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We construct a sequence of flat polynomials with coefficients 0, 1. We thus get that there exist a sequence of Newman's polynomials that are L α -flat, 0 ≤ α < 2. This settles an old question of Littlewood. In the opposite direction, we prove that the Newman polynomials are not L α -flat, for α ≥ 4. We further establish that there is a conservative, ergodic, σ-finite measure preserving transformation with simple Lebesgue spectrum. This answer affirmatively a long-standing problem of Banach from the Scottish book. Consequently, we obtain a positive answer to Mahler's problem in the class of Newman polynomials, and this allows us also to answer a question raised by Bourgain on the supremum of the L 1 -norm of L 2 -normalized idempotent polynomials.

Introduction

The main purpose of this paper is to produce a sequence of flat polynomials with coefficients 0, 1. This answer an old question of Littlewood on finding a sequence of analytic trigonometric polynomials with coefficients 0, 1 that are L 1 -flat. Roughly speaking, a sequence of analytic trigonometric polynomials is flat if it is converge in some sense to the constant 1.

Here, we construct a sequence of analytic trigonometric polynomials with coefficients 0, 1 that are L α -flat, 0 < α < 2. This is done by appealing to the combinatorial Singer's construction combined with Marcinkiewicz-Zygmund interpolation inequalities [100, p.28, chp. X] and its refinements. Form this, we obtain that there exist a sequence of analytic trigonometric polynomials with coefficients 0, 1 that are flat in the almost everywhere sense.

Marcinkiewicz-Zygmund interpolation inequalities and its extensions lies in the heart of the interpolation theory. It follows that the Hardy spaces and the Carleson interpolation theory play an important role in our proofs. For a nice account on the interpolation theory and the H p theory, we refer the reader to [START_REF] Duren | Theory of H p Space[END_REF]p.147,Chap. 9] and [START_REF] Garnett | Bounded Analytic Functions[END_REF]p.275,Chap. 7], [55, p.194], [89, p.328].

Our construction benefited also from the ideas of Ben Green and Gowers related to the flatness problem in connection with Singer and Sidon sets [35], [50]. We also take advantage from the recent investigations on the Marcinkiewicz-Zygmund inequalities and its refinements [START_REF] Chui | On Lagrange interpolation at disturbed roots of unity[END_REF], [START_REF] Chui | Polynomial interpolation and Marcinkiewicz-Zygmund inequalities on the unit circle[END_REF], [START_REF] Lubinsky | Marcinkiewicz-Zygmund Inequalities: Methods and Results[END_REF].

However, our methods breaks down for the polynomials with coefficients ±1. Thus, we are not able to answer the weaker form of Littlewood question on the existence of L 1 -flat polynomials with coefficients ±1.

The flatness problem was initiated by Erdös [START_REF] Erdös | An inequality for the maximum of trigonometric polynomials[END_REF] and Littlewood [START_REF] Littlewood | On polynomials n z m , n m=0 e αi z m , z = e θi[END_REF], and it has a long history. Erdös and Newman [START_REF] Erdös | On a problem of Sidon in additive number theory, and on some related problems[END_REF] asked if there is a positive absolute constant C such that max

|z|=1 n j=0 a j z j ≥ (1 + C) √ n, (EN) 
where

|a j | = 1.
Subsequently, Littlewood asked on the existence of the sequence of the polynomials on the circle P n (z) = n-1 j=0 ǫ j z n j with ǫ j = ±1 such that

A 1 √ n ≤ |P n (z)| ≤ A 2 √ n, (1.1)
where A 1 , A 2 are positive absolute constants and uniformly on z of modulus 1. Nowadays the analytic polynomials on the circle with ±1 coefficients are called Littlewood polynomials.

Later, Beller and Newman produced a sequence of polynomials P n with degree n and coefficients bounded by 1 satisfying min |z=1| P n ≥ C √ n [START_REF] Beller | The minimum modulus of polynomials[END_REF]. In the opposite, J-P. Kahane disproved the conjecture (EN) [START_REF] Kahane | Sur les polynômes à coefficients unimodulaires[END_REF].

Besides, T. Körner [START_REF] Körner | On a polynomial of Byrnes[END_REF] obtained a positive answer to the Littlewood question (1.1) in the class of polynomials with coefficients of modulus one by appealing to the Byrnes's construction [START_REF] Byrnes | On polynomials with coefficients of modulus one[END_REF]. But, it turns out that the main ingredient form [START_REF] Byrnes | On polynomials with coefficients of modulus one[END_REF] used by Körner is not valid [START_REF] Queffelec | On Bernstein's Inequality and Kahane's Ultraflat Polynomials[END_REF]. However, Kahane's proof does not used this flaw argument. Afterwards , J. Beck proved that one can obtain a positive answer to Littlewood question (1.1) by producing a sequence of polynomials from the class of polynomials of degree n whose coefficients are 400th roots of unity [START_REF] Beck | Flat polynomials on the unit circle -note on a problem of Littlewood[END_REF]. J. Beck's construction is essentially based on the random construction of Kahane.

Since then, it was a long standing problem to obtain effective construction of ultraflat polynomials until solved very recently by Bombieri and Bourgain [START_REF] Bombieri | On Kahane's ultraflat polynomials[END_REF]. For a deeper treatment on the Kahane ultraflat polynomials, we refer the reader to [START_REF] Queffelec | On Bernstein's Inequality and Kahane's Ultraflat Polynomials[END_REF].

The third extremal problem in the class of analytic trigonometric polynomials concern L 1 -flatness problem. This problem seems to be mentioned first in [START_REF] Newman | Norms of Polynomials[END_REF]. Therein, Newman mentioned the following conjecture:

Conjecture (Newman [START_REF] Newman | Norms of Polynomials[END_REF]). For any Littlewood polynomial P of degree n, P (z) 1 < c √ n + 1, where c < 1.

Newman in his 1965's paper [START_REF] Newman | An L 1 extremal problem for polynomials[END_REF] solved the problem of L 1 -flatness in the class of analytic trigonometric polynomials with coefficients of modulus 1. He proved that the Gauss-Fresnel polynomials are L 1 -flat. We refer to [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] for a simple proof. This result has been strengthened by Beller [START_REF] Beller | Polynomial extremal problems in L p[END_REF], and Beller & Newman in [START_REF] Beller | An extremal problem for the geometric mean of polynomials[END_REF] by proving that the sequence of the Mahler measure of the L 2 normalized Gauss-Fresnel polynomials converge to one.

For the polynomials with random coefficients a k ∈ {+1, -1}, Salem and Zygmund [START_REF] Salem | Some properties of trigonometric series whose terms have random signs[END_REF] proved that for all but o(2 n ) choices of a k = ±1,

c 1 n ln(n) < n k=0 a k z k ∞ < c 2 n ln(n),
for some absolute constant c 1 , c 2 > 0. Halász [START_REF] Halász | On a result of Salem and Zygmund concerning random polynomials[END_REF] strengthened this result by proving

n k=0 a k z k ∞ = 1 + o(1) C n ln(n),
For some absolute constant C > 0. Byrnes and Newman computed L 4 -norm of those polynomials [START_REF] Byrnes | The L 4 norm of a polynomial with coefficients ±1[END_REF]. Later, Browein & Lokhart [START_REF] Borwein | The expected L p norm of random polynomials[END_REF], and Choi & Erdélyi [START_REF] Choi | Average Mahler's measure and L p norms of littlewood polynomials[END_REF] used the central limit theorem to compute the limit of the L p -norm and the Mahler measure of the polynomials with random coefficients ±1. Their results can be linked to the recent results of Peligrad & Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF], Barrera & Peligrad, Cohen & Conze [START_REF] Cohen | The CLT for rotated ergodic sums and related processes[END_REF] and Thouvenot & Weiss [START_REF] Thouvenot | Limit laws for ergodic processes[END_REF]. Therein, the authors investigated a dynamical approach with dynamical coefficients, that is,

a k = f (T k x),
where T is a measure-preserving transformation on some probability space and f is a square-integrable function.

The polynomials with coefficients a k ∈ {0, 1} and the constant term equal to 1 are nowadays called Newman polynomials. We further notice that those polynomials are also known as idempotent polynomials, and since we are concern with L 1 -flatness, we may assume that the constant term is 1.

Let us also notice that the flatness problem is connected to the number theory and to some practical issues arising in the design of a mobile cellular wireless OFDM system [START_REF] Rangan | Synchronization and access control for OFDM wireless systems, Bell Labs[END_REF]. Consequently, it is related to some engineering issues [START_REF] Downarowich | Merit Factors and Morse Sequences Theoretical Computer Science[END_REF], [START_REF] Borwein | Barker sequences and flat polynomials[END_REF], [START_REF] Borwein | Wiefrich pairs and Barker sequences II[END_REF].

It turns out that there is a connection between flat polynomials and the existence of dynamical system with simple Lebesgue spectrum. Bourgain [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] established that the singularity of the spectrum of the so-called rank one maps is related the supremum of the L 1 -norm of the L 2 -normalized analytic trigonometric polynomials with coefficients 0, 1. Subsequently, Guenais [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum Ergodic Theory Dynam[END_REF] proved that there exist measure-preserving transformations with Lebesgue component of multiplicity one in its spectrum provided there exists a sequence of analytic trigonometric polynomials

P n , n = 1, 2, • • • , with coefficients ±1 whose absolute values |P n |, n = 1, 2, • • • , converge to 1 in L 1 .
Here, according to the results from [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], our polynomials provide us L 1 -flat polynomials which can be used to construct a conservative, ergodic, σ-finite measure preserving transformation on a Lebesgue space with simple Lebesgue spectrum. This gives an affirmative answer to a long-standing spectral problem of Banach from the Scottish book. Our approach allows us also to obtain an affirmative answer to the problem of Mahler (whether there exists a sequence of analytic trigonometric polynomials with integer coefficients for which the Mahler measure of the L 2 -normalized sequence converges to 1 [19, p.6], [START_REF] Borwein | Barker sequences and flat polynomials[END_REF], [START_REF] Mahler | On two extremum properties of polynomials[END_REF]). We further get that the supremum of the L 1 -norm of the L 2 -normalized analytic trigonometric polynomials with coefficients 0, 1 is 1. This answer a question raised by J. Bourgain [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. We stress that this paper is deeply indebted to the investigation started in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF] and [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF]. So, it is may seen as a companion to those papers.

For the convenience of the reader, we repeat the relevant material from [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] and [START_REF] Zygmund | Trigonometric series[END_REF], without proofs, thus making our exposition selfcontained.

The paper is organized as follows. In section 2, we state our main results. In section 3, we remind the notion of generalized Riesz products. In section 4, we present several definitions of flatness in the class of analytic trigonometric polynomials and the fundamental characterization of L 1 -flatness. In section 5, we remind the notion of Singer and Sidon sets in the number theory, and we establish that the L 2 -normalized Newman polynomials are not L α -flat, for α ≥ 4. Finally, we prove our main results in sections 6 and 7.

Main results

Consider the torus T = z ∈ C : |z| = 1 equipped with the normalized Lebesgue measure dz. Let n 0 < n 1 < n 2 < • • • be a positive sequence of integers and put

P n (z) = n-1 j=0 ǫ j √ p j z n j , with |ǫ i | = 1 and (p 0 , • • • , p n-1
) is a probability vector. Such polynomials are raised in the study of the spectral type of some class of dynamical systems in ergodic theory. For more details we refer to [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF] .

Here, we restrict ourself to the case ǫ i = 1 and p i = 1 n . We thus concentrated our investigations on the flatness problem in the class of polynomials of the from

P n (z) = 1 √ n n-1 j=0 z n j .
Following [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], this class is called class B.

We state our main results as follows.

Theorem 2.1. There exist a sequence of analytic trigonometric polynomials P n n∈N with coefficients 0 and 1 such that the polynomials

Pn(z)
Pn 2 are flat in almost everywhere sense, that is,

P n (z) P n 2 ----→ n→+∞ 1,
for almost all z with respect to the Lebesgue measure dz.

As a consequence, we obtain the following theorem.

Theorem 2.2. There exist a conservative ergodic measure preserving transformation on σ-finite space (X, A, µ) with simple Lebesgue spectrum.

We further establish the following:

Theorem 2.3. Any sequence of analytic trigonometric polynomials P n n∈N with coefficients 0 and 1 is not L α -flat, for any α ≥ 4.

We recall that T is a measure preserving transformation on σ-finite space if (X, A, µ) is a Lebesgue space with µ is σ-finite measure and nonatomic, and for any Borel set A, we have µ(T -1 A) = µ(A). T is ergodic if every invariant Borel set A under T (i.e. µ(T -1 A∆A) = 0.), we have µ(A) = 0 or µ(A c ) = 0, where A c is the complement of A.

The key point in the proof of Theorem 2.2 is the construction of a rank-one infinite measure preserving transformation with desired properties. This is done by applying the cutting and staking method. We will assume that the reader is familiar with this method and we refer to [START_REF] Friedman | Replication and stacking in ergodic theory[END_REF] for a nice account. Theorem 2.2 answer affirmatively the long-standing problem attributed to Banach on the existence of dynamical system which simple Lebesgue spectrum and with no-atomic measure. This problem is stated in Ulam's book [99, p.76] as follows.

Questions (Banach Problem). Does there exist a square integrable function f (x) and a measure preserving transformation T (x), -∞ < x < ∞, such that the sequence of functions {f (T n (x)); n = 1, 2, 3, • • • } forms a complete orthogonal set in Hilbert space? 1The most famous Banach problem in ergodic theory asks if there is a measure preserving transformation on a probability space which has simple Lebesgue spectrum. A similar problem is mentioned by Rokhlin in [88, p.219]. Precisely, Rokhlin asked on the existence of an ergodic measure preserving transformation on a finite measure space whose spectrum is Lebesgue type with finite multiplicity. Later, Kirillov in his 1966's paper [START_REF] Kirillov | Dynamical systems, factors and group representations, (Russian) Uspehi Mat. Nauk[END_REF] wrote "there are grounds for thinking that such examples do not exist". However he has described a measure preserving action (due to M. Novodvorskii) of the group ( ∞ j=1 Z)×{-1, 1} on the compact dual of discrete rationals whose unitary group has Haar spectrum of multiplicity 2. Similar group actions with higher finite even multiplicities are also given.

Subsequently, finite measure preserving transformation having Lebesgue component of finite even multiplicity have been constructed by J. Mathew and M. G. Nadkarni [START_REF] Mathew | A measure-preserving transformation whose spectrum has Lebesgue component of multiplicity two[END_REF], Kamae [START_REF] Kamae | Spectral properties of automaton-generating sequences[END_REF], M. Queffelec [START_REF] Queffélec | Une nouvelle propriété des suites de Rudin-Shapiro[END_REF], and O. Ageev [START_REF] Ageev | Dynamical System With an Even-Multiplicity Lebesgue Component in the Spectrum[END_REF]. Fifteen years later, M. Guenais [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum Ergodic Theory Dynam[END_REF] used a L 1 -flat generalized Fekete polynomials on some torsion groups to construct a group action with simple Lebesgue component. A straightforward application of Gauss formula yields that the generalized Fekete polynomials constructed by Guenais are ultraflat. Very recently, el Abdalaoui and Nadkarni strengthened Guenais's result [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] by proving that there exist an ergodic non-singular dynamical system with simple Lebesgue component. However, despite all these efforts, it is seems that the question of Rokhlin still open since the maps constructed does not have a pure Lebesgue spectrum.

Our methods is far from making any contribution to this problem. At now, it is seems that this problem is a "dark continent" for the ergodic theory. Nevertheless, our results allows us to answer a question raised by Bourgain on the supremum of the L 1 -norm over all polynomials from class B [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. Indeed, Theorem 2.1 gives the following

Corollary 2.4. β = sup n>1 sup k 1 <k 2 <k 3 <•••<kn 1 √ n n j=1 z k j 1 = 1.
In [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], [START_REF] Aistleitner | On a problem of Bourgain concerning the L 1 -norm of exponential sums[END_REF] and [START_REF] Choi | On a problem of bourgain concerning the L p norms of exponential sums[END_REF], the authors established already that β ≥ √ π 2 , and, it is easy to see that the simple case n = 2,

k 1 = 0, k 2 = 1, gives β ≥ 2 √ 2
π . We further have Corollary 2.5. There exist a sequence of analytic trigonometric polynomials P k k∈N with coefficients 0 and 1 such the Mahler measure of the polynomials P k P k 2 converge to 1. The Mahler measure of analytic trigonometric polynomials P k is given by

M(P k ) = exp T log P k (z) dz .
Using Jensen's formula [START_REF] Rudin | Real and complex analysis[END_REF], it can be shown that

M(P k ) = 1 √ m k |α|>1 |α|,
where, α denoted the zero of the polynomial √ m k P k . In this definition, an empty product is assumed to be 1 so the Mahler measure of the non-zero constant polynomial P (x) = a is |a|. A nice account on the subject may be founded in [44, pp.2-11], [START_REF] Borwein | Computational excursions in analysis and number theory[END_REF].

The next proposition list some elementary properties of the Mahler measure, and its proof is left to the reader.

Proposition 2.6. Let (X, B, ρ) be a probability space. Then, for any two positive functions f, g ∈ L 1 (X, ρ), we have

(i) M ρ (f ) def = exp ρ(log(f )) is a limit of the norms ||f || δ as δ goes to 0, that is, ||f || δ def = f δ dρ 1 δ --→ δ→0 M ρ (f ), provided that log(f ) is integrable. (ii) If ρ f > 0 < 1 then M ρ (f ) = 0. (iii) If 0 < p < q < 1, then f p ≤ f q . (iv) If 0 < p < 1, then M ρ (f ) ≤ f p . (v) lim δ-→0 f δ dρ = ρ f > 0 . (vi) M ρ (f ) ≤ f 1 . (vii) M ρ (f g) = M ρ (f )M ρ (g).
Using the classical Beurling's outer and inner decomposition, el Abdalaoui and Nadkarni in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] computed the Mahler measure of P k . They further apply the H p theory to establish a formula for the Mahler measure of the generalized Riesz product. We recall a part of this in the next section.

Generalized Riesz products

The classical notion of Riesz products is based on the notion of dissociation, which can be defined as follows.

Consider the polynomial P (z) = 1 + z. Then, we have

P (z) 2 = 1 + z + z + z 2 .
For any integer N ≥ 2 , we can write

P (z)P (z N ) = 1 + z + z N + z N +1 .
In the first case we group terms with the same power of z, while in the second case all the powers of z in the formal expansion are distinct. In the second case we say that the polynomials P (z) and P (z N ) are dissociated. More generally, we have

Lemma 3.1 ([4]). If P (z) = m j=-m a j z j , Q(z) = n j=-n b j z j , m ≤ n, are
two trigonometric polynomials then for some N, P (z) and Q(z N ) are dissociated.

It is well know that if the sequence of polynomials (|P j | 2 ) is dissociated (each finite product has dissociation property) with constant term equal to 1. Then, the sequence of probability measures

N j=1 |P j | 2 dz
converge to some probability measure called a Riesz product and denoted by

+∞ j=1 |P j | 2 .
More generally, we have the following definition:

Definition 3.2. Let P 1 , P 2 , • • • , be a sequence of trigonometric poly- nomials such that (i) for any finite sequence i 1 < i 2 < • • • < i k of natural numbers S 1 (P i 1 P i 2 • • • P i k )(z) 2 dz = 1,
where S 1 denotes the circle group and dz the normalized Lebesgue measure on S 1 , (ii) for any infinite sequence i 1 < i 2 < • • • of natural numbers the weak limit of the measures

| (P i 1 P i 2 • • • P i k )(z) | 2 dz, k = 1, 2, • • • as k → ∞ exists.
Then the measure µ given by the weak limit of

| (P 1 P 2 • • • P k )(z) | 2 dz as k → ∞ is called generalized Riesz product of the polynomials | P 1 | 2 , | P 2 | 2 , • • • and denoted by µ = ∞ j=1 P j 2 . (1.1) It is proved in [2] that if µ = +∞ n=1 |P n | 2 , then the absolutely continuous part dµ dz verify N n=1 |P n | - dµ dz 1 ----→ N →+∞ 0.
Furthermore, the Mahler measure of µ 2 satisfy

M dµ dz = +∞ n=0 M(P 2 n ). (3.1)
We further have the following notion of generalized Riesz products from dynamical origin [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF].

Definition 3.3. A generalized Riesz product µ = ∞ j=1 Q j (z)
2 , where

Q j (z) = n j i=0 b i,j z r i,j , b i,j = 0, n j i=0 b i,j 2 = 1, ∞ j=1
b n j ,j = 0, is said to be of dynamical origin if with

h 0 = 1, h 1 = r n 1 ,1 + h 0 , • • • , h j = r n j ,j + h j-1 , j ≥ 2 it is true that for j = 1, 2, • • • , r 1,j ≥ h j-1 , r i+1,j -r i,j ≥ h j-1 .
If, in addition, the coefficients b i,j are all positive, then we say that µ is of purely dynamical origin.

The following is proved in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] . a mn,n = 0. Then there exist a se-

quence of positive integers N 1 , N 2 , • • • such that ∞ j=1 P j (z N j ) 2 2
The Mahler measure of the finite measure µ on the circle is given by

M dµ dz = inf P P -1 L 2 (µ) ,
where P ranges over all analytic trigonometric polynomials with zero constant term.

is a generalized Riesz product of dynamical origin.

Applying carefully the previous lemma, the following theorem is proved in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF].

Theorem 3.5. Let P j , j = 1, 2, • • • be a sequence of non-constant poly- nomials of L 2 (S 1 , dz) norm 1 such that lim j→∞ P j (z) = 1 a.e. (dz)
then there exists a subsequence

P j k , k = 1, 2, • • • and natural numbers l 1 < l 2 < • • • such that the polynomials P j k (z l k ), k = 1, 2, • • • are dis- sociated and the infinite product ∞ k=1 P j k (z l k )
2 has finite nonzero value a.e (dz).

Connection to ergodic theory and rank one transformations

Using the cut and stack procedure described in [START_REF] Friedman | Replication and stacking in ergodic theory[END_REF], [START_REF] Friedman | Introduction to Ergodic Theory[END_REF], one can construct inductively a family of measure-preserving transformations, called rank one transformations or rank one maps, as follows.

Let B 0 be the unit interval equipped with Lebesgue measure. At stage one we divide B 0 into m 0 equal parts, add spacers and form a stack of height h 1 in the usual fashion. At the k th stage we divide the stack obtained at the (k -1) th stage into m k-1 equal columns, add spacers and obtain a new stack of height h k . If during the k th stage of our construction the number of spacers put above the j th column of the (k -1) th stack is a

(k-1) j , 0 ≤ a (k-1) j < ∞, 1 ≤ j ≤ m k , then we have h k = m k-1 h k-1 + m k-1 j=1 a (k-1) j .
Proceeding in this way, we get a rank one map T on a certain measure space (X, B, | . |) which may be finite or σ-finite depending on the number of spacers added. The construction of a rank one map thus needs two parameters, (m k ) ∞ k=0 (cutting parameter), and ((a

(k) j ) m k j=1 ) ∞ k=0 (spacers parameter). Put T def = T (m k ,(a (k) j ) m k j=1 ) ∞ k=0
In [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF] and [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF] it is proved that the spectral type of this map is given (up to possibly some discrete measure) by

dµ = W * lim n k=1 P k 2 dz, (4.1) 
where

P k (z) = 1 √ m k 1 + m k -1 j=1 z -(jh k + j i=1 a (k) i ) ,
W * lim denotes weak star limit in the space of bounded Borel measures on T.

As mentioned by Nadkarni in [START_REF] Nadkarni | Spectral theory of dynamical systems[END_REF], the infinite product

+∞ l=1 P j l z)| 2
taken over a subsequence j 1 < j 2 < j 3 < • • • , also represents the maximal spectral type (up to discrete measure) of some rank one maps. In case j l = l for infinitely many l, the maps acts on an infinite measure space.

The spectrum of any rank one map is simple and using a random procedure, D. S. Ornstein produced a family of mixing rank one maps [START_REF] Ornstein | On the root problem in ergodic theory[END_REF]. It follows that Ornstein's class of maps may possibly contain a candidate for Banach's problem. Unfortunately, in 1993, J. Bourgain proved that almost surely Ornstein's maps have singular spectrum [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. Subsequently, using the same methods, I. Klemes [START_REF] Klemes | The spectral type of staircase transformations[END_REF] showed that the subclass of staircase maps has singular maximal spectral type. In particular, this subclass contains the mixing staircase maps of Adams-Smorodinsky [START_REF] Adams | On Smorodinsky conjecture[END_REF]. Using a refinement of Peyrière criterion [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF], I. Klemes & K. Reinhold proved that the rank one maps have a singular spectrum if the inverse of the cutting parameter is not in [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF]. This class contains the mixing staircase maps of Adams & Friedman [START_REF] Adams | Staircase mixing[END_REF]. In 1996, H. Dooley and S. Eigen adapted the Brown-Moran methods [49, pp.203-209] and proved that the spectrum of a subclass of Ornstein maps is almost surely singular [START_REF] Dooley | A family of generalized Riesz products[END_REF].

ℓ 2 (that is, +∞ k=1 1 m 2 k = +∞, where (m k ) ⊂ 2, 3, 4, • • • is the cutting pa- rameter)
Later, el Abdalaoui-Parreau and Prikhod'ko extended Bourgain theorem [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] by proving that for any family of probability measures in Ornstein type constructions, the corresponding maps have almost surely a singular spectrum [START_REF] El Abdalaoui | A new class of Ornstein transformations with singular spectrum[END_REF]. They obtained the same result for Rudolph's construction [START_REF] Rudolph | An Example of a measure-preserving map with minimal selfjoining and applications[END_REF]. In 2007, el Abdalaoui showed that the spectrum of the rank one map is singular provided that the spacers (a j ) m k j=1 ⊂ N, are lacunary for all k [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. The author used the Salem-Zygmund central limit theorem methods. As a consequence, the author presented a simple proof of Bourgain's theorem [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF].

Recently, by appealing to a martingale approximation technique, C. Aistleitner and M. Hofer [START_REF] Aistleitner | On the maximal spectral type of a class of rank one transformations[END_REF] proved a counterpart of the result in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. Precisely, they proved that the spectrum of the rank one maps is singular provided that the cutting parameter (m k ) ∈ N * and the spacers (a j ) m k j=1 ⊂ N satisfy (i) log(m kn ) h kn converge to 0;

(ii) the proportion of equal terms in the spacers is at least c.m kn for some fixed constant c and some subsequence (k n ).

We further recall that I. Klemes & K. Reinhold in [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF] conjectured that all rank one maps have singular spectrum, and in the same spirit, C. Aistleitner and M. Hofer wrote in the end of their paper "several authors believe that all rank one transformations could have singular maximal spectral type.". It seems that this conjecture was formulated since Baxter result [START_REF] Baxter | On the class of ergodic transformations[END_REF], [START_REF] Thouvenot | [END_REF]. We remind that the cutting and stacking rank one construction may goes back to Ornstein's paper in 1960 [START_REF] Ornstein | On invariant measures[END_REF]. Indeed, therein, Ornstein constructed a non-singular map for which there is non σ-finite measure equivalent to Lebesgue measure. Of course, this example is connected to the example of non-singular map with simple Lebesgue component constructed by el Abdalaoui and Nadkarni [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF]. Notice that in [START_REF] Ornstein | On the root problem in ergodic theory[END_REF], the rank one maps are called transformations of class one.

It follows from Bourgain's observation ((eq 2.15) [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]) that if the spectral type of any rank one map acting on an infinite measure space is singular then the spectral type of any rank one is singular.

Unfortunately, by our main result, this strategy fails. Therefore, the new approaches are needed to tackle this conjecture.

flats polynomials

A sequence P j , j = 1, 2, • • • of trigonometric polynomials is said to be L p -flat if the sequence |P j | P j 2 , j = 1, 2, • • • converge to the constant function 1 in the L p -norm, p ∈ [1, +∞], p = 2 . If p = +∞ the se- quence P j is said to be ultraflat.
The flatness issue can be considered for three class of analytic trigonometric polynomials. The polynomials with non-negative coefficients, the Littlewood polynomials which correspond to the polynomials with coefficients ±1, and the Newman polynomials which correspond to the polynomials with coefficients 0 or 1 and the constant term 1. For all those polynomials, it seems that the existence of L p -flat polynomials is unknown.

The following notion of almost everywhere flatness is introduced in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. Definition 5.1. A sequence P j , j = 1, 2, • • • of trigonometric polynomials with L 2 -norm one is said to be flat almost everywhere, if P j (z) converge almost everywhere to 1 with respect to dz.

Applying Vitali convergence theorem [START_REF] Rudin | Real and complex analysis[END_REF] one can see that if P j is almost everywhere flat then P j is L 1 -flat. In the opposite direction, if P j is L 1 -flat then one can drop a subsequence over which P j is almost everywhere flat.

We further have the following: Proposition 5.2. Let (P n ) n∈N be a sequence of analytic trigonometric polynomials with L 2 -norm one. Then, the following are equivalent (1)

P n is L 1 -flat, ( 2 
) P n 1 converge to 1.
Moreover, if P n is almost everywhere flat then

|P n | 2 -1 1 ----→ n→+∞ 0.
Proof.

(1) implies ( 2) is straightforward. For (2) implies (1), notice that

|P n | -1 2 2 = 1 = 2 1 -P n 1 . (5.1)
For the last fact, by Cauchy-Schwarz inequality, we have

|P n | 2 -1 1 ≤ |P n | -1 2 |P n | + 1 2 ≤ 2 |P n | -1 2 .
The last inequality is due to P n 2 = 1 combined with the triangle inequality. Thus, it is suffice to see that

|P n | -1 2 ----→ n→+∞ 0.
But, by (5.1), this equivalent to ( P n 1 ) n∈N converge to 1 which follows from the Vitali convergence theorem.

At this point, let us notice that the classical strategy introduced by Newman and Beller to produce the L 1 -flat polynomials is based on the reduction of the problem of L 1 -flatness to L 4 -flatness problem. For the polynomials form class B this strategy fails. This is proved in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. In the next section we will prove much more by establishing Theorem 2.3.

Sidon sets, Singer sets and flatness

Let R be a positive integer and let S = {s 1 < s 2 < s 3 < • • • < s R } be a subset of [0, R). Following Erdös [START_REF] Erdös | On a problem of Sidon in additive number theory, and on some related problems[END_REF], Definition 6.1. A set S is called a Sidon set if all the sums s + t, s ≤ t ∈ S, are distinct.

Sidon asked on the maximal size of the Sidon set subset of {1, • • • , H}. Erdös and Turán [START_REF] Erdös | On a problem of Sidon in additive number theory, and on some related problems[END_REF] proved that if S ⊂ [0, R] is a Sidon set then

|S| < √ R + 10 4 √ R + 1.
Lindström strengthened this result and proved [START_REF] Lindström | An inequality for B 2 -sequences[END_REF] |S|

< √ R + 4 √ R + 1.
In the other direction it has been shown by Chowla [START_REF] Chowla | Some applications of a method of A. Selberg[END_REF] and Erdös using a theorem of Singer [START_REF] Singer | A theorem in finite projective geometry and some applications to number theory[END_REF] that

|S| ≥ √ R -o( √ R).
Nowadays, it is customary to use algorithmically Singer's theorem to produce a Sidon subset of the given set {1, • • • , N}. Furthermore, the construction can be used to produce a Sidon subset with some desired proprieties of its sumsets [51, p.83], [START_REF] Ruzsa | Sumsets of Sidon sets[END_REF]. We notice that Singer established his theorem in the finite projective geometry setting. In the number theoretic setting, the theorem can be stated as follows. Theorem 6.2 (Singer [START_REF] Singer | A theorem in finite projective geometry and some applications to number theory[END_REF]). Let p be a prime and let q = p 2 + p + 1. Then, there exist A ⊂ Z/qZ with |A| = p + 1 such that for all x ∈ Z/qZ \ {0}, there exist a 1 , a 2 such that x = a 1 -a 2 .

Such set, in which every non-zero difference mod q arises exactly one is called a perfect difference set or Singer set. For the construction of Singer set, we refer the reader to [START_REF] Singer | A theorem in finite projective geometry and some applications to number theory[END_REF]. Using the Singer sets, Erdös-Sárközy-Sós [START_REF] Erdös | On sum sets of Sidon sets I[END_REF], [START_REF] Erdös | On sum sets of Sidon sets II[END_REF] and Rusza [START_REF] Ruzsa | Sumsets of Sidon sets[END_REF], [START_REF] Ruzsa | Solving a linear equation in a set of integers I[END_REF] 

constructed a Sidon set S subset of {1, • • • , N} such that |S| ≥ √ N -o( √ N ) (ER),
With some desired properties.

We notice that Singer's construction is based on the nice properties of finite fields [START_REF] Singer | A theorem in finite projective geometry and some applications to number theory[END_REF].

Let us now present the proof of Theorem 2.3. For that we claim that ( |P n (z)| 2 -1 2 ) does not converge to 0. Indeed, write

P n (z) 2 -1 = 1 n N (n) l=1 m(l)z r l + 1 n N (n) l=1 m(l)z -r l ,
where m(l) is the multiplicity of r l given by m(l) = (i, j) : s j -s i = r l , and r l is defined by

s j -s i , j < i = r 1 , r 2 , • • • , r N (n) .
Whence

|P n (z)| 2 -1 2 2 = 2 n 2 N (n) j=1 m(j) 2 ≥ 2 n 2 N (n) j=1 m(j) ≥ 2 n 2 n(n -1) 2 , since N (n) j=1 m(j) = n(n -1) 2 . Therefore |P n (z)| 2 -1 2 2 ≥ 1 + 1 n ,
which complete the proof of the claim. From this it easy to see that P n 4 ≥ 2, for any n. Hence, lim inf P n 4 ≥ 2. We thus get that for any α ≥ 4, (P n ) are not L α -flat, since otherwise P n α will converge to 1 which is impossible. This achieve the proof of Theorem 2.3.

Proofs of the first main result (Theorems 2.1)

Let us first outline the main ideas of our strategy. The proof is divided into two part. In the first part, we construct a sequence of analytic polynomials (P q ), q = p 2 + p + 1 and p prime with coefficients given by the indicator function of Singer sets, and we prove that the sequences |P z q,j | where z q,j are not trivial q-root of unity, converge to 1. We proceed next to establish that the sequence of analytic polynomials (P q ) is L α -flat, α ∈ (0, 2). For that we need to estimate the L α -norms of the sequence of trigonometric polynomials (|P q | 2 -1). We thus use Marcinkiewicz-Zygmund inequalities with the nodal points z q,j,δ j=0,••• ,2q-1

given by the q-root of unity and its δ-perturbation. This sequence of the nodal points has the property that the map ℓ → z ℓ q,j,δ , is almost q-periodic up to δ (which is supposed to be small), for any j = 0, • • • , 2q -1. This combined with the nice properties of Singer sets, allows us to conclude that the sequence |P q | 2 -1 α , α ∈ (0, 2) converge to zero.

In the second part, we use the material from [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF], [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF] and [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] to obtain that there exist a conservative map on σ-finite measure space with simple Lebesgue spectrum. This answer affirmatively Banach question from the Scottish book. As a consequence, we obtain also an answer to Bourgain's question and to Mahler's question.

Let us now proceed to the proof. We start by putting, for any finite subset of integer A,

P A (z) = 1 |A| a∈A z a , z ∈ T,
Where |A| is the number of elements in A. The L 2 -norm of P A is one since

P A (z) 2 = 1 + 1 |A| d=b-a∈A-A a =b z d , (7.1) 
where A -A is the set of difference of A.

If |A -A| = |A|(|A|-1)

2

then A is a Sidon set. The nice properties of Singer's set allows us to prove the following. Lemma 7.1. Let p be a prime number and S a Singer set of Z/qZ with q = p 2 + p + 1.. Then for any r ∈ Z/qZ \ {0}, we have

P S e 2πi r q = p p + 1 .
Proof. Applying (7.1) we get

P S e 2πi r q 2 = 1 + 1 |S| q-1 t=1 e 2πi t.r q = 1 - 1 |S| , since q-1 t=0
e 2πi t.r q = 1 + q-1 t=1 e 2πi t.r q = 0.

Therefore, we can write

P S e 2πi r q 2 = |S| -1 |S| = p p + 1 ,
and the proof of the lemma is complete.

The second main ingredient of our proof is based on the classical Marcinkiewicz-Zygmund inequalities (see [100, Theorem 7.5, Chapter X, p.28]) and some ideas linked to its recent refinement obtained by Chui-Shen-Zhong [START_REF] Chui | On Lagrange interpolation at disturbed roots of unity[END_REF] and many others authors. Therefore, we will need some classical results form the H p theory and interpolation theory of Carleson.

Let D n , K n and V n be respectively the Dirichlet kernel, the Fejér kernel and the de la Vallé Poussin kernel. We recall that

D n (x) = n j=-n e 2πijx = sin π(2n + 1)x sin(πx) , K n (x) = n j=-n 1 - |j| n + 1 e 2πijx = 1 n + 1 sin π(n + 1)x sin(πx) 2 ,

and

V n (x) = 2K 2n+1 (x) -K n (x). We also put

D * n (e 2πix ) = n-1 j=0 e 2πijx .
We recall that the Poisson kernel P r , 0 < r < 1, is given by

P r (θ) = +∞ -∞ r |n| e inθ = 1 -r 2 |1 -re iθ | 2 (7.2) = 1 -r 2 1 -2r cos(θ) + r 2 .
This kernel is related to the Cauchy kernel C r (θ) def = 1 1 -re iθ by the following relation

P r = Re(H r ), where H r = 2C r -1.
The imaginary part of H r is called the conjugate Poisson kernel and denoted by

Q r (θ) = 2r sin(θ) 1 -2r cos(θ) + r 2 . Let us also recall that if f = u + i u is analytic in the closed disc with f (0) is real then f (re iθ ) = u * H r (θ), and 
u(θ) = u * Q r (θ).
We notice that u is the harmonic conjugate to u, which vanishes at the origin, and of course, Q r is the harmonic conjugate to P r . For f ∈ L 1 (T), the harmonic conjugate of f is given by

f (re iθ ) = Q r * f (θ) = -i +∞ n=-∞ n =0 n |n| r |n| f (n)e int .
It is well known that the radial limit of f (re iθ ) exist almost everywhere, and this radial limit denoted by f is the conjugate function of f .

We will use often the following classical property: If F = exp(H), where H is an analytic function. Then

|F | = exp(Re(H)).

Given a continuous function f on the torus T and a triangular family of equidistant points z n,j ∈ T, j = 0,

• • • 2n, n ∈ N * , that is, z n,j = z n,0 + j 2n + 1 , j = 0, • • • , 2n.
We define the Lagrange polynomial interpolation of f at {z n , j} by

L n (f, {z n , j})(e 2πix ) = 1 2π 2π 0 f (t)D n (x -z n,j )dω 2n+1 (t),
where ω 2n+1 is a function defined by

ω 2n+1 (t) = 2πj 2n + 1 for 2πj 2n + 1 ≤ t < 2π(j + 1) 2n + 1 , j = 0, ±1, ±2, • • • .
ω 2n+1 is a step function with jump 2π 2n+1 at the points 2πj 2n+1 and dω 2n+1 its Riemann-Stieltjes integral. In the same manner, we define the step function ω m , for any m ∈ N * and we denote its Riemann-Stieltjes integral by dω m .

We will need the following classical inequality due to S. Bernstein and A. Zygmund. For its proof, we refer to [ 

(e ix ) = M cos(nx + ξ).
Máté, Nevai and Arestov extended Bernstein-Zygmund inequality by proving that it is valid for p ≥ 0. [19, p.142]. For p = 0, the result is due to Mahler, a simple proof can be found in [START_REF] Everest | Heights of Polynomials and Entropy in Algebraic Dynamics[END_REF]. Although we will not need this result in such generality.

The Marcinkiewicz-Zygmund interpolation inequalities assert that for α > 1, n ≥ 1, and a polynomial P of degree ≤ n -1,

A α n n-1 j=0 P (e 2πi j n ) α ≤ T P (z) α dz ≤ B α n n-1 j=0 P (e 2πi j n ) α , (7.3)
where A α and B α are independent of n and P .

The left hand inequality in (7.3) is valid for any non-negative nondecreasing convex function and in the more general form [100, Remark, Chapter X, p. 30].

The next lemma is crucial for the proof of our main result.

Lemma 7.3. Let p be a prime number and S a Singer set of Z/qZ with q = p 2 + p + 1. Then, for any α > 1, we have

1 q q-1 r=0 P S e 2πi r q α = 1 q (p + 1) α 2 + (q -1) p p + 1 α 2 .
Proof. It is straightforward from Lemma 7.1. Lemma 7.3 yields for any 0 < α < 4, lim q-→+∞ 1 q q-1 r=0 P S e 2πi r q α = 1. (7.4) Furthermore, we have Theorem 7.4. For any α in the interval [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF][START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF],

P S α ≤ C α .
Proof. Applying Marcinkiewicz-Zygmund interpolation inequalities (7.3), we get

P S α ≤ C α n-1 j=0 P (e 2πi j n ) α . (7.5) But P (1) α ≤ |S| α 2
≤ q, and by Lemma 7.3, we have

P (e 2πi j n ) < 1. Therefore P S α ≤ C α .
The proof of the theorem is complete. Now, following the strategy in [START_REF] Chui | On Lagrange interpolation at disturbed roots of unity[END_REF], we perturb the root of unity as follows. Put t q,r = r q , and t * q,r = r q ± δ q.p 1/2+ǫ , δ > 0, ǫ > 0. We thus have Lemma 7.5. For any 0 < α < 4, lim q-→+∞ 1 q q-1 r=0 P S e 2πit * q,r α = 1.

Proof. Applying Bernstein theorem (Theorem 7.2), we get P (e 2πitr,q ) -P (e 2πit * q,r,δ ) ≤ q P S ∞ e 2πitr,q -e 2πit * q,r,δ

≤ √ p + 1 2π δ p 1/2+ǫ ---→ q→∞ 0.
This combined with the standard triangle inequalities gives

1 q q-1 r=0 P S e 2πitq,r α 1 α - 1 q q-1 r=0 P S e 2πit * q,r,δ α 1 α ≤ 1 q q-1 r=0
P S e 2πitq,r -P S e 2πit * q,r,δ α

1 α ≤ √ p + 1 2π δ p 1/2+ǫ ---→ q→∞ 0,
and the proof of the lemma is complete. Lemma 7.5 allow us to construct a new families of nodal points for which (7.4) holds. We are going to follow the spirit of this strategy in the proof of our main results. 7.1. Proof of Theorems 2.1. Following the spirit of the Kadets 1/4 theorem for polynomials due to Marzo-Seip [START_REF] Marzo | The Kadets 1/4 theorem for polynomials[END_REF], and the very recent refinement of the Marcinkiewicz-Zygmund inequalities, we start by establishing a necessary and sufficient conditions for a sequence of the analytic trigonometric polynomials to be L α -flat, α > 0.

Let S be a fixed Singer set in Z/qZ with q = p 2 + p + 1, p prime number and put P q (z) = P S (z). Define z j,q = e 2πi j q , and for a given δ q,j > 0, j = 0, • • • , q -1, we put z * r,q,(δ q,j ) = e 2πi j q + δ q,j q

.

Let δ > 0. We define z r,2q,δ = z r 2 ,q , if r is even; z * r-1 2 ,q,δ , if r is odd, with δ q,j = δ, j = 0, • • • , q -1, and ρ q = 1 -1 2q . We thus have

z r,2q,δ = z r,q q-1 r=0 z * r,q,δ q-1 r=0
, and we set

F 2q-1 (z) = 2q-1 r=0 
1 -ρ q z r,2q,δ z , where ρ q = 2q -1 2q .

We recall that the family of nodal points

Z = {z j,n } n j=0 n≥0
is said to be an L α Marcinkiewicz-Zygmund family if the L α Marcinkiewicz-Zygmund inequalities holds for the nodal points {z j,n } n j=0 , for every n ≥ 0.

We associate to any family of nodal points Z = {z j,n } n j=0 n≥0 the function F n defined by

F n (z) = n r=0 1 -ρ n z r,n z , where ρ n = 1 - 1 n + 1 .
The family Z is said to be uniformly separated if there is a positive number c such that inf

j =k z n,j -z n,k ≥ c n + 1 , ∀ n ≥ 0.
This notion is related to the notion of Carleson measures and following [START_REF] Seip | Interpolation and sampling in spaces of analytic functions[END_REF] the sequence

X = {ξ n } of points in the open unit disk D is said to satisfy Carleson's condition if, γ = inf k ∞ j=1 j =k ξ j -ξ j 1 -ξ k ξ j > 0. (7.6)
Of course this condition is connected to the well-known Carleson's interpolation theorem [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF]. For the proof of Carleson's interpolation theorem, we refer the reader to [38, p.157], [63, p.1], [47, p.274].

We recall that a finite measure µ is a Carleson measure if the injection mapping from H α , α > 0 to the space L α (D, µ) is bounded. Carleson described geometrically these measures in [START_REF] Carleson | Interpolations by bounded analytic functions and the corona problem[END_REF] by proving that the finite measure µ is a Carleson measure if and only if there exist a constant

C α > 0 such that D |f (z)| α dµ ≤ C α f α H α f ∈ H α ,
for any α > 0. We refer also to [38, p.156] for the proof of Carlson's theorem. We further have, by Carleson's interpolation theorem, that the discrete measure µ given by

µ = +∞ n=1 (1 -|z k | 2 )δ z k ,
where δ w is the Dirac measure on w, is a Carleson measure if the family {z k } is uniformly separated. This result was strengthened in [START_REF] Beller | The minimum modulus of polynomials[END_REF] by McDonald and Sundberg [START_REF] Mcdonald | Toeplitz operators on the disc[END_REF], who proved that the sequence {z k } of points in D generates a discrete Carleson measure µ if and only if {z k } is a finite union of uniformly separated sequences. For a simple proof, we refer to [START_REF] Duren | Finite unions of interpolation sequences[END_REF]. We notice that if the sequence is uniformly separated then the constant C α depend uniquely on γ. In this setting, we have the following lemma Lemma 7.6. The sequences Z = ρ q z r,q q≥0 and Z * = ρ q z * r,q,δ q≥0

are uniformly separated sequences.

Proof. Put ξ * r = ρ q z * r,q,δ = ρ q e itr,q , where t r,q = 2π( r q + δ q ), r = 0, • • • , q -1. Then

ξ * r -ξ * s 1 -ξ * s ξ * r 2 =
2ρ 2 q 1 -cos t r,q -t s,q 1 -2ρ 2 q cos t r,q -t s,q + ρ 4 q = 4ρ 2 q sin tr,q-ts,q 2 2 1 -ρ 2 q 2 + 4ρ 2 q sin tr,q-ts,q

2 2 = 4ρ 2 q sin π r-s q 2 1 -ρ 2 q 2 + 4ρ 2 q sin π r-s q 2 (7.7)
Notice that π. r-s q ∈] -π, π[, and the function x → sin 2 (x) is an even function. We further have, for any x ∈ R,

sin 2 (x -π) = sin 2 (x).
Therefore, we can reduce our study to the case of π. r-s q ∈]0, π/2], and if π. r-s q ∈ [π/2, π[ we substitute π. r-s q by π. r-s q -π ∈ [-π/2, 0[. Now, assuming π. r-s q ∈]0, π/2], it follows that

sin 2 π. r -s q ≥ 4 (r -s) 2 q 2 , since, for any x ∈]0, π/2], we have sin(x) ≥ 2 π x. Whence 4ρ 2 q sin π r-s q 2 1 -ρ 2 q 2 + 4ρ 2 q sin π r-s q 2 ≥ 4ρ 2 q 4 (r-s) 2 q 2 1 -ρ 2 q 2 + 4ρ 2 q 4 (r-s) 2 q 2 , (7.8) by the monotonicity of the function φ(x) = 4ρ 2 q x 1 -ρ 2 q 2 + 4ρ 2 q x . We further have 1 -ρ 2 q 2 ≤ 8ρ 2 q q 2 ≤ 16ρ 2 q q 2 ,
since, for any n ≥ 1, (n -1) ≤ 2 √ 2(n -1). This combined with (7.7) and (7.8) gives

ξ * r -ξ * s 1 -ξ * s ξ * r 2 ≥ (r -s) 2 1 + (r -s) 2 . (7.9) We thus get inf s q-1 r=0 r =s ξ * r -ξ * s 1 -ξ * s ξ * r 2 ≥ +∞ t=1 (1 - 1 1 + t 2 ) def = γ 2 > 0, by the convergence of +∞ t=1 1 1 + t 2 .
It follows from Lemma 7.6 that the union of the families Z and Z * generates a Carleson measure since the sum of two Carleson measures is a Carleson measure. We further deduce the following Lemma 7.7. The sequence Z = ρ q z r,q q≥0 ∪ ρ q z * r,q,δ q≥0 is uniformly separated, and we have

inf ξ∈Z χ∈Z χ =ξ χ -ξ 1 -ξχ ≥ γ 2 . δ √ 1 + δ 2 ,
where

γ 2 = +∞ t=1 1 - 1 1 + t 2 .
Proof. Put ξ r = ρ q z r,q , and ξ * r = ρ q z * r,q,δ , and let ξ s ∈ Z, s = 0, • • • q -1. Then, either ξ s ∈ ρ q z r,q or ξ s ∈ ρ q z * r,q,δ . Assuming that ξ s ∈ ρ q z r,q , it follows that

χ∈Z χ =ξ χ -ξ 1 -ξχ = r =s ξ r -ξ s 1 -ξ s ξ r q-1 r=0 ξ * r -ξ s 1 -ξ s ξ * r = r =s ξ r -ξ s 1 -ξ s ξ r r =s ξ * r -ξ s 1 -ξ s ξ * r ξ * s -ξ s 1 -ξ s ξ * s ≥ γ 2 δ √ 1 + δ 2 ,
by the same arguments as in Lemma 7.6 (see also [START_REF] Chui | Polynomial interpolation and Marcinkiewicz-Zygmund inequalities on the unit circle[END_REF]) combined with (7.9). The same conclusion can be drawn for the case ξ s ∈ ρ q z * r,q,δ since the two sets plays symmetric roles. The proof of the lemma is complete.

According to Chui-Zhong's theorem [START_REF] Chui | Polynomial interpolation and Marcinkiewicz-Zygmund inequalities on the unit circle[END_REF] the family X = {{ξ n,j } n j=0 } n≥0 of the points on the unit circle is an L α Marcinkiewicz-Zygmund family if and only if it is uniformly separated and there exist a constant K α such that

1 |I| I |F n (e iθ )| α dθ 1 α 1 |I| I |F n (e iθ )| -α α-1 dθ 1 α ≤ K α (7.10)
For every subarc I of the unit circle and every n ≥ 0. We notice that the fact that the family is uniformly separated insure that this family generates a Carleson measure, and it is turn out that the second condition (7.10) is well-known as A α condition in the setting of the BMO spaces (Bounded Mean Oscillation) [47, p.215]. We remind that locally integrable positive function w satisfy A α condition if sup where v is the conjugate function of v.

I 1 |I| I w(x)dx 1 |I| I w(x) -1 α-1 dx α-1 < ∞. ( 7 
For the proof of the equivalence of (7.11) when p = 2 and (HS), we refer to [47, p.246-259]. Therein, the reader can found also the proof of the prediction Helson-Szegö's theorem related to (HS) [START_REF] Helson | A problem in prediction theory[END_REF]. Now, according to the equivalence of (7.11) when p = 2 and (HS), Marzo and Seip [START_REF] Marzo | The Kadets 1/4 theorem for polynomials[END_REF] observe that in order to prove that the condition (7.10) holds it suffices to establish that the following uniform Helson-Szegö condition holds: Uniform Helson-Szegö condition. There exist sequence u n and v n of real-valued function in

L ∞ (T) such that sup n v n ∞ < π 2 , sup n u n ∞ < +∞ and |F n | 2 = e un+ vn ,
where v n is the conjugate function of v n .

We are going to prove that the uniform Helson-Szegö condition holds. Let κ > 0 and n = 2q -1. We claim first that we have

|F n (e iθ )| 2 = e un,κ(θ) |F n,κ (e iθ )| 2 ,
where

F n,κ (z) = n r=0 1 -ρ n,κ z r,n+1,δ z and ρ n,κ = max 1 2 , 1 - κ n + 1 .
Indeed, the Mahler measure of the function φ n,κ (θ) z r,q l = q, if l ∈ qZ; 0, if not.

def = F n (e iθ ) 2 F n,κ (e iθ
We can thus write

u n,κ ≤ |I| + |II| ≤ 2 +∞ l=1 ρ lq n,κ l + +∞ l=1 ρ lq n l ≤ 2 log 1 1 -ρ q n,κ + log 1 1 -ρ q n , ≤ 2 1 -e -κ 2 + 2 1 -e -1 2
since log(x) ≤ x for any x > 0, and log(1 -x) ≤ -x for 0 ≤ x < 1 . We thus conclude that

sup n u n,κ ∞ < +∞,
and the proof of the claim is complete.

We move now to construct the functions v n . For that, we start by proving the following lemma Lemma 7.8. Let F (z) = (1 -rz 0 z), with 0 < r < 1 and z 0 = e iθ 0 . Then |F | 2 (e iθ ) = e v , where v is the conjugate function of the function v given by v(θ) = P r * ½ [0,θ] (θ 0 ) -θ -c, (7.12) and c is any suitable constant.

Proof. Obviously F 2 is an outer function since the zeros of F 2 are out of the disc D. We further have F 2 (0) = 1. Whence |F | 2 = e v , where v is the conjugate function of the function v given by (7.12). Indeed, for any θ, we have

Log F (e iθ ) = - +∞ n=1 r n n e in(θ-θ 0 ) = - +∞ n=1 r n n cos n(θ -θ 0 ) + i +∞ n=1
r n n sin n(θ -θ 0 ) , (7.13) where Log is the principal value of the logarithm. We further have

v(θ) = P r * ½ [0,θ] (θ 0 ) -θ -c = θ 0 P r (θ 0 -t)dt -θ -c = θ 0 P r (t -θ 0 )dt -θ -c, Since P r is an even function. But θ 0 P r (t -θ 0 )dt = θ 0 +∞ n=-∞ r |n| e in(t-θ 0 ) dt = n =0 r |n| in e in(θ-θ 0 ) - n =0
r |n| in e -inθ 0 + θ, ( θ n,j = 2π j 2q , if j is even; 2π j-1 2q + δ q , if j is odd, and c is any suitable constant. Taking

c = n j=0 0 -2πγ n,j P ρn,κ 2π j -1 2q -t dt,
with γ n,j = 0, if j is even; 2π δ q , if j is odd. We can rewrite (7.16) as v n,κ (θ) = n j=0 θ-2πγ n,j 0 P ρn,κ θ n,j -t dt -(n + 1)θ, (7.17) since, for any odd j, we have

θ 0 P ρn,κ (θ n,j -t)dt = θ 0 P ρn,κ 2π j -1 2q + γ n,j -t dt, = θ-2πγ n,j -2πγ n,j P ρn,κ 2π j -1 2q -t dt Again writing v n,κ (θ) = I + II,
where

I = q-1 r=0 θ 0 P ρn,κ 2πj q -t dt-qθ and II = q-1 r=0 θ-2πδ q 0 P ρn,κ 2πj q -t dt-qθ.
We thus need to estimate |I| and |II|. But, by the same reasoning as above, it is easy to check that

I = l =0 ρ lq n,κ 1 -e -ilqθ il and II = l =0 ρ lq n,κ 1 -e -ilq(θ-2πδ q ) il -2πδ.
Consequently, we get

|I| ≤ 4 l≥1 ρ lq n,κ l = -4 log(1 -ρ q n,κ ). Whence |I| -4 log 1 -e -κ 2 .
It is still to estimate |II|. In the same manner, it can be seen that

|II| + 4 l≥1 ρ lq n,κ l ≤ 2πδ -4 log 1 -e -κ 2 ,
and by choosing κ sufficiently large and δ < 1 8 , we obtain

sup n v n,κ (θ) ∞ < π 2 .
From this we conclude that the uniform Helson-Szegö condition holds for α = 2.

For the case 1 < α = 2. Assuming δ < 1 8β where β = max α, α α-1 , one may apply the standard argument from the H p theory combined with the Hölder inequality and Lemma 2 from [START_REF] Marzo | The Kadets 1/4 theorem for polynomials[END_REF] to conclude that the uniform Helson-Szegö condition holds. Now, let 1 < α < 2 and 0 < δ < 1 4β , with β = α α-1 . By Lemma 7.7 the family Z = ρ q z r,q q≥0 ∪ ρ q z * r,q,δ q≥0

is uniformly separated.

We can thus write

P q (θ) 2 -1 α dθ ≤ C α,δ 1 2q q-1 r=0 P q z r,q )| 2 -1 α + 1 2q q-1 r=0 P q z * r,q,δ )| 2 -1 α , (7.18) 
where

C α,δ = 2C γ γ 2 . δ √ 1+δ 2 α = 2C γ √ 1 + δ 2 γ 2 .δ α .
The computation of constant C α,δ can be found in [38, p.153]. Therein, by appealing to the duality argument, it is shown that for any w = (w j ) ∈ ℓ α , there exist g ∈ H α such that for some f ∈ H β , with f β = 1, and β is the conjugate of α, one can assert

g α ≤ √ 1 + δ 2 γ 2 .δ w α D |f (z)| β dµ Z + D |f (z)| β dµ Z * , where µ Z = +∞ q=3 q-1 r=0 
1-|ρ q z r,q | δ zr,q , and µ Z * = +∞ q=3 q-1 r=0

1-|ρ q z * r,q,δ | δ zr,q .

But the measures µ Z and µ Z * are a Carleson measures. Therefore,

D |f (z)| β dµ Z + D |f (z)| β dµ Z * ≤ 2C γ f β = 2C γ ,
where

C γ = 2 γ 4 1 -2 log(γ)
). An alternative proof can be found in [55, p.195-202]. The reader may notice that the proof of Theorem F in [START_REF] Chui | On Lagrange interpolation at disturbed roots of unity[END_REF] can be drawn from the above proof.

Let us stress at this point that we have proved that for any α > 0, the sequence of polynomials (P q (z)) is L α -flat if and only if

1 q q-1 r=0 P q z r,q )| 2 -1 α ----→ q→+∞ 0, and 1 q q-1 r=0 P q z * r,q,δ )| 2 -1 α ----→ q→+∞ 0.
We have also proved Lemma 12. in [81]. This Lemma will recalled and used later. Now, we are going to prove that (P q ) is L α -flat, 1 < α < 2. We start by writing

1 q q-1 r=0 P q z r,q )| 2 -1 α 1 α - 1 q q-1 r=0 P q z * r,q,δ )| 2 -1 α 1 α ≤ 1 q q-1 r=0 P q z r,q )| 2 -P q z * r,q,δ )| 2 α 1 α (7.19)
Moreover, by the nice properties of Singer sets, we have

1 q q-1 r=0 P q z r,q )| 2 -P q z * r,q,δ )| 2 α 1 α ----→ q→+∞ 0. (7.20) Indeed, write |P q (z)| 2 -1 = 1 |S| q-1 l=1 c l z l + 1 |S| q-1 l=1 c -l z -l ,
where (c l ) are the correlation of the sequence ½ S (j)

q-1 j=0

given by

c l = {s,t : s-t=l} ½ S (s)½ S (t), for l = 1, • • • , q -1 and put Q q (z) = 1 |S| q-1 l=1 c l z l .
Observe that formally we have

c l = q-l-1 j=0 ½ S (j)½ S (j + k) = {(j, k) ∈ S × S : j -k = l} and c -l = q-1 j=l ½ S (j)½ S (j -l) = {(j, k) ∈ S × S : j -k = -l} .
We further have, by the proof of Lemma 7.1, for any r = 0,

• • • , q -1, q-1 l=1 c l z l r,q + q-1 l=1 c -l z -l r,q = Re q-1 l=1 c l z l r,q + q-1 l=1 c -l z -l r,q (7.21) = q-1 l=1 (c l + c -l )z l r,q (7.22) = q-1 l=1 z l r,q (7.23) 
= -1 (7.24) At this point, we need the following lemma from [81, Lemma.12]. Lemma 7.9. Let Z = {{z n,j } j=0,••• ,mn , n ≥ 0} is a Marcinkiewicz-Zygmund triangular family then there is an ǫ > 0 (depending only on the constants of Marcinkiewicz-Zygmund the inequalities for Z) such that for any perturbation Z * of the original family the property |z n,j -z * n,j | ≤ ǫ n is still a Marcinkiewicz-Zygmund triangular family. We recall that the triangular family is said to be a Marcinkiewicz-Zygmund triangular family if it satisfy the Marcinkiewicz-Zygmund the inequalities (7.3). An alternative proof of Lemma 7.9 can be obtained by observing that µ Z * is a Carleson measure, and this later argument can be seen by applying our previous arguments combined with Bernstein-Zygmund inequalities (Theorem 7.2).

Therefore, by applying Lemma 7.9, we get q-1 r=0 Q q (z r,q,δ ) + Q q (z -1 r,q,δ )

1 q q-1 r=0 1 |S| q-1 l=1 (c l + c -l )z * l r,q,δ α 1 α ≤ A -1 α,δ 1 |S| q-1 l=1 (c l + c -l )z l α dz 1 α ≤ B α A α,δ 1 q q-1 r=0 1 |S|
α 1
α ----→ q→+∞ 0. (7.31) From this, we obtain, by letting q -→ +∞, that, for any 1 < α < 2. 1 q q-1 r=0 P q z * r,q,δ )| 2 -1 α ----→ q→+∞ 0 (7.32) and 1 q q-1 r=0 P q z r,q )| 2 -1 We thus conclude, by virtue of (7.18), that for any 1 < α < 2, lim q-→+∞ P q 2 -1 α dθ = 0, Now, by Proposition 2.6, we have, for any 0 < α ≤ 1, lim q-→+∞ P q 2 -1 α dθ = 0.

Hence the sequence of polynomials (P q ) q∈N is L α -flat, for 0 < α < 2.

Therefore, by appealing to Proposition 5.2, we deduce that the sequence of polynomials (P q (z)) is almost everywhere flat over some subsequence, and the proof of Theorem 2.1 is complete. This finishes the proof. For more details on the construction of rank one map in Theorem 2.2, we refer the reader to [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] and [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF].

Remarks. Obviously, as in the proof given by Zygmund in [100, p. The reader may notice that there is some analogies between our proof and the Fast Fourier Transform algorithm (FFT). We refer the reader to [START_REF] Stein | Fourier analysis, an introduction[END_REF] for more details on the FFT.

Applying Carleson interpolation theory, one can prove that for any p > 0, there is a constant C p > 0 such that, for any polynomial P of degree less than n, An alternative proof can be found in [START_REF] Peller | A Description of Hankel operators of the class Gp for p > 0, investigation of the rate of rational approximation and other applications[END_REF]. Besides this, Marcinkiewicz and Zygmund proved [START_REF] Marcinkiewicz | Mean values of trigonometrical polynomials[END_REF] that for any p ≥ 1 and for any polynomial P of degree less or equal than n, we have 1 2n

2n-1 j=0

P (e 2πi j 2n )

p 1 p ≤ pπ + 1 1 p P p .
To the best of this author's knowledge, the explicit constant for the case p = 0 seems not to be known. Nevertheless, in the case of the classical Riesz product, if we consider the polynomial

P (θ) = 1 + α cos(nθ),
where α is non-negative number less than 1. Then M dω 4n+1 (P ) = exp 1 4n

4n-1 j=0 log P (e 2πi j 2n ) (8.1) ≤ M dz (P ). This can be proved as follows.

Following [START_REF] Khrushchev | A Singular Riesz Product in the Nevai Class and Inner Functions with the Schur Parameters in p>2 ℓ p[END_REF], we put P (θ) = |Q(e iθ )| 2 , where

Q(z) = 1 + az n 1 + a 2 , with a = α 1 + √ 1 -α 2 .
It is easily seen that Q(z) does not vanish on the disc D def = |z| ≤ 1 . We thus get that the function log Q(e iθ ) 2 is harmonic. Applying the mean property, we obtain log Q(0) Obviously √ 1 -α 2 ≤ 1 1 + a 2 . We conclude that (8.1) holds. This leads us to ask.

Questions.

(1) Can one prove or disapprove that C Can one prove or disapprove that the sequence of the Mahler measure of P q converge to 1. (3) Let (X, B, µ, T ) be an ergodic dynamical system where µ is a finite measure. Can one prove or disapprove that there exist a Borel set A with µ(A) > 0 such that for µ-almost all x ∈ X, 1

Nµ(A)

N -1 j=0

½ A (T j x)z j dz ----→ N →+∞ 1.

(4) In the same setting as in the previous question, can one prove or disapprove that for any measurable f with values ±1, for µ-almost all x ∈ X, we have lim sup

N -→+∞ 1 √ N N -1 j=0 f (T j x)z j dz < 1.
As mentioned in introduction, this problem can be linked to the annealed and quenched business.

Lemma 3 . 4 .

 34 Given a sequence P n = mn j=0 a j,n z j , , n = 1, 2, • • • of analytic trigonometric polynomials in L 2 (S 1 , dz) with non-zero constant terms and L 2 (S 1 , dz) norm 1, ∞ n=1

. 11 )

 11 It turns out that in the case p = 2 the condition (7.11) is equivalent to the following Helson-Szegö condition:Helson-Szegö condition. There are real-valued function u, v ∈ L ∞ (T) such that v ∞ < π 2 and w = e u+ v , (HS)
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 101 ρ n z r,n+1,δ e iθ M 1 -ρ n,κ z r,n+1,δ e iθ = 1, by Proposition 2.6 combined with the well-know Jensen formula. We further have1 -ρ n z r,n+1,δ e iθ 1 -ρ n,κ z r,n+1,δ e iθ = 1 -ρ n z r,n+1,δ e iθ z r,n+1,δ l ρ n,κ -ρ n e ilθ . Therefore φ n,κ is in H 1 and log |φ n,κ | is integrable. Put G(z) = exp 1 iθ + z e iθ -z log |φ n,κ (θ)|dθ .Then G is an analytic function in the unit disc D and G = e un,κ , where u n,κ is the Poisson integral of log(|φ n,κ |), that is, u n,κ (re iθ ) = P r * log(|φ n,κ |) where P r is the Poisson kernel and * is the convolution operator. By Fatou theorem [55, p.34], |G| = e un,κ = |φ n,κ | almost everywhere on the unit circle T. We further have u n,κ (θ) = 2Re Log F n (θ) -Log F n,κ (θ) ρ n z r,n+1,δ e iθ -Log 1 -ρ n,κ z r,n+1,δ e iθ n+1,δ l e ilθ , where Log is the principal value of the logarithm. Writing u n,κ (θ) = 2Re(I + II),
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 0 [START_REF] Beck | Flat polynomials on the unit circle -note on a problem of Littlewood[END_REF]) with(7.15), we obtainRe Log(F 2 (e iθ )) = v(θ), which gives |F 2 | = e v ,since for any analytic function g, we have|e g | = e Re g ,and the proof of the lemma is complete.We now apply Lemma 7.12 to write|F n,κ (e iθ )| 2 = e vn,κ(θ) ,wherev n,κ (θ) = n j=0θ ρn,κ θ n,j -t dt -(n + 1)θ -c,(7.16) 

= 1 α

 1 |P q (1)| 2 -1 = |S| -1 = p (l + c -l )z * lr,q,δ α inequality |z| ≥ |Re(z)|. Summarizing, we have proved the following 1 q

8 .

 8 Proof of Theorems 2.2 Theorem 2.2 follows from Theorem 2.1 combined with Proposition 5.2. Finally, by (3.1), we deduce that the spectral type σ of the rank one map constructed in Theorem 2

  29, Chap X], we take advantage of the following classical identity [100, p.35, Chap II] d ∤ k 1 if d | k, for any d, k ≥ 1.

a 2 .

 2 Now, any easy computation shows that P e 2πi j 2n = 1 + α(-1) j ,for j = 0, • • • , 2n -1. Whence M(P (z)dω 4n+1 (z)) = √ 1 -α 2 .

1 pp

 1 converge to 1 as p -→ 0.(2) Let S p be a family of Singer sets, p is a prime number and consider the sequence of polynomialsP q (z) = 1 |S p | s∈Sp z s , |z| = 1.

  100, Theorem 3.13, Chapter X, p. 11]. Theorem 7.2. [Bernstein-Zygmund inequality]. For any p ≥ 1, for any polynomial P of degree n, we have P ′ p ≤ n P p , where P ′ is the derivative of P . The equality holds if and only if P

Professor M. Nadkarni pointed to me that the question contain an oversight. The sequence of functions should be bilateral, that is, n ∈ Z.
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