has

P̃ (A) =
E(A; eΨ̃(γ)−Ψ(γ))

E(eΨ̃(γ)−Ψ(γ))
. (2.7)
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The denominator is just the ratio of partition functions Z̃L(β)/ZL(β) and is bounded
above and below by constants. As for the numerator, via Cauchy-Schwartz it is
upper bounded by √

P (A)

√
E(e2(Ψ̃(γ)−Ψ(γ))).

The second expectation is bounded by a constant again thanks to Theorem 1 (the
factor 2 just implies that the landscape modification is a bit different in this case),
so if P (A) is small also P̃ (A) is. The other bound is obtained similarly.

For the nearest-neighbor Ising model, some results of this kind may be derived also
from the exact solution [10]. A very different situation occurs if one adds a boundary
magnetic field which may beat entropic repulsion or even attract far away contours
[16]. Note that the results of the latter paper go well beyond exact solutions.

In our next example (SOS model), no exact solution is available and our Theorem
1 seems unavoidable, though in some cases FKG inequalities allow to bypass the
interaction-versus-repulsion problem [4, 5, 6]. The (2 + 1)-dimensional SOS model
in a domain Λ ⊂ Z2 is defined through the collection of heights ηx ∈ Z, x ∈ Λ and
the Hamiltonian is the sum of the absolute value of the height gradients between
nearest-neighboring heights. If again we take the model in the upper half-plane, with
boundary condition ηx = 0 on the horizontal line y = 0 except along the segment
from A to B, where heights are fixed to ηx = 1, there exists a unique open contour
γ joining A to B, such that heights just below γ are at least 1 and just above γ
they are at most 0. Again, it is proven in [4, Appendix 1] that, for β large, the
distribution of γ has weights of the form (2.6) and the results mentioned for the
Ising model hold in this case too.

The works [4, 5] considered the SOS model in a L×L square box Λ, with hard-wall
constraint: ηx ≥ 0 for every x ∈ Λ. Along the route to prove results like dynamical
metastability or laws of large numbers and cube-root equilibrium fluctuations of the
macroscopic level lines, one of the main technical problems that was encountered
there boiled down to prove that the ratio of partition functions Z̃L(β)/ZL(β) in-
troduced above is not exponentially large, which is given directly by our present
Theorem 1. In [4, 5], instead, the problem had to be avoided via a rather involved
chain of monotonicity arguments that are not robust, since they rely on the FKG
inequalities satisfied by the SOS model.

Another problem encountered in [4, 5, 6] was the following: the various level
lines of the SOS model at different heights interact among themselves, in a way
very similar to how the contour γ of Section 2.2 interacts with the line B+,n. On
large scales this mutual interaction should be negligible with respect to the entropic
repulsion (contours cannot cross) and the contours should not stick together. Again,
in [4, 5, 6] this problem was avoided via a complicated monotonicity argument, while
the techniques developed here could be generalized to prove directly the absence of
pinning between two or several interacting SOS contours, in analogy with Theorem
1. We believe that the same type of “no-pinning” results will be instrumental in
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going beyond the results of [5] (where the contour fluctuations are proven to be of
order L1/3) and to obtain the full scaling limit (of Airy diffusion type) of ensemble
of SOS level lines in presence of hard wall. Scaling limits to Airy (or Ferrari-Spohn
[11]) diffusions were recently derived in the context of (directed) random walk bridges
under rather general tilted area constraints [13].

Closely related is the model of facet formation [14], which is a combination of
(2 + 1)-SOS interface with a high and low density Bernoulli bulk fields (of particles)
above and below it. The system is modulated by the canonical constraint N3 +aN2

on the total number of particles, where N is the linear size of the system. As the
parameter a grows the system undergoes a sequence of first order transitions in terms
of number of macroscopic facets. Facets are SOS-contours which interact exactly as
it was described above, and “no-pinning” results become imperative for an analysis
of the model both on the level of thermodynamics and on the more refined level of
fluctuations. On the level of thermodynamics limiting facet shapes look like a stack
of optimal Wulff TV-shapes (flat edges connected by portions of Wulff shapes - see
[17] for the corresponding construction for the constrained 2D Ising model). On
the level of fluctuations one expects scaling limits to Airy diffusions for portions of
interfaces along flat edges.

2.4. Organization of the paper. Below are brief guidelines for reading the paper.

Section 3. In general, expansion of cluster weights Φ in (2.3) leads to summands of
both positive and negative sign. In Section 3 we rewrite weights in such a way that
all terms in the low temperature expansion become non-negative. This sets up the
stage for a probabilistic analysis of ensembles of decorated contours (with weights
(3.2) and (3.6) without and, respectively, with interactions with the wall). In this
reformulation our main result Theorem 1 becomes Theorem 2. For the rest of the
paper we shall focus on proving the latter.

The relation between induced free and pinned weights of open contours is for-
mulated in the two-sided bound (3.7). Accordingly, the relation between free and
pinned partition functions of ensembles of open contours appears in the crucial
(albeit crude) two-sided bound (4.6). In the sequel we shall work on the level of
resolution suggested by latter inequalities.

Section 4. Irreducible decomposition (4.7) of decorated contours is developed in
Section 4. Since weights of decorations become exponentially small as β →∞, this
decomposition and its properties (most importantly the mass-gap estimate (4.11))
are inherited from irreducible decomposition of ensembles of “naked” open contours
with weights e−β|γ|. The output of the irreducible decomposition is formulated in
Theorem 4. Renewal structures we analyze are generated by probability distribu-
tions (4.10) on the alphabet of irreducible animals. Mass-gap estimate (4.11) and
the upper bound in (4.6) enable a reformulation of the upper bound in Theorem 2
as (4.14).
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Section 5. Irreducible decomposition of decorated contours gives rise to an effective
random walk, which is introduced in Section 5. Contours γ ⊂ H+,n correspond to
effective walk which stays above the wall. On the other hand, the constraint of
effective random walk to stay positive is less restrictive than γ ⊂ H+,n, and in order
to control the probability of the latter one needs to show that effective walks are
sufficiently repelled from the wall. The main facts we need to prove about effective
random walks are collected in Theorem 6. In the end of Section 5 we explain how
(A) and (B) of Theorem 6 imply our target upper bound (4.14) and hence the upper
bound of Theorem 2.

Section 6 is devoted to the proof of Theorem 6. The arguments are based on
Proposition 11 and Proposition 12, whose proof is relegated to Section 8.
The lower bound of Theorem 2 is established in Subsection 6.2 together with (B) of
Theorem 6. These are statements about entropic repulsion of effective walks from
the wall B+,n. In order to prove Part (A) we encode the interaction with the wall as
the recursion relation (6.8) for the quantity ρδ which is defined in (5.10) and which
appears in (A) of Theorem 6. This recursion is rewritten as ρδ ≤ aδ + bδρδ in (6.17),
and (A) of Theorem 6 follows from Proposition 11.
Proving Proposition 11 and Proposition 12 are the only remaining tasks after com-
pletion of Section 6.

Section 7. Proofs of Proposition 11 and of Proposition 12 are heavily based on
fluctuation and Alili-Doney type estimates on the effective random walk which are
derived in Section 7. Sharp asymptotics for the effective random walk are formu-
lated in (7.3) of Proposition 15. The quantity bx (or later bε) is subject to asymptotic
relations of Proposition 16. Note that (7.3) are quite different from usual Gaussian
asymptotics. Rather they appear as a mixture of Gaussian and Poissonian asymp-
totics. The corresponding decomposition of the effective random walk (7.22) is
described in Subsection 7.2, which ends with the proof of Proposition 15. This is
one of two places where we make use of a particularly simple structure of open con-
tours in models of Ising Polymers - at low temperatures the Poissonian part (

∑
ξiUi

in (7.22)) is just a random staircase with two possible steps: right and up.
As in [3], asymptotics of effective random walks constrained to stay above the wall

(Subsection 7.3) are based on Alili-Doney type identities (7.55). However, one needs
to deal with in general non-lattice directions of the wall and, most importantly,
with degeneracies and non-Gaussian (on short scales) behaviour of the effective
walks. These issues are addressed in Lemma 21, Lemma 22 and Lemma 23. The
latter Lemmas feature upper bounds on the expected number of ladder heights, and
here we make the second use of the simplified structure of open contours in Ising
Polymers: in order to derive these estimates we consider only three basic steps (7.16)
of the effective walks.

Section 8. In this concluding section we prove Proposition 11 and Proposition 12.
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Notations for constants and norms. It will be crucial in the whole work to be
precise on which estimates are uniform with respect to n ∈ S1, β large and which
are not. Therefore, every time some constant c(a, b, . . . ) appears in an estimate,
it will be understood that it is not uniform w.r.t parameters a, b, . . . , while it is
uniform w.r.t. everything else. On the other hand, numerical values of constants
c1(a, b, . . . ), c2(a, b, . . . ), . . . may change between different subsections.
A particular role will be played by a mass gap constant νg > 0 (see (4.11)) which is
independent of β and will be fixed throughout the paper. In Sections 5-8 we also fix
a positive constant δ ∈ (0, νg

4
].

|·|1 is the L1-norm of either R2 or, in most cases, Z2
∗. The notation |·| is reserved for

number of edges in contours.

3. Reformulation of the Main Result

3.1. Hidden variables and independent increments representation. The po-
tentials Φ (·) , Φ̃ (·) take values of both signs. For our purposes it is more convenient
if they take only positive values, so we manipulate them to obtain this property.
The advantage is that, this way, the weights q([γ, C]) and q+,n([γ, C]) in (3.2), (3.6)
below are positive and can be considered as a (non-normalized) probability law.
This construction goes back to [8]. Given a contour γ, we define the set of (not
necessarily distinct) bonds

∇γ = ∪b=(x,x+e)∈γ{b, b+ e, b− e}.
For b ∈ ∇γ the multiplicity of b is the number of bonds b′ ≡ (x, x+ e) in γ, for
which either b = b′, or else b = b′ ± e.

Let b ∈ Z2
∗ be some fixed bond. Define the value c (β) by

c (β) =
∑

C⊂Z2:C∩b 6=∅

exp {−χβ(diam∞(C) + 1)} ,

and for every connected C and γ put

Φ′ (C, γ) = Φ (C,∆γ ∩ C) + |C ∩ ∇γ| exp {−χβ (diam∞(C) + 1)} ,
where |C ∩ ∇γ| is the number of bonds in ∇γ that the set C intersects with, each
bond counted with its multiplicity. Note that Φ′ depends on γ through both C ∩∆γ

and C ∩∇γ, and also that C ∩∆γ 6= ∅ implies C ∩∇γ 6= ∅ (while the converse does
not necessarily hold).

Clearly, by this we achieve that

Φ′ (C, γ) ≥ 0 if∇γ ∩ C 6= ∅,
while at the same time the function Φ′ satisfies the same decay estimate (2.2) (with
the constant β0 slightly changed). We warn the reader that, for lightness of notation,
from now on β0 will be simply removed from all formulas. Note also that by definition
the function Φ′ (C, γ) inherits the translation invariance property.
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It is easy to check (using the fact that ∇γ contains three bonds for each bond of
γ) that the weight (2.3) can be rewritten as

w (γ) = exp
[
− (β + 3c (β)) |γ|+

∑
C:C∩∇γ 6=∅

Φ′ (C, γ)
]

(3.1)

and analogously for w̃(γ).

3.2. Representation of interfaces in terms of animals. Interfaces without
pinning. Let us consider first interfaces without any wall or pinning potential.
Interfaces are modeled by the following ensemble of random animals Γ = [γ, C],
with γ an open contour on Z2

∗ and C = {Ci} a collection of connected subsets of Z2,
called ‘clusters’. To an animal Γ we associate the weight

q([γ, C]) = e−β|γ|
∏
i

Ψ(Ci; γ) and we define q(γ) =
∑
C

q([γ, C]) (3.2)

where

Ψ(C; γ) = [exp(Φ′(C, γ))− 1] 1I{C∩∇γ 6=0}.

We immediately recognize from (3.1) that, modulo redefining β + 3c(β) to be β, we
have w(γ) = q(γ). The “potential” Ψ is non-negative, translation-invariant, and is
local in the sense that it depends on γ only through C∩∇γ. We define the two-point
function

Gβ(x) =
∑
γ:0∗ 7→x

q(γ). (3.3)

It is well known that for the low temperature (β large) models which we consider
here, the surface tension in (2.4) exists. One can extend τβ to a (strictly convex)
function on R2, by letting τβ(x) = |x|τβ(nx), where nx = x/ |x|. Recall that we assume
that the surface tension possesses the discrete reflection/rotation symmetries of Z2.
Other properties of the surface tension are given in Theorem 4. Also, it is known
that for all β large there exists a positive locally analytic function C(β, ·) on S1,
such that

Gβ(x) =
C(β, nx)(1 + o(1))√

|x|
e−τβ(x), (3.4)

uniformly in |x| → ∞. We will need later also the “restricted two-point function”

Gβ (x | P+,n) :=
∑
γ:0∗ 7→x
γ∈P+,n

q(γ) (3.5)

(in general, we will write Gβ (x | A) for the two-point function with paths restricted
to some set A).
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Interfaces with pinning. In analogy with (3.2), given animal Γ we define weights

q+,n([γ, C]) = e−β|γ|
∏
i

Ψ+,n(Ci; γ)1Iγ∈P+,n and q+,n(γ) =
∑
C

q+,n([γ, C]) (3.6)

with P+,n the set of paths which stay inside H+,n and

Ψ+,n
β (C; γ) =

[
exp(Φ̃′(γ, C))− 1

]
1I{C∩∇γ 6=0} ≥ 0.

Again, we recognize that q+,n(γ) is just w̃(γ) (modulo redefining β + 3c(β) 7→ β).
The decay assumption (2.2) (and the analogous one for Φ̃) implies the following: for
every γ ∈ P+,n,

q(γ)exp
[
−
∑
u∈γ

e−χβ(dn(u)+1)
]
≤ q+,n(γ) ≤ q(γ)exp

[∑
u∈γ

e−χβ(dn(u)+1)
]

(3.7)

with u ∈ Z2
∗ the endpoints of bonds of γ.

In analogy with (3.3), we define the two-point function “with pinning”

G+,n
β (x) =

∑
γ:0∗ 7→x

q+,n(γ) (3.8)

(remark that only contours γ ∈ P+,n contribute to the sum). Again, we will write
G+,n
β (x | A) for the two-point function with paths restricted to some set A. Then,

the main claim (2.5) in Theorem 1 can be reformulated as follows:

Theorem 2. Assume that (3.7) holds with χ > 1. Then there exists β̄ = β̄(χ) such
that the following holds: For any β > β̄ there exist two constants c1(β) and c2(β)
such that

c1(β)Gβ (x | P+,n) ≤ G+,n
β (x) ≤ c2(β) Gβ (x | P+,n) . (3.9)

uniformly in x ∈ B+,n and arg(n) ∈ [−π
4
, 3π

4
].

We will see that the most difficult case is when n is a lattice direction. We shall
prove Theorem 2 uniformly in arg(n) ∈ [π

2
, 3π

4
]: the other cases will follow by lattice

symmetries.
The result actually holds also if the endpoints of the contour are not on the line

B+,n (and the proof is easier).

Convention for lattice notation. For historic reasons it was natural to define
contours as sets of edges on the dual lattice Z2

∗. However, as far as formulas are
concerned, it is more convenient to work with the direct lattice Z2. From now on
we shall identify Z2

∗ with Z2 via the map u 7→ u − 0∗. Under this map the positive
half-plane should be redefined as

H+
n = {x : x · n ≥ 0} . (3.10)

Similarly, under the above convention P+,n is the set of paths γ = (γ0, . . . , γm) ⊂ Z2

which satisfy γi · n ≥ 0.
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4. Irreducible decomposition of interfaces

In this Section we describe a decomposition of decorated contours in terms of
strings of irreducible animals (4.9). At low temperatures this decomposition is in-
herited from the corresponding irreducible decomposition of naked open contours
with weights e−β|γ|. The latter is based on the mass-gap estimate (4.3). In view of
(4.2) and of (4.4), the mass-gap property persists for decorated contours as soon as
β is sufficiently large. This is (4.11), and the decay exponent (mass-gap) νg which
appears therein is fixed throughout the paper. Properties of the irreducible decom-
position are listed in Theorem 4. (4.10) defines a class of probability distributions on
the alphabet of irreducible animals, which sets up the stage for the renewal analysis
in the sequel.

Ratios of partition functions of pinned and free ensembles are controlled by (4.6).
By the mass gap estimate (4.11) the pinned two-point function G+,n

β (x) is bounded
above by the expression in (4.13), and consequently a proof of upper bound in
Theorem 2 is reduced to a verification of (4.14).

4.1. Crude comparison with ensembles of SW paths. Paths γ = (γ0, . . . , γn)
are open contours with edges el = (γl−1, γl) which obey rules as specified in the
beginning of Section 2.1. With each such path we may associate the “cluster-free”
weight e−β|γ|. For a subset P of paths, the restricted two point functions for the
SW-ensemble (SW recalling the south-west splitting rule) are defined via:

GSW
β (x

∣∣ P) =
∑
γ:0 7→x
γ∈P

e−β|γ|.

The two-point functions we are working with is a perturbation of the latter. Al-
though Theorem 2 eventually relies on a more delicate analysis, heavy duty estimates
on exponential scales lead to a convenient geometric setup. Let us formulate basic
geometric properties of free SW-paths:
Forward cone Y. For the rest of this section fix κ = arctan(1/2) and define a
positive cone

Y =
{
x : −κ ≤ arg(x) ≤ π

2
+ κ
}
. (4.1)

The cone Y is strictly contained in the half-plane {x = (x, y) : x+ y ≥ 0} and

it contains the positive quadrant Q+
∆
= {x = (x, y) : x, y ≥ 0} in its interior (see

Figure 1 below).
Definition (break points of paths). A path γ = (γ0, γ1, . . . , γn) is said to have
a break point at u = γ` ∈ γ; 0 < ` < n, if

{γ0, . . . , γ`−1} ⊂ γ` − Y and {γ`+1, · · · , γn} ⊂ γ` + Y .
If a path has no break points, it is called irreducible.
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Lemma 3. There exist β0 <∞, ν0 > 0 and r0 <∞ such that

GSW
β

(
x
∣∣ |γ| ≥ r|x|1

)
≤ c1 e−2ν0βr|x|1GSW

β (x) (4.2)

uniformly in β ≥ β0, x and r ≥ r0. Furthermore, let Pn be the set of paths with at
least n break points. Then, there exist δ0, ν0 > 0 such that

GSW
β

(
x
∣∣Pc

δ0|x|1

)
≤ c1 e−2βν0|x|1GSW

β (x) . (4.3)

uniformly in β ≥ β0 and x ∈ Q+.

The inequality (4.2) is straightforward. The inequality (4.3) follows by an easy
modification of renormalization arguments leading to Theorem 3.1 in [15].
By (3.7) ∣∣∣∣log

q(γ)

qSW(γ)

∣∣∣∣ ≤ c2 e−χβ |γ| . (4.4)

Therefore, (4.2) and (4.3) imply:

Gβ

(
x
∣∣ |γ| ≥ r |x|1

)
≤ c3 e−ν0βr|x|1Gβ (x) and Gβ

(
x
∣∣Pc

δ0|x|1

)
≤ c3 e−βν0|x|1Gβ (x)

(4.5)
uniformly in β sufficiently large, x ∈ Q+ and r ≥ r0.
Crude bounds on G+n

β (x). With (4.5) at hand, it is an easy consequence of the
Ornstein-Zernike theory developed in [15] (see the local limit formula (3.10) there)
that for any large β fixed and for any δ > 0, one has Gβ(x)≤Gβ(x|P+,n)e

4δβ|x|1 ,
uniformly n and in x ∈ B+,n with |x|1 large.

Indeed, it is enough to consider arg(n) ∈ [π
2
, 3π

4
]. Let v ∈ H+,n be a unit vector such

that v 6∈ −Y ∪ Y . Define Oδ = bδ |x|1cv and xδ = x + bδ |x|1cv. For |x|1 large, points
Oδ and xδ sit deep inside H+,n. Define D(Oδ, xδ) = (Oδ + Y)∩(xδ − Y), and consider
the restriction of Gβ(x|P+,n) to paths γ which are concatenations γ = γ1 ◦ γ2 ◦ γ3,
where γ1 : 0→ Oδ, γ2 : Oδ → xδ, γ3 : xδ → x, and, in addition, γi∩D(Oδ, xδ) = ∅ for
i = 1, 3, whereas γ2 ⊂ D(Oδ, xδ). The contribution of γ1 and γ3 is bounded below by
e−3β|x|1 . On the other hand, the main contribution from γ2 come from those paths
which obey the Brownian scaling and hence stay inside H+,n.

Therefore, quantities which are exponentially negligible with respect to Gβ(x) are
exponentially negligible with respect to Gβ(x|P+,n) as well.

By (3.7) we have for every P∑
γ:0 7→x

γ∈P+,n∩P

q(γ)exp

{
−
∑
y∈γ

e−χβ(dn(y)+1)

}

≤ G+,n
β (x

∣∣ P) ≤
∑
γ:0 7→x

γ∈P+,n∩P

q(γ)exp

{∑
y∈γ

e−χβ(dn(y)+1)

}
.

(4.6)
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By (4.5) we may restrict attention to paths γ ∈ Pδ0|x|.
A look at (4.6) reveals that the lower bound in (3.9) of Theorem 2 is the easier

one. Indeed, one should merely argue that for typical interfaces γ ⊂ P+,n with (full
space) q(γ)-weights the quantity

∑
y∈γ e−χβ(dn(y)+1) is uniformly bounded from above.

The latter property will be a consequence of the fact that such typical interfaces
are sufficiently repelled from B+,n. On the contrary, to prove the upper bound one
should explore in depth the competition between pinning and repulsion. Namely,
the gain

∑
y∈γ e−χβ(dn(y)+1) should be measured against the entropic price of bringing

interfaces γ close to the wall.
Irreducible decomposition of paths. Paths γ ∈ Pδ0|x| admit a natural irreducible
decomposition

γ = γ[l] ◦ γ[1] ◦ · · · ◦ γ[n] ◦ γ[r]. (4.7)

Above γ[l] is a left-irreducible path: γ[l] ∈ Pl and γ[r] is a right-irreducible path:
γ[r] ∈ Pr. The paths γ[1], . . . , γ[n] ∈ P = Pl ∩ Pr are irreducible.

The alphabets Pl and Pr could be described as follows: γ = (γ0, . . . , γm) ∈ Pl if γ
does not contain break points and γ ⊆ γm − Y . Similarly, γ = (γ0, . . . , γm) ∈ Pr if
γ does not contain break points and γ ⊆ γ0 + Y . In the sequel we shall use γ for
strings of letters from P. The notation P(x, y) is reserved for irreducible paths with
end points at x and y. Note that any path γ ∈ P(x, y) automatically lies inside the
diamond shape (see Figure 1).

In the sequel we shall use γ for strings of letters from P. The strings of ` letters

will be denoted by P`, ` ≤ ∞. In this way, (4.7) reads as γ = γ[l] ◦ γ ◦ γ[r], γ ∈ Pn.
In general, with each path γ = (γ0, . . . , γk) we associate: |γ| = k (the length of γ)
and X(γ) = γk − γ0 (the displacement). For γ ∈ Pn we define:∣∣γ∣∣ =

n∑
1

∣∣γ[i]
∣∣ and X(γ) =

n∑
1

X(γ[i]).

Irreducible animals. Let us say that an animal Γ = [γ, C] has a break point at
u ∈ γ if u is a break point of γ, and if

∪iCi ⊂ (u− Y) ∪ (u + Y) .

The collections Al, Ar and A = Al ∩ Ar of respectively left irreducible, right irre-
ducible and irreducible animals are defined as in the case of paths. For instance,
Γ = [γ, C] ∈ A(x, y) if Γ does not contain break points and Γ ⊂ D(x, y), where x, y
are the end points of γ = (γ0, . . . , γn); x = γ0, y = γn, and the diamond shape
D(x, y) was defined in (4.8) (see Figure 1). Note that [γ, ∅] ∈ A(x, y) iff γ ∈ P(x, y).
More generally, [γ, C] ∈ A implies that γ is a word from P` for some ` ≥ 1.

D(x, y)
∆
= (x + Y) ∩ (y − Y) . (4.8)

In its turn the notation A` stands for words of ` irreducible animals, and, in the latter
case, we shall write Γ ∈ A`. By construction, such Γ is represented as Γ = [γ, C],
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D(x, y)

x

y
y

D(x, y)

x

−Y

Y
C1

C2

Q+

γ1

γ2

Figure 1. Positive quadrant Q+ and cones Y , −Y . Irreducible path
γ1 ⊂ D(x, y) and irreducible animal [γ2, C1, C2].

where γ is a concatenation of letters from P. The notation A`(x, y) stands for those
elements of A` which have the left end-point at x and the right end point at y.

Finally, A(x, y)
∆
= ∪`A`(x, y). In the case of animals the quantities |Γ|, X(Γ) are

defined through the corresponding path components. That is: |[γ, C]| ∆
= |γ| and

X ([γ, C]) ∆
= X(γ).

As discussed above we may restrict attention to those animals which contain at
least δ′ |x| break points (for some δ′ > 0). This leads to the irreducible decomposition

[γ, C] = Γ[l] ◦ Γ[1] ◦ · · · ◦ Γ[n] ◦ Γ[r], (4.9)

with Γ[l] ∈ Al, Γ[r] ∈ Ar and Γ[1], . . . ,Γ[n] ∈ A.
Input from Ornstein-Zernike (OZ) theory. The relevant input from the OZ
theory (see for instance Subsections 3.3 and 3.4 of [15]) could be summarized as
follows:

Theorem 4. For all β large enough the surface tension τβ in (3.4) is well defined
and it is a support function of a convex set Kβ with non-empty interior and locally
analytic boundary ∂Kβ, which has a uniformly positive curvature. In particular τβ

is differentiable at any x 6= 0 and h = hx
∆
= ∇τβ(x) ∈ ∂Kβ. The Wulff shape

Kβ inherits the full set of Z2-lattice symmetries from the surface tension τβ(x). In
particular hx ∈ Q+ whenever x ∈ Q+. In geometric terms hx can be characterized
in the following way: x is direction of the outward normal to ∂Kβ at hx. In view of
smoothness and strict convexity of ∂Kβ this is an unambiguous characterization.
For any x ∈ Q+ \ 0 the collection of weights

Phx
β (Γ)

∆
= ehx·X(Γ)q(Γ) (4.10)

is a probability distribution on the set A of irreducible animals. The expectation
v∗(β, x) of X(Γ) under Phx

β is collinear to x: there exists α = α(β, x) > 0 such that
v∗(β, x) = αx. Note that, since τβ is homogeneous of order one, v∗(β, x) depends
only on the direction of x.
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Furthermore, there exists a (mass-gap) constant νg > 0, such that∑
Γ∈Al

Phx
β (Γ)1I{|Γ|≥k} +

∑
Γ∈Ar

Phx
β (Γ)1I{|Γ|≥k} ≤ c e−νgβk, (4.11)

uniformly in β large, x ∈ Q+ and k > 1.

Remark 5. In the sequel we shall sometimes employ an alternative notation hε = hx
for x ∈ Q+ satisfying x

|x|1
= (1− ε, ε).

The target upper bound. Let us fix (without loss of generality) n with arg(n) ∈
[π

2
, 3π

4
] and x ∈ B+,n. To facilitate notation set

A+,n
` = A` ∩

{
Γ = [γ, C] : γ ⊂ H+,n

}
, (4.12)

and, for any u, v ∈ H+,n, A
+,n
` (u, v) = A+,n

` ∩
{

Γ = [γ, C] : γ : u 7→ v
}

.
Recall that h = hx = ∇τβ(x) so that h · x = τβ(x). In view of (4.6) and (4.11), the

two-point function G+,n
β (x) is bounded above by

c1(β)
∑

u,x−v∈Y
u,v∈H+,n

e−νgβ(|u|1+|x−v|1)
∑
`

∑
Γ∈A+,n

` (u,v)

Ph
β (Γ) exp

∑
y∈γ

e−χβ(dn(y)+1)

 . (4.13)

We used that |X(Γ)|1 ≤ |Γ|, where |x|1 is the L1 norm of x. Therefore, in order to
derive the upper bound in (3.9), it suffices to check that there exists 0 < 4δ < νg
such that

sup
u,x−v∈Y
u,v∈H+,n

e−3δβ(|u|1+|x−v|1)
∑
`

∑
Γ∈A+,n

` (u,v)

Ph
β (Γ) exp

[∑
y∈γ

e−χβ(dn(y)+1)
]

≤ c2(β)Gβ

(
x
∣∣P+,n

)
eτβ(x)

(4.14)

for β sufficiently large, uniformly in n ∈ [π
2
, 3π

4
] and x ∈ B+,n.

5. Effective random walk

Steps of the effective random walk are displacements X(Γ) along irreducible ani-
mals Γ which are sampled from the probability distribution (4.10). In this way the
constraint γ ⊂ H+,n is less stringent than the constraint that corresponding effec-
tive walk stays above the wall. In terms of effective random walks upper bounds
on partition functions with pinning are given by quantities Gh

β,+ defined in (5.7).
The corresponding effective random walk quantities for models without pinning are
probabilities Ph

β,+ which are defined in (5.10). In the end of the Section we for-
mulate Theorem 6 and explain how it implies our target upper bound (4.14) and,
consequently, the upper bound in Theorem 2.
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Random walk representation and high temperature expansion. Let us re-
formulate the required bound in the effective random walk context: For a word
Γ ∈ A` with the left end point at u set

R` = R`(Γ) = u +
∑̀
i=1

X(γ[i])
∆
= u +

∑̀
i=1

Xi, (5.1)

and, accordingly, define Zi = Xi · n and

S` = R` · n = u · n +
n∑
i=1

Xi · n = S0 +
∑̀

1

Zi. (5.2)

For the random walk starting at u the probability Ph
β (R` = v) = Ph

β (A`(u, v)).
Define events (sets of words)

R+,n
` = R+

` = {Γ ∈ A` : S1, . . . , S`−1 ≥ 0} . (5.3)

With a slight abuse of notation we shall think of R+
` both as a subset of A` and as

a subset of Am for any ` ≤ m ≤ ∞. The notation R+
` (u, v) stands for `-strings of

irreducible animals from R+
` with the left end point at u and the right end point at

v; R+
` (u, v) = R+

` ∩ A (u, v). Note that A+
` (u, v) ⊆ R+

` (u, v).
Given a string Γ define (recall the definition (4.8) of diamond shapes): D` =

D(R`−1,R`). By construction, Γ[`] ⊂ D`. Next define d`
∆
= d(R`−1,R`) ≥ 0 via

d` = d(R`−1,R`) = min
y∈D`∩H+,n∩Z2

∗
(dn(y) + 1)− 2 ≥ 0. (5.4)

For strings Γ ∈ A+
n (u, v) the contour part γ[`] of the `-th irreducible animal Γ[`]

satisfies: ∑
y∈γ[`]

e−χβ(dn(y)+1) ≤
∣∣γ[`]

∣∣ e−χβ(2+d`) ∆
= φβ(γ[`]). (5.5)

Note that the weight φβ(γ[`]) just defined can be quite large. But this will be
compensated by the fact that the probability Ph

β

(
Γ[`]
)

of the corresponding animal

Γ[`] is very small.
By (5.5),

∑
Γ∈A+,n

` (u,v)

Ph
β (Γ) exp

∑
y∈γ

e−χβ(dn(y)+1)

 ≤ ∑
Γ∈R+,n

` (u,v)

Ph
β (Γ)

∏̀
j=1

eφβ(γ[j]) (5.6)

for any ` = 1, 2, 3 . . . . Define

Gh
β,+(u, v) =

∑
`

∑
Γ∈R+,n

` (u,v)

Ph
β (Γ)

∏̀
i=1

eφβ(γ[i]). (5.7)
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We conclude that

left hand side of (4.14) ≤ sup
u,x−v∈Y
u,v∈H+,n

e−3δβ(|u|1+|x−v|1)Gh
β,+(u, v). (5.8)

Observe that

|u|1 + |v − x|1 ≥ dn(u) + dn(v)−2, (5.9)

if u, x− v ∈ Y and u, v ∈ H+,n.
With (5.8) and (5.9) in mind define:

Ph
β,+(u, v) =

∑
`

Ph
β

(
R+,n
` (u, v)

)
and ρδ(u, v) =

e−δβdn(u)Gh
β,+(u, v)e−δβdn(v)

eδβdn(u)Ph
β,+ (u, v) eδβdn(v).

. (5.10)

Then, (4.14) and hence the upper bound of Theorem 2 are consequence of:

Theorem 6. There exist 0 < δ < νg/4 and β0 sufficiently large such that the
following holds: For any β > β0 there exists a constant c = c(β), such that

(A) uniformly in arg (n) ∈
[
π
2
, 3π

4

]
and in all u, v ∈ H+,n, u, x− v ∈ Y,

ρδ(u, v) ≤ c(β). (5.11)

(B) uniformly in x ∈ B+,n,

sup
u,x−v∈Y
u,v∈H+,n

e−δβ(|u|1+|x−v|1)Phx
β,+(u, v) ≤ c(β)Gβ

(
x
∣∣P+,n

)
eτβ(x). (5.12)

Claim (B) is an expression of entropic repulsion, and it has the same flavour as
the lower bound of Theorem 2. We prove both in Subsection 6.2.

In order to see how (A) and (B) imply our target upper bound (4.14) notice that

e−3δβ(|u|1+|x−v|1)Gh
β,+(u, v) ≤ ρδ(u, v)e

4δβe−δβ(|u|1+|x−v|1)Phx
β,+(u, v)

(5.11),(5.12)

≤ c(β)2e4δβ Gβ

(
x
∣∣P+,n

)
eτβ(x) ∆

= c2(β)Gβ

(
x
∣∣P+,n

)
eτβ(x),

(5.13)

where the first inequality follows from (5.9) and from the very definition of ρδ in
(5.10), whereas the second inequality is precisely (5.11) and (5.12). The target
bound (4.14) follows from (5.13) because of (5.8). �

6. Proof of Theorem 6 and the lower bound of Theorem 2

In this Section we prove Theorem 6 and the lower bound in Theorem 2. Claim
(A) of Theorem 6 is the most difficult part and the arguments hinge upon crucial
estimates of Proposition 11. The proof of the latter is relegated to Section 8. Claim
(B) of Theorem 6 and of the lower bound in Theorem 2 are somewhat simpler
statements. The proof is based on Proposition 12 (which is in its turn proved in
Section 8) and, in the very end - see (6.37), on Proposition 11.
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The impact of the pinning potential is encoded in the recursion (6.4), which, by
taking maxima, leads to the uniform recursion (6.17). Proposition 11 ensures that
(6.17) implies Claim (A) of Theorem 6. In Section 8 decay properties (6.11) of

potential Ψh,δ
β play an important role in the proof of Proposition 11.

Claim (B) of Theorem 6 and the lower bound of Theorem 2 are statements about
entropic repulsion of the effective random walk away from B+,n. Our approach is
based on [3]. Key facts along these lines are formulated in Proposition 13. Claim
(B) of Theorem 6 (in the form of (6.25)) and lower bound of Theorem 2 (in the
form of (6.26)) are easy consequences. The proof of Proposition 12, which gives an
upper bound on the left hand side of (5.12) in terms of Phx

β,+(0, x), is relegated to
Subsection 8.3.

6.1. Claim (A). Let us start by making one remark:

Remark 7. By the first of (4.5) and by the crude upper bound (4.6)

log ρδ(u, v) ≤ r0 |v − u|1 e−2χβ − 2δβ (dn(u) + dn(v)) ,

which means that ρδ(u, v) ≤ 1 unless u and v stay appropriately close to B+,n in the
sense that the pair (u, v) ∈ A, where

A ∆
=

{
(u, v) : u, x− v ∈ Y , u, v ∈ H+,n, dn(u) + dn(v) ≤

r0e−2χβ

2δβ
|v − u|1

}
. (6.1)

In particular, since χ > 1
2
, we may assume that there exists ν > 1 such that

|v − u|1 ≥ (dn(u) + dn(v)) eνβ and | arg(v − u)− arg(n⊥)| ≤ e−νβ, (6.2)

where n⊥
∆
= (n2,−n1). There is no loss of generality (otherwise we would just

consider the reversed walk) to assume that n · (v−u) ≥ 0. This ensures that the drift
h = ∇τβ(v − u) has non-negative entries.

�
The proof of the claim A comprises several steps.

STEP 1 (Recursion) Manipulating expansions of∏̀
i=1

eφβ(γ[i]) =
∏̀
i=1

(
1 +

(
eφβ(γ[i]) − 1

))
, (6.3)

we infer that

Gh
β,+(u, v) = Ph

β,+(u, v) +
∑
w,z

Ph
β,+(u,w)Φh

β,+(w, z)Ph
β,+(z, v)

+
∑
w1,z1

∑
w2,z2

Ph
β,+(u,w1)Φh

β(w1, z1)Gh
β,+(z1,w2)Φh

β(w2, z2)Ph
β,+(z2, v),

(6.4)

where we have defined:

Φh
β(w, z) = Eh

β

(
1IA(w,z)

(
eφβ(γ) − 1

))
. (6.5)
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Equation (6.4) gives rise to the following recursion: Set

Ph,δ
β,+(s, t) = e−δβdn(s)Ph

β,+(s, t)e−δβdn(t),

P̄h,δ
β,+(u, v) = eδβdn(u)Ph

β,+(u, v)eδβdn(v)
(6.6)

and

Ψh,δ
β (w, z) = e3δβdn(w)Φh

β(w, z)e3δβdn(z). (6.7)

With this notation (6.4) and (5.10) imply:

ρδ(u, v) ≤ e−2δβ(dn(u)+dn(v)) +
∑
w,z

Ph,δ
β,+(u,w)Ψh,δ

β (w, z)Ph,δ
β,+(z, v)

P̄h,δ
β,+(u, v)

+
∑
w1,z1

∑
w2,z2

Ph,δ
β,+(u,w1)Ψh,δ

β (w1, z1)Ph,δ
β,+(z1,w2)Ψh,δ

β (w2, z2)Ph,δ
β,+(z2, v)

P̄h,δ
β,+(u, v)

ρδ(z1,w2).

(6.8)

Remark 8. None of the ratios in (6.8) depends on the drift h. It will be convenient
to take h = ∇τβ(v − u).

STEP 2 (Bounds on Ψh,δ
β ) Recall the definition of the weights φβ in (5.5). Then,

Ψh,δ
β (w, z) = e3δβdn(w)Eh

β1IA(w,z)

(
exp

(
|γ| e−βχ(2+d(w,z))

)
− 1
)

e3δβdn(z), (6.9)

where the function d(w, z) ≥ 0 was already defined in (5.4):

d(w, z) = min
y∈D(w,z)∩H+,n∩Z2

∗
(dn(y) + 1)− 2. (6.10)

Lemma 9. There exist ν2, ν3 > 0 and c1, R <∞ such that for any χ′ < χ one can
choose δ0 > 0, such that, uniformly in δ ≤ δ0, admissible pairs {(w, z) : z ∈ w + Y}
and β large, the following holds:

Ψh
β,δ(w, z) ≤ c1 e−2χ′βKβ(w, z), (6.11)

where the kernel Kβ is given by

Kβ(w, z) = exp
[
−ν3β (dn(w)−R)+−ν2β |z− w|1 1I|z−w|1>1−ν3β (dn(z)−R)+

]
.

(6.12)

Remark 10. Lemma states that Ψh
β,δ(w, z) is at most of order exp(−2χ′β) and

that the kernel Kβ(w, z) decays exponentially both in |z − w|1 and in the distances
dn(w), dn(z) from the wall. In particular,

∑
w,zKβ(w, z) is essentially a one dimen-

sional sum over lattice points inside a strip of width R along ∂H+,n.
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Proof of Lemma 9. By construction of diamond shapes there exists α ∈ N, such
that

d(w, z) ≥ 1

2

(
(dn(z)− α|w − z|1)+ + (dn(w)− α|w − z|1)+

)
. (6.13)

Above a+
∆
= a ∨ 0. To facilitate notation set

fwz(k) = ke−2χβ−χβ
2 ((dn(z)−α|w−z|1)++(dn(w)−α|w−z|1)+) (6.14)

Since |X(γ)| ≤ |γ|, and in view of (6.13),

Ψh
β,δ(w, z) ≤ e3δβ(dn(w)+dn(z))

∑
k≥|z−w|1

(
efwz(k) − 1

)
Ph
β (|γ| = k)

≤ e3δβ(dn(w)+dn(z))
∑

k≥|z−w|1

fwz(k)efwz(k)Ph
β (|γ| = k)

≤ e3δβ(dn(w)+dn(z))
∑

k≥|z−w|1

fwz(k)efwz(k)−2νgβk1Ik>1

≤ 2e3δβ(dn(w)+dn(z))
∑

k≥|z−w|1

fwz(k)e−νgβk1Ik>1 .

(6.15)

In the last two inequalities we relied on (4.11) and on (6.14).
Let us take a closer look at the definition (6.14) on fwz(k). Recall that α, νg and

χ are positive constants which do not depend of β. Fix χ′ < χ and R > 2α. Then,
one can choose ν2, ν3 > 0 and δ0 > 0 so small, so that for any δ ≤ δ0 and for any
non-negative numbers a, b ≥ 0,

νgk1Ik>1 + 2χ+
χ

2

(
(a− αk)+ + (b− αk)+

)
− 3δa−3δb

≥ ν2k1Ik>1 + 2χ′ + ν3

(
(a−R)+ + (b−R)+

)
.

(6.16)

Hence (6.11). �

STEP 3 (Substitution and analysis of the Recursion (6.8)) As we noted in Remark 7
ρδ(u, v) ≤ 1 for (u, v) 6∈ A. Define

ρδ = max{ sup
(u,v)∈A

ρδ(u, v), 1}.

Then (6.8) implies

ρδ ≤ 1 + aδ + bδρδ, (6.17)

where

aδ = sup
(u,v)∈A

∑
w,z

Ph,δ
β,+(u,w)Ψh,δ

β (w, z)Ph,δ
β,+(z, v)

P̄h,δ
β,+(u, v)

, (6.18)
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and, accordingly,

bδ = sup
(u,v)∈A

∑
w1,z1

∑
w2,z2

Ph,δ
β,+(u,w1)Ψh,δ

β (w1, z1)Ph,δ
β,+(z1,w2)Ψh,δ

β (w2, z2)Ph,δ
β,+(z2, v)

P̄h,δ
β,+(u, v)

.

(6.19)
Our target bound (5.11) follows then from (6.17) and:

Proposition 11. Fix δ > 0. Then

aδ <∞ and bδ < 1, (6.20)

uniformly in n ∈
[
π
2
, 3π

4

]
, in all (u, v) satisfying (6.2) and in all β sufficiently large.

We prove Proposition 11 in Section 8.

6.2. Claim (B) of Theorem 6 and the lower bound in Theorem 2. First of
all we may consider Phx

β,+(0, x) instead of the left hand side in (5.12). The proof of
the following Proposition is relegated to Subsection 8.3:

Proposition 12. There exists c1 = c1(β) such that:

max

e−νgβ|x|1 , sup
u,x−v∈Y
u,v∈H+,n

e−δβ(|u|1+|x−v|1)Phx
β,+(u, v)

 (u, v) ≤ c1Phx
β,+(0, x). (6.21)

Thus, lower bounds for both Gβ

(
x
∣∣P+,n

)
and G+n

β (x) may be derived in terms of

Phx
β,+(0, x).

Given a string Γ =
[
γ, C

]
of irreducible animals, let us define (see (5.5))

F (Γ) = F (γ) =
∑
`

∣∣γ[`]
∣∣ e−βχ(d`+2) =

∑
`

φβ(γ[`]). (6.22)

Both (5.12) and the lower bound in (3.9) are consequences of the following propo-
sition:

Proposition 13. For any β ≥ β0 there exist two constants pβ > 0 and Kβ < ∞
such that the following two bounds hold uniformly in arg(n) ∈

[
π
2
, 3π

4

]
and x ∈ B+,n:

Phx
β

(
A+,n(0, x)

∣∣∣ R+,n(0, x)
)

=
Phx
β (A+,n(0, x))

Phx
β,+ (0, x)

≥ pβ, (6.23)

and,

Ehx
β

(
F (γ)

∣∣∣ R+,n(0, x)
)
≤ Kβ. (6.24)

Before proving Proposition 13 let us demonstrate how it implies lower bounds in
question:
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Consider first (5.12). By (6.21) it would be enough to check that there exists a
constant c2 = c2(β) such that

Phx
β,+(0, x) ≤ c2Gβ

(
x
∣∣P+,n

)
eτβ(x). (6.25)

However,

Gβ

(
x
∣∣P+,n

)
eτβ(x) ≥ Phx

β

(
A+,n(0, x)

)
.

Indeed, the right hand side above is just a restricted sum over animals with empty
boundary pieces in the irreducible decomposition (4.9). By (6.23)

Phx
β

(
A+,n(0, x)

)
≥ pβPhx

β

(
R+,n(0, x)

)
= pβPhx

β,+(0, x),

and (6.25) follows.
Turning to the lower bound in (3.9) note that by (4.6)

eτβ(x)G+,n
β (x) ≥ Ehx

β

{
e−F (γ)1IA+,n(0,x)

}
.

If both (6.23) and (6.24) hold, then by Markov inequality,

Phx
β

(
F (γ) ≤ 2Kβ

pβ
;A+,n(0, x)

∣∣∣R+,n(0, x)

)
≥ pβ

2
.

This means that

eτβ(x)G+,n
β (x) ≥ pβ

2
e
−

2Kβ
pβ Phx

β

(
R+,n(0, x)

)
=
pβ
2

e
−

2Kβ
pβ Phx

β,+ (0, x) , (6.26)

On the other hand by (4.11)

Gβ

(
x
∣∣P+,n

)
eτβ(x) ≤

∑
u,v

e−νgβ(|u|1+|x−v|1)Phx
β,+(u, v) + o

(
e−νgβ|x|1

)
.

In view of Proposition 12 (and (6.25)) we conclude thatGβ

(
x
∣∣P+,n

)
eτβ(x) ∼= Phx

β,+(0, x),
and the lower bound (3.9) indeed follows from (6.26). �

Proof of Proposition 13. The bound (6.23) has a transparent meaning: it reflects
entropic repulsion of the random walk {R`} from Hc

+,n under the conditional mea-

sures Phx
β

(
·
∣∣∣ R+,n(0, x)

)
. Recall (4.9) that both events A+,n(0, x) and R+,n(0, x) are

encoded in terms of words of irreducible animals

Γ = Γ[1] ◦ · · · ◦ Γ[m]; X(Γ) = x; m = 1, 2, . . . (6.27)

The event R+,n(0, x) contains all such words in (6.27) for which all the vertices R`
of the effective random walk (5.1) belong to H+,n. The event A+,n(0, x) ⊂ R+,n(0, x)
is more restrictive: it requires that for any ` = 1, . . . ,m,

R`−1 + γ[`] ⊂ H+,n. (6.28)
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Note that (6.28) is automatically satisfied whenever (see (4.8)) D` ⊂ H+,n. For
k = 1, 2, . . . consider the following event:

E+,n
k (0, x) =

⋃
m

(
R+,n
m (0, x) ∩ {D` ⊂ H+,n for ` = k, . . . ,m− k}

)
. (6.29)

By definition {D` ⊂ H+,n for ` = k, . . . ,m− k} is a sure event whenever k > m−k.
A straightforward (and substantially simplified) modification of the proof of Lemma 5.1

in [3] implies that for all β sufficiently large there exists k = k(β) such that

inf
x∈B+,n

Phx
β

(
E+,n
k (0, x)

)
Phx
β,+ (0, x)

> 0. (6.30)

Let us fix such k. Consider the identity

Ph
β

(
E+,n
k (0, x)

)
=
∑
u,v

Ph
β,+ (Rk = u)Ph

β

(
A+,n(u, v)

)
Ph
β,+ (Rk = x− v) . (6.31)

Since, Ph
β (A+,n(u, v)) ≤ Ph

β,+(u, v), using exponential tail estimates (4.11) to control

Ph
β (Rk = u) and Ph

β (Rk = x− v) and (6.21), one infers that there exists Nk(β) such
that all the terms in (6.31) which violate

|u|1 , |x− v|1 < Nk (6.32)

might be ignored. Precisely, there exists c3 = c3(β) > 0, such that∑
u,v

|u|1,|x−v|1≤Nk

Ph
β,+ (Rk = u)Ph

β

(
A+,n(u, v)

)
Ph
β,+ (Rk = x− v) ≥ c3Ph

β,+ (0, x) , (6.33)

uniformly in x ∈ B+,n large. On the other hand,

Ph
β

(
A+,n(0, u)

)
and Ph

β

(
A+,n(v, x)

)
> 0, (6.34)

for any u ∈ H+,n∩Y and v ∈ H+,n∩ (x− Y). Hence, by (6.33) there exists c4(β) > 0
such that∑

u,v
|u|1,|x−v|1≤Nk

Ph
β

(
A+,n(0, u)

)
Ph
β

(
A+,n(u, v)

)
Ph
β

(
A+,n(v, x)

)
≥ c4Ph

β,+ (0, x) , (6.35)

uniformly in x ∈ B+,n large. Each term in Ph
β (A+,n(0, x)) is overcounted at most

c5N
4
k times on the left hand side of (6.35). The inequality (6.23) follows. Let us

turn to (6.24). Rewrite

F (γ) =
∑
`

∑
w,z

φβ(γ[`])1I{R`−1=w,R`=z}. (6.36)

Hence,

Ehx
β

(
F (γ)1IR+,n(0,x)

)
=
∑
w,z

Ph
β,+(0,w)

(
Eh
β1IA(w,z)φβ(γ)

)
Ph
β,+(z, x).
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Since φβ ≤ eφβ − 1, a comparison with (6.9) and with the right hand side of (6.18)
reveals that

Ehx
β

(
F (γ)

∣∣∣ R+,n(0, x)
)
≤ aδe

2δβ ∆
= Kβ, (6.37)

so our claim will follow once we prove Proposition 11 in Section 8. �

7. Fluctuation and Alili-Doney estimates

Recall that in order to complete the proof of Theorem 2 it remains to verify the
claims of Proposition 11 and Proposition 12.

At this stage we need to take a closer look at the local properties of the effective
walk Rk defined in (5.1). In the sequel we shall restrict attention to arg(x) ∈ [0, 2π/5].
We shall represent x = |x|1 (1− ε, ε) and, accordingly, write hx = hε. If arg(x) ∈
[0, 2π/5] than the effective random walk has three basic steps (7.16). The rest of
the steps satisfy (7.17). This assertion is explained in Subsection 7.1. Furthermore,
sharp asymptotic description of aε and bε are formulated in Proposition 16.

Subsection 7.2 is devoted to the proof of uniform local asymptotics of Proposi-
tion 15. Note that (7.3) is valid on all scales (sizes of x) and as such goes beyond
usual asymptotic form of the local CLT. For instance, if ε is small (horizontal or
almost horizontal wall) and if e−bε |x|1 ≤ 1, then the statistics of steps y 6= e1 of
the effective random walk from 0 to x follow Poissonian asymptotics (as β → ∞).
Gaussian asymptotics start to carry over only when e−bε |x|1 � 1, and there is an
intermediate range of values of |x|1 when one should interpolate between these two
regimes. In Subsection 7.2 we introduce a representation (7.22) of the effective ran-
dom walk Rk which makes this heuristics mathematically tractable: The first term
in (7.22) is a random staircase, whereas the second term is a diluted random sum
of (uniformly - see Lemma 20 where this is quantified) non-degenerate Y-valued
random variables.

In Subsection 7.3 we derive crucial bounds on Ph
β,+ (w, z) for effective random

walks which are constrained stay above the wall. In view of decomposition (7.50)

one needs to study quantities Ph
β,+ (0, v) and P̂h

β,+ (v, 0), see the definition (7.54)
in terms of ladder variables. At this stage we rely on the adjustment [3] of the
Alili-Doney [1] representation formulas (7.55).

We use (7.55) for deriving lower bounds in Subsection 8.1. The rest of Subsec-
tion 7.3 is devoted to upper bounds which are based on Hölder inequalities (7.57)
and (7.58) (in Section 8 it will be enough to use Cauchy-Schwarz). The required
bounds on expected number of ladder heights are derived in Lemmas 21-23.

7.1. Low temperature structure of ∂Kβ, τβ and Ph
β. Recall the notation: h =

hx = ∇τβ(x). Probability measures Ph
β are defined on the very same set of irreducible

animals A, regardless of our running choice of n and x and, accordingly, of h.
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Consider two elementary irreducible animals Γi = [ei, ∅]; i = 1, 2. For h =
(h1, h2) ∈ Q+ ∩ ∂Kβ their Ph

β-probabilities are given by:

Ph
β(Γi) = e−β+hi ,

which means that 0 ≤ hi ≤ β. For x ∈ Q+ and h = hx it would be therefore
convenient to define ax(β) = β − h1 and bx(β) = β − h2. By the above,

0 ≤ ax, bx ≤ β. (7.1)

In this notation the probabilities of Γi are recorded as

Phx
β (Γ1) = e−ax(β) and Phx

β (Γ2) = e−bx(β). (7.2)

We are going to derive asymptotic description of Phx
β (0, x) =

∑
` Ph

β (A`(0, x)). In
order to formulate it we shall employ the following asymptotic notation:

Definition 14. Let us say that two sequences {φ(n)} and {ψ(n)} satisfy φ(n)
∼
=

ψ(n) uniformly in n ∈ A if there exists a positive constant c ≥ 1 such that

1

c
φ(n) ≤ ψ(n) ≤ cφ(n)

for all n ∈ A ⊆ N. The same convention applies for notation φ(x)
∼
= ψ(x) uniformly

in x ∈ A ⊆ Z2.

The principal result of the forthcoming Subsection 7.2 is:

Proposition 15. The following asymptotic relation holds uniformly in β large and
arg (x) ∈ [0, 2π

5
]:

Phx
β (0, x)

∆
= Phx

β (A(0, x)) =
∑
`

Phx
β (A`(0, x))

∼
=

1√
e−bx(β) |x|1 ∨ 1

, (7.3)

The proof of (7.3) is based on a careful analysis of asymptotics of ax and bx,
particularly for x-s close to the horizontal axis. Since hx = ∇τβ(x) depends only
on the direction of x, it would be convenient to consider | · |1-normalized versions of
various x with arg (x) ∈ [0, 2π

5
], or more generally of x ∈ Q+. Below, if x

|x|1 = (1−ε, ε),
we shall use notation aε

∆
= ax and bε

∆
= bx.

Here is the main result of the current subsection:

Proposition 16. The following asymptotic relations hold uniformly in arg (x) ∈
[0, 2π

5
] and β sufficiently large:

c1 max
{
ε, e−β

}
≤ aε ≤ c2 max

{
ε, e−β

}
, (7.4)

As far as asymptotics of bε are considered: If ε ≥ e−2β, then{
β − bε ∈

[
β + log ε+ c3e−β, β + log ε+ c4

εe2β

]
, if ε ≥ 2e−β

β − bε ∼= εeβ, if e−2β ≤ ε < 2e−β
. (7.5)
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γ1 γ2

γ3
γ4

Figure 2. Irreducible animals Γ1,Γ2,Γ3,Γ4; Γi = [γi, ∅].

If ε < e−2β , then

0 ≤ β − bε ≤ c5e−β . (7.6)

Proof of Proposition 16. Let us start with considerations which apply for all x ∈ Q+,
or, equivalently, for any ε ∈ [0, 1]. As it was already noticed in (7.1), 0 ≤ aε, bε ≤ β.
By convexity and axis symmetries of the Wulff shape, aε is non-increasing in ε,
whereas bε is non-decreasing.
Next, by (4.11) there exists R > 0 such that uniformly in β large,∑

Γ∈A

Phx
β (Γ) |X(Γ)|2 1I{|X(Γ)|>R} = O

(
e−2β

)
.

The sum
∑

Γi∈A P
hx
β (Γi) = 1. The contribution to it from all irreducible animals

Γ = [γ, C] with |X(γ)| ≤ R and non-empty decoration C is O
(
e−2β

)
. It remains

to consider the contributions of irreducible paths γ with empty decorations and
|X(γ)| ≤ R. The Phx

β probabilities of the latter are given by

Phx
β ([γ, ∅]) = e−β|γ|+hx·X(γ).

By (7.1) any path γ which contains a backtrack, that is either both ±e1 steps or
both ±e2 steps contributes at most O

(
e−2β

)
. Paths which contain only forward e1

and e2 steps and have at least two bonds are reducible. Paths which contain at least
two backward steps from {−e1,−e2} also contribute at most O

(
e−2β

)
. There are

only two staircase paths left (see Figure 2 in Section 7) :

γ3 = (e1, 2e1, 2e1 − e2, 3e1 − e2, 4e1 − e2) and γ4 = (e2, 2e2, 2e2 − e1, 3e2 − e1, 4e2 − e1) .

Define

∆a
ε (β) = 4aε + (β − bε) and ∆b

ε(β) = 4bε + (β − aε) (7.7)

By (7.1), both ∆a
ε ,∆

b
ε ≥ 0. For i = 3, 4, the probabilities of Γi = [γi, ∅] are given by

Phx
β (Γ3) = e−β−∆a

ε (β) and Phx
β (Γ4) = e−β−∆b

ε(β). (7.8)
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We conclude:

e−aε + e−bε + e−β−∆a
ε (β) + e−β−∆b

ε(β) = 1−O
(
e−2β

)
(7.9)

and (
e−aε + 4e−β−∆a

ε (β) − e−β−∆b
ε(β), e−bε + 4e−β−∆b

ε(β) − e−β−∆a
ε (β)
)

= Ehx
β X(Γ) + O

(
e−2β

) ∆
= v∗ε (β) + O

(
e−2β

)
.

(7.10)

Recall that v∗ε = |v∗ε |1 (1− ε, ε). By (7.9) and (7.10), |v∗ε |1 ≥ 1.

From now on let us consider arg ((1− ε, ε)) ∈ [0, 2π
5

]. In this case the inspection
of the first coordinate of the vector (7.10) (for the horizontal component) readily
implies that aε ≤ c5 uniformly in β large. and, setting ∆ε = ∆a

ε (β) = 4aε + (β − bε)
(see (7.7)), we conclude: Uniformly in arg ((1− ε, ε)) ∈ [0, 2π

5
]. and β large,

e−aε + e−bε + e−β−∆ε = 1−O
(
e−2β

)
and(

e−aε + 4e−β−∆ε , e−bε − e−β−∆ε
)

= |v∗ε |1 (1− ε, ε) + O
(
e−2β

)
.

(7.11)

Proof of (7.4). By (7.1), bε ≤ β, the first of (7.11) implies that aε ≥ c6e−β for any
ε in question. Next, since by both of (7.11),

|v∗ε |1 = 1 + O
(
e−β−∆ε

)
, (7.12)

the second of (7.11) (for the horizontal coordinate) implies that aε
∼
= ε, uniformly

in ε ≥ c7e−β. Since aε is monotone non-decreasing in ε, this implies that aε ≤ c8e−β

for all ε ≤ c7e−β, and the first claim (7.4) of Proposition 16 follows.

Proof of (7.5) and (7.6). Consider now the second of (7.11) (for the vertical co-
ordinate). In view of (7.12), and after multiplying both sides by eβ, it reads (recall
that ∆ε = 4aε + (β − bε) > β − bε):

e(β−bε) − e−(β−bε) ≤ e(β−bε) − e−∆ε = εeβ + O
(
εe−∆ε + e−β

)
≤ e(β−bε). (7.13)

If εeβ ≥ 2, then O
(
εe−∆ε + e−β

)
/(εeβ) = O

(
1

εe2β

)
. Hence, the first of (7.5).

Furthermore, since β − bε is non-increasing and non-negative, and since aε is non-
negative and uniformly bounded,

eβ−bε − e−∆ε = eβ−bε − e−(β−bε)−4aε ∼= (β − bε) + aε,

uniformly in ε ∈ [0, 2e−β] and β large. Hence, by (7.13),

(β − bε) + aε
∼
= εeβ + O

(
εe−∆ε + e−β

)
, (7.14)

also uniformly in ε ∈ [0, 2e−β] and β large. The asymptotic behavior of aε is already
verified (7.4). Both the second of (7.5) and the upper bound (7.6) follow. �
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Remark 17. Consider x = |x|1 (1− ε, ε), Since τβ(x) = hx · x = β |x|1 − (ax, bx) · x,
the asymptotics of surface tension τβ are given by:

0 ≤ |x|1 −
τβ(x)

β
= |x|1

(1− ε)aε + εbε
β

, (7.15)

where aε and bε comply with asymptotic relations (7.4), (7.5) and (7.6) uniformly
in β large and x ∈ Q+ ∩ {arg(x) ∈ [0, 2π/5]}. In particular, the rescaled Wulff
shape (1/β)Kβ tends to the square Q = [−1,+1]2 in Hausdorff distance, as β →∞,

and the boundary of (1/β)Kβ is at Hausdorff distance O
(

1
β

)
from ∂Q. Sharper

asymptotics could be read from Proposition 16, in particular the boundary of (1/β)Kβ

is within distance O
(

e−β

β

)
from ∂Q along axis directions.

7.2. Decomposition of Rk and proof of Proposition 15. The effective random
walk Rk was defined in (5.1). We summarize computations of Subsection 7.1 as
follows:

Definition 18. Define the set of basic steps as S0 = {e1, e2, 4e1 − e2}.
The probabilities of three basic steps are given by

Phx
β (X = e1) = e−ax(β), Phx

β (X = e2) = e−bx(β) and Phx
β (X = 4e1 − e2) = e−β−∆x(β).

(7.16)
The coefficients ax, bx and ∆x = 4ax + (β − bx) satisfy asymptotic relations (7.4),
(7.5) and (7.6).
Non-basic steps do not contribute in the following sense:

sup
arg(x)∈[0,2π/5]

∑
y 6∈S0

|y|2 Phx
β (X = y) = O

(
e−2β

)
. (7.17)

Remark 19. Note that for fixed ε > 0 and for any x with x
|x|1

= (1 − ε, ε) the

probability Phx
β (X = 4e1− e2) is (asymptotically in β) of order e−2β. However, for ε-s

of order e−β the probability of Phx
β (X = 4e1 − e2) is comparable to Phx

β (X = e2). For
the sake of a unified exposition we always include 4e1 − e2 to the set of basic steps
S0.

Recall our notation v∗(β, x) = v∗(β, hx) = Ehx
β (X(Γ)) for the mean displacement

over an irreducible animal sampled from
(
A,Phx

β

)
. By (7.10) and (7.17),

v∗(β, x) =
(
e−ax(β), e−bx(β)

)
+ e−β−∆x(β) (4,−1) + O

(
e−2β

)
. (7.18)

By Theorem 4, v∗(β, x) points in the direction of x, in other words there exists
`x ∈ R+ such that

x = `xv
∗(β, x), (7.19)

writing x = |x|1 (1− ε, ε), we, in view of the first of (7.11), conclude that

`x = |x|1
(
1 + O

(
e−(β+∆x(β))

))
, (7.20)
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and, as a consequence, that∣∣(e−ax(β) + 4e−β−∆x(β), e−bx(β) − e−β−∆x(β)
)
− (1− ε, ε)

∣∣
1
≤ ce−β−∆x(β), (7.21)

uniformly in arg(x) ∈ [0, 2π
5

] and β large.
Decomposition of Rk. We shall always represent random walk Rk as

Rk =
k∑
1

(ξiUi + (1− ξi)Vi) , (7.22)

where

(1) {ξi} is a sequence of i.i.d. Bernoulli random variables with probability of
success P(ξi = 1) = q;

q = α1
xe
−ax(β) + α2

xe
−bx(β). (7.23)

There are two different choices of αix ∈ [0, 1], according to the direction x, as
described in CASE 1 and CASE 2 below. In both cases, however, q in (7.23)
will satisfy:

1− q ∼= e−(β+∆x). (7.24)

(2) {Ui} is an independent (from {ξi}) sequence of i.i.d random vectors which
take values (1, 0) and (0, 1) with probabilities

1− p = P (Ui = (1, 0)) =
α1
xe
−ax(β)

α1
xe
−ax(β) + α2

xe
−bx(β)

, (7.25)

and P (Ui = (0, 1)) = p, respectively.
(3) {Vi} is yet another independent (from {ξi} and {Ui}) sequence of i.i.d. ran-

dom vectors with

P (Vi = e1) =
(1− α1

x)e
−ax

1− q , P (Vi = e2) =
(1− α2

x)e
−bx

1− q
and, for y 6= e1, e2, P (Vi = y) =

1

1− qP
h
β(X(Γ) = y).

(7.26)

By (4.11) for any choice of αix ∈ [0, 1] as above the distribution of Vi has exponential
tails: ∃r0, ν0 > 0 such that

P (|Vi| > r)≤e−βν0r uniformly in r ≥ r0, x and β large. (7.27)

In addition, we shall choose αix ∈ [0, 1] in such a way that the distribution of Vi will
be uniformly non-degenerate in the following sense: There exist δ1, δ2 ∈ (0, 1) such
that

δ1 ≤ min {P (Vi = e2) ,P (Vi = 4e1 − e2)} and EV · e1 ∈ [δ2, δ
−1
2 ]. (7.28)

uniformly in arg(x) ∈ [0, 2π
5

] and β large.
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Let N` be the number of failures (zeros) of {ξi} until the `-th success, and let RU

and RV be the random walks with steps {Ui} and {Vi}. Then,∑
`,m

P(N` = m)
∑
y

P(RU` = y)P(RVm = x− y)

≤ Ph
β (0, x)≤ c2

∑
`,m

P(N` = m)
∑
y

P(RU` = y)P(RVm = x− y).
(7.29)

Indeed, the difference between Ph
β (0, x) and the l.h.s. sum in (7.29) is that the

former takes into account all possible superpositions of steps of U and V walks,
whereas the latter ignores the situation when x is hit by a V-step. The upper bound
in (7.29) follows from (7.24).

Proof of Proposition 15. We now turn to an analysis of (7.29). It would be helpful
to remember that by (7.19) the running scale `x satisfies:

q`x (1− p, p) + (1− q)`xEVi ∆
= `ux(1− p, p) + `vxEVi = x, (7.30)

where we have defined `ux = q`x and `vx = (1−q)`x. We shall rely on the elementary
Lemma 20 below, which is claimed to hold uniformly in i.i.d sequences {Vi} satisfying
(7.27) and (7.28): Let us fix C ∈ (0,∞) and, given u ∈ R2 and r ∈ N define

Λr(u) = u + {[−Cr, . . . , Cr]× [−r, r]}.
For a horizontal lattice line B let us say that B ∩ Λr(u) 6= ∅ if B passes through
Λr(u).

Lemma 20. There exist C = C(δ, r0, ν0) and c = c(δ, r0, ν0) such that∑
|k−n|≤cr

P
(
RV
k ∈ B ∩ Λr(nEV)

) ∼
=

r2

n ∨ 1
(7.31)

uniformly in n ≥ 0, integers r ≤ √n ∨ 1, horizontal lines B ∩ Λr(nEV) 6= ∅ and β
large.

Sketch of the proof: Eq. (7.31) is a coarse estimate, and the logic behind it
should be transparent: By (7.27) Vi-s have exponential tails. On the other hand,
(7.28) yields a lower bound on the non-degeneracy of covariance structure of Vi. A
usual local limit analysis implies that one can choose c and C in such a way that
P
(
RV
k ∈ B ∩ Λr(nEV)

) ∼
= r

n∨1
uniformly in all lines B∩Λr(nEV) 6= ∅ and in all times

k with |k − n| ≤ cr.

Let us fix a sufficiently large constant c0. How exactly it is fixed is explained below
when we consider CASE 2.

CASE 1. ε ≤ c0e−β. By Proposition 16 in this regime the probabilities Px
β(Γ2) = e−bε

and Px
β(Γ3) = e−β−∆ε are of the same order e−β. Consequently, if we take α2

x = p = 0

and α1
x = 1, both (7.24) and, also in view of (7.17), (7.28) are satisfied.
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If p = 0, then the RU -walk is trivial: P
(
RUk = (`, 0)

)
= δk`. Consequently, (7.29)

takes a particular simple form:

Ph
β (0, x)

∼
=
∑
`,m

P(N` = m)P
(
RV
m = (x1 − `, x2)

)
. (7.32)

Recall how `ux and `vx were defined in (7.30). Note that `ux = q
1−q `

v
x. By construction

p = 0. Consequently, (x1 − `, x2) = x− (`, 0) = (`ux − `, 0) + `vxEV, and

P
(
RV
m = (x1 − `, x2)

)
= P

(
RV
m = ERV

m − (m− `vx)EV − (`− `ux, 0)
)
.

In view of the last of (7.28), the main contribution to (7.32) should come from the
values of m and ` satisfying

|m− `vx| ≤ c3

√
`vx and |`− `ux| ≤ c3

√
`vx.

Let us estimate (7.32) for the values of m and ` restricted to the latter region. By
a direct application of Stirling formula,

P(N` = m)
∼
=

1√
`vx ∨ 1

(7.33)

uniformly in |m− `vx| ≤ c3

√
`vx and |`− `ux| ≤ c3

√
`vx. Furthermore, there exists

c <∞, such that

P(N` = m) ≤ c√
`vx ∨ 1

(7.34)

for every m.
An application of Lemma 20 with r =

√
`vx ∨ 1 implies, therefore:∑

|`′|≤c3
√
`vx

∑
|m−`vx|≤c3

√
`vx

P
(
RV
m = ERV

`vx
+ (`′, 0)

) ∼
= 1. (7.35)

Together with (7.33) and (7.34) this implies that

Ph
β (0, x)

∼
=

1√
`vx ∨ 1

∼
=

1√
e−bx(β) |x|1 ∨ 1

, (7.36)

uniformly in β large and x-s complying with CASE 1. The last asymptotic equiva-
lence; `vx

∼
= e−bx(β) |x|1, holds since by (7.30), (7.20) and by (7.24),

`vx = (1− q)`x ∼= (1− q) |x|1
∼
= e−β−∆x |x|1 .

However, by Proposition 16, e−β−∆x
∼
= e−β

∼
= e−bx uniformly in ε ≤ c0e−β and β

large.

CASE 2. ε > c0e−β. By (7.17) there exists η > 0 such that

e−β−∆ε ≥ η
∑

y 6=e1,e2

|y|1 Phε
β (X = y) , (7.37)
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uniformly in β large and arg ((1− ε, ε)) ∈ [0, 2π
5

]. We shall choose αiε in the decom-
position (7.22) of Rk as follows(

1− α1
ε

)
e−aε =

1

η
e−β−∆ε and

(
1− α2

ε

)
e−bε = e−β−∆ε . (7.38)

Since aε is uniformly bounded and bε < β < β + ∆ε, (7.38) is a feasible choice. In
view of (7.37) we readily verify (7.28) and also (7.24). In fact recalling how q was
defined in (7.23), we, in view of (7.37), infer that under (7.38) 1 − q satisfies the
following bound

1− q ∈ e−β−∆ε

(
2 +

1

η
, 2 +

2

η

)
, (7.39)

uniformly in β large and ε > c0e−β. Furthermore, by (7.5) there exists c4 < ∞
such that

bε ≤ β − log c0 + c4e−β and ∆ε ≥ log c0 − c4e−β, (7.40)

uniformly in c0 ≥ 2, β large and ε > c0e−β. This means (see (7.30) for the definition
of `ux and `vx) that

`vx =
1− q
q

`ux ≤ p`ux
∼
= x2

∼
= |x|1 e−bx , (7.41)

also uniformly in CASE 2. Indeed, the last equivalence follows from (7.21) and
Proposition 16 choosing c0 large. On the other hand, going back to the definition of
p in (7.25), the choice of α2

ε in in (7.38) implies that p ≥ e−bε − e−β−∆ε . Comparing
with (7.39), and in view of (7.40), we conclude that p ≥ (1 − q)/q as soon as c0 is
large enough. Hence the first inequality in (7.41).

Let us go back to (7.29) and write:

Ph
β (0, x)

∼
=
∑
`,m

P(N` = m)
∑
r

P(RU
` = (`− r, r)P

(
RV
m = x− (`− r, r)

)
(7.42)

By Stirling’s formula the main contribution to

P(N` = m)
∼
=

1√
m

comes from

∣∣∣∣`− q

1− qm
∣∣∣∣ ≤ c4

√
m. (7.43)

Next, since ERU
` = `(1− p, p),
P
(
RU
` = (`− n, n)

)
= P

(
RU
` = ERU

` + (`p− n, n− `p)
)
,

and consequently, again by Stirling’s formula, the main contribution to

P
(
RU
` = (`− n, n)

) ∼
=

1√
p`

comes from |n− `p| ≤ c5

√
`p. (7.44)

Recall (7.30) that x = `ux(1− p, p) + `vxEV. Therefore, setting n̄ = p`ux,

x− (`− n, n) = ERV
`vx

+ ((`ux − `)− (n̄− n), (n̄− n))

= ERV
m + (`vx −m)EV + ((`ux − `)− (n̄− n), (n̄− n)) .

(7.45)
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Since we restrict attention to ` and m satisfying the second of (7.43), and since
`ux = q

1−q `
v
x, the main contribution to

P
(
RV
m = x− (`− n, n)

)
comes from |m− `vx| , |`− `ux| , |n− n̄| ≤ c6

√
`vx. (7.46)

Let us go back to (7.42). In view of (7.43)-(7.46),

Ph
β (0, x)

∼
=

1√
p`ux

1√
`vx ∨ 1

∑∗
P
(
RV
m = ERV

`vx
+ ((`ux − `)− (n̄− n), (n̄− n))

)
(7.47)

where ∑∗ ∆
=

∑
|`−`ux |≤c7

√
`vx∨1

∑
|n−n̄|≤c7

√
`vx∨1

∑
|m−`vx|≤c7

√
`vx∨1

.

By an application of Lemma 20 (again with r =
√
`vx ∨ 1), and in view of (7.41),

Ph
β (0, x)

∼
=

1√
x2

∼
=

1√
e−bx(β) |x|1

, (7.48)

uniformly in CASE 2.
Putting (7.36) and (7.48) together we deduce the claim (7.3) of Proposition 15. �

7.3. Alili-Doney representation. The (strict) event R̂+
` is defined similarly to

(5.3),

R̂+,n
` (w, z) = {Γ : S1, . . . , S`−1 > 0;R0 = w,R` = z} . (7.49)

In order to explore Ph
β,+(w, z) =

∑
` Ph

β

(
R+,n
` (w, z)

)
-terms in (6.4) we need both

strict and non-strict events . Indeed, define P̂h
β,+(w, z) =

∑
` Ph

β

(
R̂+,n
` (w, z)

)
Then,

the decomposition of effective random walk trajectory (w = R0, . . . ,R` = z) with
respect to the first absolute minimum y = Rk;

y · n = min
m

Rm · n and Rm · n > y · n for any m < k,

yields:

Ph
β,+ (w, z) =

∑
y

P̂h
β,+ (w − y, 0)Ph

β,+ (0, z− y) , (7.50)

Non-strict ascending ladder height H1 of S` is defined via

H1 = Sτ1 where τ1 = min{` > 0 : S` ≥ S0} (7.51)

H2, H3, . . . are defined recursively.
Strict descending ladder height Ĥ1 of S` is defined via

Ĥ1 = Sτ̂1 where τ̂1 = min{` > 0 : S`<S0} (7.52)

Ĥ2, Ĥ3, . . . are defined recursively.
Let N+

m(z) be the total number of non-negative non-strict ladder heights Hi ≤
z reached during first m steps by the effective random walk S` defined in (5.2).
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Similarly. let N−m(z) be the total number of non-negative strict descending ladder

heights Ĥj ≤ z reached during the first m steps of S`. We drop sub-index m
whenever talking about m = ∞ (that is whenever talking about the total number
of ladder heights).

For t ∈ H+,n define events

L+
t = {∃ i : Rτi = t} and L−t = {∃ i : Rτ̂i = t} . (7.53)

Then, recalling that Am(x, y) was defined just after (4.8),

P̂h
β,+ (v, 0) =

∑
m

Ph
β

(
Am(v, 0);L−0

)
and Ph

β,+ (0, v) =
∑
m

Ph
β

(
Am(0, v);L+

v

)
. (7.54)

The first of (7.54) is straightforward. The second follows by a well-known rearrange-

ment argument: If s =
∑m

1 sj and
∑k

1 sj ≥ 0 for any k, then Ŝk =
∑m

m−k+1 sj for

k = 1...m satisfies Ŝm = s = maxk Ŝk.
An adaptation of the combinatorial lemma by Alili and Doney [1] for the effective

random walk setup was formulated [3]. In particular, for any v ∈ Q+ \ 0 and n,

Ph
β,+ (0, v) =

∑
m

1

m
Eh
β

(
Am(0, v) ; N+

m(v · n)
) ∼

=
1

|v|1
∑

|v|1
c
≤m≤c|v|1

Eh
β

(
Am(0, v) ; N+

m(v · n)
)

and

P̂h
β,+ (v, 0) =

∑
m

1

m
Eh
β

(
Am(v, 0) ; N−m(v · n)

) ∼
=

1

|v|1
∑

|v|1
c
≤m≤c|v|1

Eh
β

(
Am(v, 0) ; N−m(v · n)

)
.

(7.55)

Here for the event A and the random variable N we use the notation E (A ; N)
for the expectation of the random variable IAN . The

∼
= relation in both of (7.55)

follows from (4.5), and it is uniform in n and β large. However, since in our context
the dependence on β of coefficients in inequalities is important, and since for general
directions n the range of the effective random walk S` is quite different from Z, we
need to rerun the (7.55)-based computations of [3] more carefully.

Relations (7.55) imply that

Ph
β,+ (0, v) ≤ c1

|v|1
Eh
β

(
A(0, v) ; N+

c|v|1
(v · n)

)
and

P̂h
β,+ (v, 0) ≤ c1

|v|1
Eh
β

(
A(v, 0) ; N−c|v|1

(v · n)
)
.

(7.56)
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Since
∑

m 1I{Rm=v} is an indicator, we have for all k ≥ 1

Eh
β

(
A(0, v) ; N+

c|v|1
(v · n)

)
=
∑
m

Eh
β

(
Am(0, v) ; N+

c|v|1
(v · n)

)
= Eh

β

(∑
m

1I{Rm=v} ; N+
c|v|1

(v · n)

)
≤
(
Ph
β (0, v)

) 1
2

(
Eh
β

(
N+
c|v|1

(v · n)
)2
) 1

2

.

(7.57)

Similarly,

Eh
β

(
A(v, 0) ; N−c|v|1

(v · n)
)
≤
(
Ph
β (v, 0)

) 1
2

(
Eh
β

(
N−c|v|1

(v · n)
)2
) 1

2

(7.58)

Let us make a general statement for one-dimensional random walks S`, with S0≥0:

Lemma 21. Assume that for some η, p > 0,

P(H1−S0 ≥ η; τ1 <∞) ≥ p. (7.59)

Then, for any z ≥ 0 and for any power k ≥ 1,

E
(
N+
m(z)k

)
≤ E

d
z
ηe∧m∑

1

Mi


k

≤

ck
⌈
z
η

⌉
∧m
p

k

(7.60)

where M1,M2, . . . , are independent Geo(p). Here ck is a combinatorial constant
which does not depend on p, z or η. The same holds for strict descending ladder
heights (i.e. if (7.59) holds for S0 − Ĥ1 then (7.60) holds for N−).

Proof. Let us say that Hi (respectively Ĥi) is a substantial ascending ladder (de-

scending strict ladder) height if Hi −Hi−1 ≥ η (respectively, if Ĥi−1 − Ĥi ≥ η).
We proceed with talking only about ascending ladder heights, the argument for

strict descending ladder heights would be a literal repetition. Since we are counting

non-negative ladder heights there are at most
⌈
z
η

⌉
substantial ladder heights Hi with

0 ≤ Hi ≤ z. The number M of ladder heights between two successive substantial
ladder heights is stochastically dominated by Geo(p). The inequality (7.60) just
states that N+

m(z) is bounded above by M1 + · · · + Md zηe∧m, which is the total

number of ladder heights reached during the first m steps of the walk or until the⌈
z
η

⌉
-th substantial ladder height is produced. �

Upper bounds on Ehε
β (N+

m(s · n))
k

and Ehε
β (N−m(s · n))

k
. Recall that we are as-

suming that u · n ≤ v · n, and that (u, v) belongs to the set A defined in (6.1). In
particular, u and v satisfy (6.2). We continue to denote v − u = |v − u|1 (1− ε, ε),
hε = ∇τβ(v − u) and n = |n|1 (−εn, 1− εn). The second of (6.2) implies that

0 ≤ εn ≤ ε ≤ εn + e−νβ, (7.61)
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for some ν > 1.
Let us start with expectations of N+:

Lemma 22. (a) If arg(n) = π
2
, then(

Ehε
β N

+
m(s · n)k

) 1
k ≤ ck

(
dn(s)e

bε
)
∧m, (7.62)

uniformly in s and in all β sufficiently large.
(b) On the other hand, the bound(

Ehε
β N

+
m(s · n)k

) 1
k ≤ ckdn(s) ∧m (7.63)

is satisfied uniformly in arg(n) ∈ (π
2
, 3π

4
], in s and all β sufficiently large.

In order to formulate consequences of Lemma 21 for expectations of N− let us
introduce the following notation: For s · n > 0 let

`n(s) = inf {` > 0 : (s + `e1) · n < 0} . (7.64)

Lemma 23. (a) If arg(n) = π
2
, then(

Ehε
β N

−
m(s · n)k

) 1
k ≤ ckdn(s) ∧m, (7.65)

uniformly in s in question and in all β sufficiently large.
(b) On the other hand, the bound(

Ehε
β N

−
m(s · n)k

) 1
k ≤ ck`n(s) ∧

(
dn(s)e

bε
)
∧m, (7.66)

is satisfied uniformly in arg(n) ∈ (π
2
, 3π

4
], in s in question and all β sufficiently large.

Proof. Consider arg(n) = π
2
. The claim (a) of Lemma 22 is a direct consequence

of (7.16). Indeed, we will see about ebε steps of the type Γ1 before seeing anything
else, since the Γ2-step has probability e−bε . Once happened, Γ2-step gives rise to a
substantial ladder height with η+ = 1.
Similarly, a Γ3 step which follows a sequence of Γ1 steps, which has probability of
order one, gives rise to the first strict descending ladder height of size η− = 1, and
claim (a) of Lemma 23 follows as well.
We need to explain claims (b) in both Lemmas. Assume that n = |n|1 (−εn, 1− εn)
satisfies arg(n) ∈ (π

2
, 3π

4
]. This means that εn > 0. Then a Γ2-step, which follows

at most 1−εn
2εn

successive Γ1-steps, gives rise to a substantial increment with η+ =
1−εn

2
|n|1. The latter is bounded below by c2 > 0 uniformly in arg(n) ∈

(
π
2
, 3π

4

]
. Set

N = d1−εn
2εn
e. Then,

p+ = p+(β, h) ≥ e−bε(β)

N−1∑
n=0

e−naε(β) =
e−bε(β)

1− e−aε(β)

(
1− e−Naε(β)

)
, (7.67)
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and η+ = η+(β, ε) = (1− εn)/2 ≥ 1/(4
√

2). Let us develop a more explicit bound for
the quantity on the right-hand side of (7.67). Since ε ≥ εn, N ≥ d1−ε

2ε
e. Therefore,

by (7.4),

Naε(β) ≥ c3d
1− ε

2ε
e
(
ε ∨ e−β

)
≥ c4 > 0,

uniformly in all the situations in question.
On the other hand, by (7.9) and (7.5), e−bε(β) ≥

(
1− e−aε(β)

)
/2 also uniformly in

all the situations in question.
We conclude: There exists c4 > 0 such that the right hand side of (7.67) is bounded
below by c4 uniformly in arg(n) ∈ [π

2
, 3π

4
], ε > εn and β large.

Let us turn to the claim (b) of Lemma 23. A Γ3 step of the effective random walk,
which has probability e−β−∆ε gives rise to a strict descending ladder height of size at
least 1. On the other hand since εn > 0, a horizontal Γ1 step, which has probability
e−aε

∼
= 1 also gives rise to a strict descending ladder height. The quantity `n(s)

in (7.64) describes maximal possible number of such Γ1-ladder epochs. Therefore,
(7.60) implies: (

Ehε
β N

−
m(s · n)k

) 1
k ≤ ck`n(s) ∧

(
eβ+∆εdn(s)

)
∧m (7.68)

Note that `n(s) ≤ d s·nεn e. Clearly s · n ≤ dn(s). If, in addition, εn > e−β, then εn ≥
ε/2 ≥ c5e−bε , as it follows from (7.5), (7.11) and (7.61). Therefore, `n(s) ≤ c6dn(s)e

bε

whenever εn > e−β.
On the other hand, if εn ≤ e−β, then ε ≤ 2e−β (cf. (7.61)) and, consequently,
e−β−∆ε ≥ c8e−bε (recall the definition of ∆ε in Section 7.1 and use (7.4)-(7.5)).
In both cases (7.68) implies (7.66). �

8. Proof of Proposition 11 and Proposition 12

Recall the definition of `n in (7.64). For the rest of this Section set

`w = `n(w) ∧ ebε = inf {` : w + `e1 6∈ H+,n} ∧ ebε . (8.1)

Note that in the case of the horizontal wall arg(n) = π
2
, `w ≡ ebε (for all w ∈ H+,n).

Proofs of Proposition 12 (in Subsection 8.3) and of the target bounds on aδ and
bδ of Proposition 11 (in Subsection 8.4) hinge on careful lower, respectively upper,

bounds on quantities (see (6.6)) Phε,δ

β,+(u, v) and Phε,δ
β,+(w, z), which we proceed to derive

in Subsections 8.1 and 8.2.

8.1. Lower bounds. Let ` ∈ N and set u` = u + `e1. Then,

Phε
β,+ (u, v) ≥

`u−1∑
`=0

e−`aεP̂β,+ (0, v − u`) ≥ c1
`ue
−`uaε

|v − u|1
min
`≤`u

Phε
β (0, v − u`) . (8.2)
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Above we considered random walks which, first, make ` horizontal steps and then
start climbing to v, and relied on `u � |v − u|1 (see (6.2) and recall bε ≤ β, ν > 1)
and (7.55).
Curvature of ∂Kβ and lower bound on Phεβ (0, v − u`). We already have a good

estimate (7.3) on Phε`
β (0, v − u`) for hε`

∆
= ∇τβ(v− u`). Here we make changes which

are needed to take into account the discrepancy between hε` and such hε.
Let us start with some general considerations: Assume that K ⊂ R2 is a convex

compact set with a smooth strictly convex boundary ∂K which is parametrized by
the direction of the exterior normal m(θ) = (cos θ, sin θ);

∂K = {h(θ) ; θ ∈ [0, 2π)} .
Then, expanding for θ in a small neighbourhood of θ0,

(h(θ)− h(θ0)) ·m(θ) = (θ − θ0)

∫ 1

0

h′(θt) ·m(θ)dt =

(θ − θ0)

∫ 1

0

h′(θt) · (m(θ)−m(θt)) dt ≤ (θ − θ0)2

2
max
t∈[0,1]

|h′(θt)|
(8.3)

where θt = θ0 + t(θ − θ0). Above we used h′(θt) ·m(θt) ≡ 0.
Since the support function τ of K is given by τ(θ) = h(θ) · m(θ), the radius of

curvature r(θ) is given by

r(θ) = τ ′′(θ) + τ(θ) = h′(θ) ·m⊥(θ) = |h′(θ)| (8.4)

where m⊥(θ) = (− sin θ, cos θ). The curvature of ∂K at θ is χ(θ) = r(θ)−1. In this
notation (8.3) reads:

(h(θ)− h(θ0)) ·m(θ) ≤ (θ − θ0)2

2 mint χ(θt)
. (8.5)

Next, assume that in a neighbourhood of θt the boundary ∂K is given by an implicit
equation F (h) = 0: then,

χ(ht) = χ(θt) =
[HessF (ht)m

⊥(θt)] ·m⊥(θt)

|∇F (ht)|
. (8.6)

Going back to Phεβ (0, v − u`) define ε` via v − u` = |v − u`|1 (1− ε`, ε`) and set

hε` = ∇τβ(1− ε`, ε`) = ∇τβ(v− u`). Since |v − u`|1
∼
= |v − u|1 and bε

∼
= bε` , the local

limit result (7.3) implies:

Phε
β (0, v − u`)

∼
=

1√
|v − u|1 e−bε

e(hε−hε` )·(v−u`). (8.7)

The extra factor here comes from the difference between the distributions Phε
β and

Phε`
β . Define m(θε`) = (1 − ε`, ε`)/‖(1− ε`, ε`)‖2. By construction m(ε`) is the unit
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exterior normal to ∂Kβ at hε` . Since

(hε − hε`) · (v − u`)
∼
= |v − u|1 (hε − hε`) ·m(θε`),

and since |ε− ε`| ∼= |θε − θε` | we may rely on (8.5).
In order to derive lower bounds on χ(hε`) we shall rely on (8.6): The boundary

∂Kβ in a neighbourhood of hε` is parametrized as

h ∈ ∂Kβ ⇔ logEhε`
β e(h−hε` )·X(Γ) ∆

= F (h) = 0.

Note first of all that

|∇F (hε`)| =
∣∣∣Ehε`

β X(Γ)
∣∣∣ ∼= 1.

On the other hand, for any v,

HessF (hε`)v · v = Var
hε`
β (X(Γ) · v) = min

x
Ehε`
β (X(Γ) · v − x)2

≥ min
x

{
e−aε` (e1 · v − x)2 + e−bε` (e2 · v − x)2} . (8.8)

Substituting v = m⊥(θε`) = (−ε`, 1− ε`) /‖(1− ε`, ε`)‖2, we conclude:

χβ(hε`) ≥ ce−bε`
∼
= e−bε .

Hence,

(hε − hε`) ·m(θε`) ≥ −c2ebε (ε− ε`)2 .

However, 0 ≤ ε` − ε ≤ c3dn(u)/ |v − u|1. Recalling that dn(u) ≤ e−νβ |v − u|1, we
infer:

Phε
β (0, v − u`) ≥ c4

e−c5ebε−νβdn(u)√
|v − u|1 e−bε

. (8.9)

Lower bound on P̄hε,δ
β,+(u, v). Since ν > 1, ebε−νβ � δβ for all β sufficiently large.

Putting things together we derive from (8.2) and (8.9):

P̄hε,δ
β,+ (u, v) ≥ c6

eβδ(
dn(u)

2
+dn(v))`ue

−`uaε

|v − u|1
√
|v − u|1 e−bε

≥ c7
eβδ(

dn(u)
2

+
dn(v)

2 )`u

|v − u|1
√
|v − u|1 e−bε

. (8.10)

In the last inequality we used aε`u ≤ aεe
bε ≤ c8, as it follows from (7.4) and (7.5).

Remark 24. Note that if arg(n) = π
2
, then `u = ebε. Consequently in the latter case:

P̄hε,δ
β,+ (u, v) ≥ c7

eβδ(
dn(u)

2
+

dn(v)
2 )(√

|v − u|1 e−bε
)3 . (8.11)
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8.2. Upper bounds. Upper bounds are, naturally, more involved. We must explore
all the terms in (7.50). In doing so we shall rely on (7.56), (7.57) and the claims of
Lemma 22 and Lemma 23.

By (7.50) one can fix c1, such that:

Phε
β,+ (w, z) =

∑
y·n≥0

P̂hε
β,+ (w − y, 0)Phε

β,+ (0, z− y)

≤
∑

|y−w|1≤c1|z−w|1

P̂hε
β,+ (w − y, 0) max

2|z−y|1≥|z−w|1
Phε
β,+ (0, z− y)

+ max
2|y−w|1≥|z−w|1

P̂hε
β,+ (w − y, 0)

∑
|y−z|1≤c1|z−w|1

Phε
β,+ (0, z− y) .

(8.12)

Note that the following two functions of the effective random walk S` coincide:∑
y·n≥0

1I{A(w,y)∩L−y } = N−(w · n),

see (7.53). As in (7.56) we may ignore effective trajectories from A(w, y) with more
than c |y − w| steps. Hence, for some c3∑
|y−w|1≤c1|z−w|1

P̂hε
β,+ (w − y, 0) =

∑
|y−w|1≤c1|z−w|1

Phε
β

(
A(w, y);L−y

)
≤ c2Ehε

β

(
N−c3|z−w|1

(w · n)
)
.

(8.13)
Similarly, ∑

|z−y|1≤c1|z−w|1

Phε
β,+ (0, z− y) ≤ c2Ehε

β

(
N+
c3|z−w|1

(z · n)
)
. (8.14)

The right hand sides of (8.13) and (8.14) are controlled by Lemma 23 and, respec-
tively, by Lemma 22. So what remains is the upper bounds on max-terms in (8.12).

Upper bounds on Phε
β,+ (0, s) and P̂hε

β,+ (s, 0). Consider the first of (7.56). Set
m = m(s) = c |s|1 and define:

L+
t,m = {∃i : τi ≤ m and Rτi = t} .

In this way L+
t defined in (7.53) is recorded as L+

t = L+
t,∞. Also, the number of

ladder heights is recorded as N+
m(s · n) =

∑
0≤t·n≤s·n 1IL+t,m . Then, (7.56) could be

recorded as:

Phε
β,+ (0, s) ≤ c1

|s|1
∑

0≤t·n≤s·n

Phε
β

(
L+

t,m

)
Phε
β (t, s). (8.15)

In view of Proposition 15 we can rely on the following large deviation upper bound:
There exists c4 such that

Phε
β (s, t) ≤ c4√

e−bε|t− s|1 ∨ 1
, (8.16)
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uniformly in arg(n) ∈
[
π
2
, 3π

4

]
, β large, ε (in v−u

∆
= |v − u|1 (1− ε, ε)) satisfying (6.2)

and t − s ∈ Y . The bound is sharp for t − s pointing in the (average under Phε
β )

direction v−u or close to it. For other directions it is a crude large deviation bound
(compare with the discussion around the relation (8.7)). We shall split the sum in
(8.15) according to the values of |t|1:

(i) |t|1 ≤ |s|1
2

. In this case,

Phε
β (0, s− t) ≤ c6√

e−bε|s|1 ∨ 1
,

as it follows from (8.16). On the other hand,∑
t:0≤t·n≤s·n

Phε
β

(
L+

t,m

)
= Ehε

β N
+
m(s · n).

Therefore, the total contribution of |t|1 ≤ |s|1
2

to the right hand side of (8.15) is
bounded above by

c7

Ehε
β N

+
c|s|1

(s · n)

|s|1
√

e−bε |s|1 ∨ 1
. (8.17)

(ii) |t|1 > |s|1
2

. Since Phε
β

(
L+

t,m

)
≤ Phε

β

(
L+

t

)
= Phε

β,+ (0, t), in this case the first of
(7.56) implies:

Phε
β

(
L+

t,m

)
≤ c8

|s|1
Ehε
β

(
A(0, t);N+

m(t · n)
)
.

By (7.57) and (8.16) the latter is bounded above by

c9

|s|1

(
1√

e−bε|s|1 ∨ 1

) 1
2 (

Ehε
β N

+
m(s · n)2

) 1
2 .

Since the point t satisfies both |t|1 > |s|1
2

and 0 ≤ t · n ≤ s · n, we have that the
distance |t− s|1 ≤ 2|s|1. Therefore, (8.16) implies:∑

0≤t·n≤s·n
2|t|1>|s|1

Phε
β (t, s) ≤ c10

2|s|1∑
n=1

dn(s)√
ne−bε ∨ 1

≤ c11dn(s)
√
|s|1
√
|s|1 ∧ ebε .

Altogether, the total contribution of |t|1 > |s|1
2

to the right hand side of (8.15) is
bounded above by

c12

dn(s)
√
|s|1 ∧ ebε

|s|3/21

(
1√

e−bε|s|1 ∨ 1

) 1
2 (

Eh
βN

+
m(s · n)2

) 1
2 . (8.18)

In view of (8.17) and (8.18) we have proved:
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Lemma 25. The following upper bound holds uniformly in arg(n) ∈ [π
2
, 3π

4
], ε satis-

fying (6.2), s ∈ Y and β large:

Phε
β,+ (0, s) ≤ c13

dn(s)
(
Ehε
β N

+
c|s|1

(s · n)2
) 1

2

|s|1
√

e−bε |s|1 ∨ 1
, (8.19)

A completely similar analysis reveals:

Lemma 26. The following upper bound holds uniformly in arg(n) ∈ [π
2
, 3π

4
], ε satis-

fying (6.2), s ∈ Y and β large:

P̂hε
β,+ (s, 0) ≤ c13

dn(s)
(
Ehε
β N

−
c|s|1

(s · n)2
) 1

2

|s|1
√

e−bε |s|1 ∨ 1
, (8.20)

Upper bound on Phε,δ
β,+(w, z). . Decomposition (8.12), bounds (8.14) and (8.13)

together with Lemma 25 and Lemma 26 imply

Phε
β,+ (w, z) ≤ c14

dn(w)
(
Ehε
β N

−
c|z−w|1

(w · n)2
) 1

2
dn(z)

(
Ehε
β N

+
c|z−w|1

(z · n)2
) 1

2

|z− w|1
√

e−bε|z− w|1 ∨ 1
, (8.21)

since the expectation
(
ENk

) 1
k increases in k.

There are two cases to consider:

CASE 1. If arg n = π
2
, then by Lemma 22,(

Ehε
β N

+
c|z−w|1

(z · n)2
) 1

2 ≤ c2c dn(z)
(
ebε ∧ |z− w|1

)
= c2c dn(z) (`w ∧ |z− w|1) .

(8.22)
In the last equality we used that in the case of the horizontal wall `w ≡ ebε , see the
remark right after (8.1). On the other hand, by Lemma 23,(

Ehε
β N

−
c|z−w|1

(w · n)2
) 1

2 ≤ c2dn(w). (8.23)

CASE 2. If arg n > π
2
, then by Lemma 22,(

Ehε
β N

+
c|z−w|1

(z · n)2
) 1

2 ≤ c2dn(z). (8.24)

On the other hand, by Lemma 23,(
Ehε
β N

−
c|z−w|1

(w · n)2
) 1

2 ≤ c2c dn(w)
(
`n(w) ∧ ebε ∧ |z− w|1

)
(8.1)
= c2c dn(w) (`w ∧ |z− w|1) .

(8.25)
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Since e−
δβdn(·)

2 dn(·)2 is uniformly bounded, a substitution of (8.22) and (8.23) in the
case of arg n = π

2
(respectively of (8.24) and (8.25) in the case of arg n > π

2
) into

(8.21) implies:

Phε,δ
β,+(w, z) ≤ c15

e−
δβdn(w)

2 `w ∧ |z− w|1 e−
δβdn(z)

2

|z− w|1
√

e−bε|z− w|1 ∨ 1
, (8.26)

uniformly in arg(n) ∈ [π
2
, 3π

4
], ε satisfying (6.2), z,w ∈ H+,n and β large.

Remark 27. Note that `w ≡ ebε if arg(n) = π
2
. Hence in the latter case:

Phε,δ
β,+(w, z) ≤ c15

e−
δβdn(w)

2 e−
δβdn(z)

2(√
e−bε|z− w|1 ∨ 1

)3 . (8.27)

8.3. Proof of Proposition 12. In view of (8.10) and (8.26), and since we permit
dependence c1 = c1(β) in (6.21), the inequality (6.21) is, as it is stated, a rather
crude bound. First of all we can assume that e−h |x|1 ≥ 2. Then, by (8.10) (taking
u = 0 and v = x),

Ph
β,+(0, x) ≥ c7e−βδ

|x|1
√
|x|1 e−h

.

This already rules of the exponential term on the left hand side of (6.21). Also we
may restrict attention to |u− v| ≥ 1

2
|x|1. In this case (8.26),

Ph
β,+(u, v) ≤

√
8c15ebheβδ(dn(u)+dn(v))

|x|1
√
|x|1 e−h

.

as it follows fro (8.26) and (8.1) (which implies `u ≤ ebh). It remains to recall (5.9),
and (6.21) follows. Indeed, by the above

e−βδ(|u|1+|x−v|1)Ph
β,+(u, v) ≤

√
8c15e3βδ+h

c7

Ph
β,+(0, x)

∆
= c1(β)Ph

β,+(0, x).

8.4. Upper bounds on aδ and bδ: Proof of Proposition 11. Recall that we
assume that (u, v) ∈ A. In particular (6.2) holds and |v − u|1 ≥ eνβ. In the sequel
we shall rely on the decay estimate (6.12) on the kernel Kβ. Let us elaborate on
Remark 10: If φ is a positive function on N, then∑

w,z

φ (|w − u|1)Kβ(w, z),
∑
w,z

Kβ(w, z)φ (|v − z|1) ≤ c1R
∑
n

φ(n). (8.28)

Upper bound on aδ. Consider the sum on the right hand side of (6.18). By (6.11)
it is bounded above by

c2e−2χ′β
∑
w,z

Phε,δ
β,+(u,w)Kβ(w, z)Phε,δ

β,+(z, v)

Phε,δ

β,+(u, v)
. (8.29)
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By (6.11) and (6.12) we may restrict attention to max {|w − u|1 , |v − z|1} ≥
|v−u|1

3
.

(i) If 3 |v − z|1 ≥ |v − u|1, then (recall `v ≤ ebε)

Phε,δ
β,+(z, v)

Phε,δ

β,+(u, v)
≤ ebε

`u
,

as it follows from (8.10) and (8.26) (recall also (8.11) and (8.27) in the special case
of arg n = π

2
) and |v − u|1 ≥ eνβ. On the other hand, (8.26) and (8.28) imply:

∑
w,z

Phε,δ
β,+(u,w)Kβ(w, z) ≤ c3R


ebε∑
1

`u
n

+
∞∑
ebε

`u
√

ebε

n3/2

 ≤ c4R`ubε,

which means that the total contribution of (i) to (8.29) and, as a result, to (6.18) is
bounded above by

c5Re−(2χ′β−bε)bε. (8.30)

(ii) If 3 |w − u|1 ≥ |v − u|1, then (8.10) and (8.26) imply:

Phε,δ
β,+(u,w)

Phε,δ

β,+(u, v)
≤ c6.

On the other hand, (8.26) and (8.28) imply:

∑
w,z

Kβ(w, z)Phε,δ
β,+(z, v) ≤ c7R


ebε∑
1

1 +
∞∑
ebε

`ue
3bε/2

n3/2

 ≤ c8Rebε ,

which means that the total contribution of (ii) to (6.18) is bounded above by
c9Re−(2χ′β−bε).

Altogether we conclude that

aδ ≤ c10Rbεe
−(2χ′β−bε) (8.31)

uniformly in β large. Since (by (7.1)) bε ≤ β and since χ′ > 1/2, the expression in
(8.31) is actually o (1) uniformly in β large.
Upper bound on bδ. Exactly in the same fashion we derive the following upper
bound on bδ: There exists a constant c11, such that

bδ ≤ c11R
2bεe

−(4χ′β−2bε). (8.32)

also uniformly in β large. Again, since bε ≤ β and since χ′ > 1/2, bδ = o (1)
uniformly in β large, as it was claimed. �
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Appendix A. A correction to [7].

The first motivation for one of the authors of the present paper (S.S.) was to
correct the mistake in the Wulff construction book [7]. Namely, one statement in
that book – the Theorem 4.16, dealing with spatial sensitivity of the surface tension
– is not correct; more precisely, the upper bound statement 4.19 is erroneous. This
mistake was uncovered by the authors of the paper [4]. But the reader of the present
paper should not think that some forty pages have to be added to [7] in order to
correct it, because a weaker version of the Theorem 4.16 is quite sufficient to get all
other results of [7]. We will give here the formulation of this weaker statement, in
the notations of the book [7]:

Theorem 28. Theorem 4.16 of [7] holds for V̄N = UN,d,κ, with d < d̄/2, i.e. when

the change from the interaction Φ to Φ̃ happens far away from the range V̄ of the
random contour.

In terms of the present paper, the meaning of the above statement is that the
surface tension does not change if the interaction is perturbed far from the range of
the contour. For example, if we compute the surface tension over the polymers ΓN
fitting a strip

{
x, y : |y − κx| < 1

2
Nα
}
, but perturb the interactions Φβ (C) only if C

does not fit the wider strip {x, y : |y − κx| < Nα} , then the claim that the surface
tension is unaffected by the perturbation holds true, and is easy to prove. For a
motivated reader of [7], who reached Theorem 4.16 of it, the proof of the above
statement and the check that it is sufficient for all the needs of the book, will be an
easy exercise.

But the problem of spatial sensitivity of the surface tension in its stronger form
of Theorem 1 is important in various applications and is of independent interest.
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