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ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS
AND MAHLER’S MEASURES WITH

COMBINATORICS

EL HOUCEIN EL ABDALAOUI♭

Abstract. Using the combinatorial Singer’s construction, we ex-
hibit a sequence of flat polynomials with coefficients 0, 1. We thus
get that there exist a sequences of Newman polynomials that are
Lα-flat, 0 ≤ α < 2. This settles an old question of Littlewood.
In the opposite direction, we prove that the Newman polynomi-
als are not Lα-flat, for α ≥ 4. We further establish that there
is a conservative, ergodic, σ-finite measure preserving transforma-
tion with simple Lebesgue spectrum. This answer affirmatively a
long-standing problem of Banach from the Scottish book. Conse-
quently, we obtain a positive answer to Mahler’s problem in the
class of Newman polynomials, and this allows us also to answer a
question raised by Bourgain on the supremum of the L1-norm of
L2normalized idempotent polynomials.
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2 E. H. EL ABDALAOUI

1. Introduction

The main purpose of this paper is to produce a sequence of flat poly-
nomials with coefficients 0, 1. This answer an old question of Littlewood
on finding a sequence of analytic trigonometric polynomials with coef-
ficients 0, 1 that are L1-flat. As a consequence, We obtain that there
exist a conservative, ergodic, σ-finite measure preserving transforma-
tion on a Lebesgue space with simple Lebesgue spectrum. This gives
an affirmative answer to a long-standing spectral problem of Banach
from the Scottish book. It turns out that our approach allows us to
obtain also an affirmative answers to the problem of Mahler (whether
there exists a sequence of analytic trigonometric polynomials with in-
teger coefficients for which the Mahler measure of the L2-normalized
sequence converges to 1). We further get that the supremum of the
L1-norm of the L2-normalized analytic trigonometric polynomials with
coefficients 0, 1 is 1. This answer a question raised by J. Bourgain [18].

A key point in our proof is the construction of a sequence of ana-
lytic trigonometric polynomials with coefficients 0, 1 that are Lα-flat,
0 < α < 2. This is done by appealing to the combinatorial Singer’s
construction combined with Marcinkiewicz-Zygmund interpolation in-
equalities [99, p.28, chp. X] and its refinements. Form this, we obtain
that there exist a sequence of analytic trigonometric polynomials with
coefficients 0, 1 that are flat in the almost everywhere sense.

Marcinkiewicz-Zygmund interpolation inequalities and its extensions
lies in the heart of the interpolation theory. It follows that the Hardy
spaces and the Carleson interpolation theory play an important role
in our proofs. For a nice account on the interpolation theory and the
Hp theory, we refer the reader to [38, p.147, Chap. 9] and [47, p.275,
Chap. 7], [55, p.194], [88, p.328].

Our construction benefited also from the ideas of Ben Green and
Gowers related to the flatness problem in connection with Singer and
Sidon sets [35], [50]. We also take advantage from the recent investiga-
tions on the Marcinkiewicz-Zygmund inequalities and its refinements
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[31], [29], [70].

We stress that this paper is deeply indebted to the investigation
started in [2], [3] and [4]. So, it is may seen as a companion to those
papers.

The flatness problem was initiated by Erdös [41] and Littlewood [68]
, and it has a long history. In the beginning, Erdös and Newman [40]
asked if there is a positive absolute constant C such that

max
|z|=1

∣∣∣ n∑
j=0

ajz
j
∣∣∣ ≥ (1 + C)

√
n, (EN)

where |aj| = 1.

Subsequently, Littlewood asked on the existence of the sequence of
the polynomials on the circle Pn(z) =

∑n−1
j=0 ϵjz

nj with ϵj = ±1 such
that

A1

√
n ≤ |Pn(z)| ≤ A2

√
n,(1.1)

where A1, A2 are positive absolute constants and uniformly on z of
modulus 1. Nowadays the analytic polynomials on the circle with ±1
coefficients are called Littlewood polynomials.

Later, Beller and Newman produced a sequence of polynomials P
with degree n and coefficients bounded by 1 satisfying min|z=1|

∣∣P ∣∣ ≥
C
√
n [15]. In the opposite, J-P. Kahane disproved the conjecture (EN)

[56].

Besides, T. Körner [64] obtained a positive answer to the Littlewood
question (1.1) in the class of polynomials with coefficients of modulus
one by appealing to the Byrnes’s construction [23]. But, it turns out
that the main ingredient form [23] used by Körner is not valid [84].
However, Kahane’s proof does not used this flaw argument.

Later, J. Beck proves that one can obtain a positive answer to
Littlewood question (1.1) by producing a sequence of polynomials from
the class of polynomials of degree n whose coefficients are 400th roots
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of unity [13]. J. Beck’s construction is essentially based on the random
construction of Kahane.

Since then, it was a long standing problem to obtain effective con-
struction of ultraflat polynomials until solved very recently by Bombieri
and Bourgain [17]. For a deeper treatment on the Kahane ultraflat
polynomials, we refer the reader to [84].

The third extremal problem in the class of analytic trigonometric
polynomials concern L1-flatness problem. This problem seems to be
mentioned first in [77]. Therein, Newman mentioned the following
conjecture:

Conjecture (Newman [77]). For any Littlewood polynomial P of de-
gree n,

∥∥P (z)
∥∥
1
< c

√
n+ 1, where c < 1.

Newman in his 1965’s paper [78] solved the problem of L1-flatness
in the class of analytic trigonometric polynomials with coefficients of
modulus 1. He proved that the Gauss-Fresnel polynomials are L1-flat.
We refer to [4] for a simple proof. This result has been strengthened by
Beller [14], and Beller & Newman in [16] by proving that the sequence
of the Mahler measure of the L2 normalized Gauss-Fresnel polynomials
converge to one.

For the polynomials with random coefficients ak ∈ {+1,−1}, Salem
and Zygmund [92] proved that for all but o(2n) choices of ak = ±1,

c1
√
n ln(n) <

∥∥∥∥ n∑
k=0

akz
k

∥∥∥∥
∞

< c2
√

n ln(n),

for some absolute constant c1, c2 > 0. Halàz [52] strengthened this
result by proving∥∥∥∥ n∑

k=0

akz
k

∥∥∥∥
∞

=
(
1 + o(1)

)
C
√
n ln(n),

For some absolute constant C > 0. Byrnes and Newman computed
L4-norm of those polynomials [24]. Later, Browein & Lokhart [22],
and Choi & Erdélyi [33] used the central limit theorem to compute



ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS,... 5

the limit of the Lp-norm and the Mahler measure of the polynomials
with random coefficients ±1. Their results can be linked to the recent
results of Peligrad & Wu [81], Barrera & Peligrad, Cohen & Conze
[30] and Thouvenot & Weiss [97]. Therein, the authors investigated a
dynamical approach with dynamical coefficients, that is, ak = f(T kx),
where T is a measure-preserving transformation on some probability
space and f is a square-integrable function.

The polynomials with coefficients ak ∈ {0, 1} and the constant term
equal to 1 are nowadays called Newman polynomials. We further no-
tice those polynomials are also known as idempotent polynomials, and
since we are concern with L1-flatness, we may assume that the constant
term is 1.

The connection between the Banach problem in ergodic theory and
the L1-flatness problem in the class of Littlewood polynomials or
Newman polynomials was established by Bourgain [18], Guenais [48],
and Downarowicz & Lacroix [37]. M. Guenais proved that the
Littlewood problem and the Banach problem are equivalent in some
class of dynamical system [48]. She further constructed a generalized
Fekete polynomials on some torsion groups, and proved that those poly-
nomials are L1-flat. As a consequence, M. Guenais obtained that there
exist a group action with simple Lebesgue component. A straightfor-
ward application of Gauss formula yields that the generalized Fekete
polynomials constructed by Guenais are ultraflat. Very recently,
el Abdalaoui and Nadkarni strengthened Guenais’s result [4] by proving
that there exist an ergodic non-singular dynamical system with simple
Lebesgue component.

Here, we exhibit a class of Lα-flat Newman polynomials with α ∈
]0, 2[. This allow us to produce a conservative, ergodic, σ-finite mea-
sure preserving transformation with simple Lebesgue spectrum. We
thus get an affirmative answer to the Banach problem from the Scot-
tish book.

Moreover, combining our result with that of [2], we provide a positive
answer to the Mahler’s problem in the class of Newman polynomials
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[19, p.6], [20],[71].

Our methods breaks down for the polynomials with coefficients ±1.
Thus, we are not able to answer the weaker form of Littlewood question
on the existence of L1-flat polynomials with coefficients ±1.

We notice that the flatness problem is connected to the number the-
ory and to some practical issues arising in the design of a mobile cellular
wireless OFDM system [86]. Consequently, it is related to some engi-
neering issues [37], [20], [21].

For the convenience of the reader, we repeat the relevant material
from [2],[4] and [99], without proofs, thus making our exposition self-
contained.

The paper is organized as follows. In section 2, we state our main
results. In section 3, we remind the notion of generalized Riesz products
and its connection to ergodic theory. In section 4, we present several
definitions of flatness in the class of analytic trigonometric polynomials
and the fundamental characterization of L1-flatness. In section 5, we
remind the notion of Singer and Sidon sets in the number theory, and
we establish that the L2-normalized Newman polynomials are not Lα-
flat, for α ≥ 4. Finally, we prove our main results in section 6.

2. Main results

Consider the torus T =
{
z ∈ C : |z| = 1

}
equipped with the

normalized Lebesgue measure dz. Let n0 < n1 < n2 < · · · be a
positive sequence of integers and put

Pn(z) =
n−1∑
j=0

ϵi
√
piz

ni ,

with |ϵi| = 1 and (p0, · · · , pn−1) is a probability vector. Such poly-
nomials are raised in the study of the spectral type of some class of
dynamical systems in ergodic theory. For more details we refer to [3] .
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Here, we restrict ourself to the case ϵi = 1 and pi = 1
n
. We thus

concentred our investigations on the flatness problem in the class of
polynomials of the from

Pn(z) =
1√
n

n−1∑
j=0

zni .

Following [2], this class is called class B.

We state our main results as follows.

Theorem 2.1. There exist a sequence of analytic trigonometric poly-
nomials

(
Pn

)
n∈N with coefficients 0 and 1 such that the polynomials

Pn(z)
∥Pn∥2 are flat in almost everywhere sense, that is,

Pn(z)

∥Pn∥2
−−−−→
n→+∞

1,

for almost all z with respect to the Lebesgue measure dz.

As a consequence, we obtain the following theorem.

Theorem 2.2. There exist a conservative ergodic measure preserving
transformation on σ-finite space (X,A, µ) with simple Lebesgue spec-
trum.

We further establish the following:

Theorem 2.3. Any sequence of analytic trigonometric polynomials(
Pn

)
n∈N with coefficients 0 and 1 is not Lα-flat, for any α ≥ 4.

We recall that T is a measure preserving transformation on σ-finite
space if (X,A, µ) is a Lebesgue space with µ is σ-finite measure and
nonatomic, and for any Borel set A, we have µ(T−1A) = µ(A). T is
ergodic if every invariant Borel set A under T (i.e. µ(T−1A∆A) = 0.),
we have µ(A) = 0 or µ(Ac) = 0, where Ac is the complement of A.

The key point in the proof of Theorem 2.2 is the construction of a
rank-one infinite measure preserving transformation with desired prop-
erties. This done by applying the cutting and staking method. We will
assume that the reader is familiar with this method and we refer to
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[45] for a nice account.

Theorem 2.2 answer affirmatively the long-standing problem attrib-
uted to Banach on the existence of dynamical system which simple
Lebesgue spectrum and with no-atomic measure. We remind that Ulam
in his book [98, p.76] stated the Banach problem as follows.

Questions (Banach Problem). Does there exist a square integrable
function f(x) and a measure preserving transformation T (x), −∞ <
x < ∞, such that the sequence of functions {f(T n(x));n = 1, 2, 3, · · · }
forms a complete orthogonal set in Hilbert space?

The most famous Banach problem in ergodic theory asks if there is
a measure preserving transformation on a probability space which has
simple Lebesgue spectrum. A similar problem is mentioned by Rokhlin
in [87]. Precisely, Rokhlin asked on the existence of an ergodic measure
preserving transformation on a finite measure space whose spectrum is
Lebesgue type with finite multiplicity. Later, Kirillov in his 1966’s pa-
per [59] wrote “there are grounds for thinking that such examples do
not exist”. However he has described a measure preserving action (due
to M. Novodvorskii) of the group (

⊕∞
j=1 Z)× {−1, 1} on the compact

dual of discrete rationals whose unitary group has Haar spectrum of
multiplicity 2. Similar group actions with higher finite even multiplic-
ities are also given.

Subsequently, finite measure preserving transformation having
Lebesgue component of finite even multiplicity have been constructed
by J. Mathew and M. G. Nadkarni [75], Kamae [57], M. Queffelec [85],
and O. Ageev [8]. Fifteen years later, M. Guenais produce a torsion
group action with Lebesgue component of multiplicity one [48]. How-
ever, despite all these efforts, it is seems that the question of Rokhlin
still open since the maps constructed does not have a pure Lebesgue
spectrum.

Our methods is far from making any contribution to this problem.
At know, it is seems that this problem is a “dark continent” for the
ergodic theory.
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Nevertheless, our results allows us to answer a question raised by
Bourgain on the supremum of the L1-norm over all polynomials from
class B [18]. Indeed, Theorem 2.1 gives the following

Corollary 2.4. β = sup
n>1

sup
k1<k2<k3<···<kn

∥∥∥ 1√
n

n∑
j=1

zkj
∥∥∥
1
= 1.

In [2], [9] and [32], the authors established already that β ≥
√
π
2
, and,

it easy to see that the simple case n = 2, k1 = 0, k2 = 1, gives β ≥ 2
√
2

π
.

We further have.

Corollary 2.5. There exist a sequence of analytic trigonometric poly-
nomials

(
Pk

)
k∈N with coefficients 0 and 1 such the Mahler measure of

the polynomials Pk

∥Pk∥2
converge to 1.

The Mahler measure of analytic trigonometric polynomials Pk is
given by

M(Pk) = exp
(∫

T
log
(∣∣Pk(z)

∣∣)dz).
Using Jensen’s formula [88], it can be shown that

M(Pk) =
1

√
mk

∏
|α|>1

|α|,

where, α denoted the zero of the polynomial
√
mkPk. In this defini-

tion, an empty product is assumed to be 1 so the Mahler measure of
the non-zero constant polynomial P (x) = a is |a|. A nice account on
the subject may be founded in [44, pp.2-11], [19].

The next proposition list some elementary properties of the Mahler
measure. For the reader’s convenience, we provide its proof.

Proposition 2.6. Let (X,B, ρ) be a probability space. Then, for any
two positive functions f, g ∈ L1(X, ρ), we have

(i) Mρ(f)
def
= exp

(
ρ(log(f))

)
is a limit of the norms ||f ||δ as δ goes

to 0, that is,

||f ||δ
def
=

(∫
f δdρ

) 1
δ

−−→
δ→0

Mρ(f),
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provided that log(f) is integrable.

(ii) If ρ
{
f > 0

}
< 1 then Mρ(f) = 0.

(iii) If 0 < p < q < 1, then
∥∥f∥∥

p
≤
∥∥f∥∥

q
.

(iv) If 0 < p < 1, then Mρ(f) ≤
∥∥f∥∥

p
.

(v) lim
δ−→0

∫
f δdρ = ρ

{
f > 0

}
.

(vi) Mρ(f) ≤
∥∥f∥∥

1
.

(vii) Mρ(fg) = Mρ(f)Mρ(g).

Proof. We start by proving (ii). Without loss of generality, assume that
f ≥ 0 and put

B =
{
f > 0

}
.

Let δ = 1/k be in ]0, 1[, k ∈ N∗. Then 1/(1/δ) + 1/(1 − δ) = 1/k +
(k − 1)/k = 1. Hence, by Hölder inequality, we have∫

f δdρ =

∫
f 1/k.1Bdρ

≤

(∫
(f 1/k)kdz

)1/k(∫
1
k/k−1
B dz

)k−1/k

≤

(∫
fdρ

)1/k(∫
1Bdz

)k−1/k

≤

(∫
fdρ

)1/k(
ρ(B)

)(k−1)/k

.

Thus we have proved

||f ||δ ≤

(∫
fdρ

)(
ρ(B)

)(1−δ)/δ

≤

(∫
fdρ

)(
ρ(B)

)k−1

−−−−→
k→+∞

0.
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To prove (i), apply the mean value theorem to the following functions{
δ 7−→ xδ, if x ∈]0, 1[;
t 7−→ tδ, if x > 1,

Hence, for any δ ∈]0, 1[ and for any x > 0, we have∣∣∣∣∣xδ − 1

δ

∣∣∣∣∣ ≤ x+
∣∣∣log(x)∣∣∣.

Furthermore, it is easy to see that

f δ − 1

δ
=

eδ log(f) − 1

δ
−−→
δ→0

log(f),

and, by Lebesgue dominated convergence theorem, we get that∫
f δ − 1

δ
dρ −−→

δ→0

∫
log(f)dρ.

On the other hand, for any δ ∈]0, 1[, we have∣∣∣∣f ∣∣∣∣
δ
= exp

(
1

δ
log

(∫
f δdρ

))
,

and for a sufficiently small δ, we can write

1

δ
log

(∫
f δdρ

)
∼
∫

f δ − 1

δ
dρ

since log(x) ∼ x− 1 as x −→ 1. Summarizing we have proved

lim
δ−→0

||f ||δ = exp

(∫
log(f)dρ

)
= Mρ(f).

For the proof of (iii) and (iv), notice that the function x 7→ x
q
p is

a convex function and x 7→ log(x) is a concave function. Applying

Jensen’s inequality to

∫ ∣∣f ∣∣pdρ we get

∥∥f∥∥
p
≤
∥∥f∥∥

q
,

∫
log(

∣∣f ∣∣)dρ ≤ log
(∥∥f∥∥

p

)
,

and this finishes the proof, the rest of the proof is left to the reader.
□
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Using the classical Beurling’s outer and inner decomposition,
el Abdalaoui and Nadkarni in [2] computed the Mahler measure of
Pk. They further apply the Hp theory to establish a formula for the
Mahler measure of the generalized Riesz product. We recall a part of
this in the next section.

3. Generalized Riesz products and connection to ergodic
theory

The classical notion of Riesz products is based on the notion of dis-
sociation, which can be defined as follows.

Consider the polynomial P (z) = 1 + z. Then, we have

P (z)2 = 1 + z + z + z2.

For any integer N ≥ 2 , we can write

P (z)P (zN) = 1 + z + zN + zN+1.

In the first case we group terms with the same power of z, while in the
second case all the powers of z in the formal expansion are distinct.
In the second case we say that the polynomials P (z) and P (zN) are
dissociated. More generally, we have

Lemma 3.1 ([4]). If P (z) =
m∑

j=−m

ajz
j, Q(z) =

n∑
j=−n

bjz
j, m ≤ n, are

two trigonometric polynomials then for some N , P (z) and Q(zN) are
dissociated.

It is well know that if the sequence of polynomials (|Pj|2) is dissoci-
ated (each finite product has dissociation property) with constant term

equal to 1. Then, the sequence of probability measures
( N∏

j=1

|Pj|2dz
)

converge to some probability measure called a Riesz product and de-

noted by
+∞∏
j=1

|Pj|2.

More generally, we have the following definition:
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Definition 3.2. Let P1, P2, · · · , be a sequence of trigonometric poly-
nomials such that

(i) for any finite sequence i1 < i2 < · · · < ik of natural numbers∫
S1

∣∣∣(Pi1Pi2 · · ·Pik)(z)
∣∣∣2dz = 1,

where S1 denotes the circle group and dz the normalized Lebesgue
measure on S1,

(ii) for any infinite sequence i1 < i2 < · · · of natural numbers the
weak limit of the measures | (Pi1Pi2 · · ·Pik)(z) |2 dz, k = 1, 2, · · ·
as k → ∞ exists.

Then the measure µ given by the weak limit of | (P1P2 · · ·Pk)(z) |2 dz
as k → ∞ is called generalized Riesz product of the polynomials | P1 |2
, | P2 |2, · · · and denoted by

µ =
∞∏
j=1

∣∣Pj

∣∣2. (1.1)

Connection to ergodic theory and rank one transformations.
Using the cut and stack procedure described in [45], [46], one can
construct inductively a family of measure-preserving transformations,
called rank one transformations or rank one maps, as follows.

Let B0 be the unit interval equipped with Lebesgue measure. At
stage one we divide B0 into m0 equal parts, add spacers and form a
stack of height h1 in the usual fashion. At the kth stage we divide the
stack obtained at the (k − 1)th stage into mk−1 equal columns, add
spacers and obtain a new stack of height hk. If during the kth stage
of our construction the number of spacers put above the jth column of

the (k−1)th stack is a
(k−1)
j , 0 ≤ a

(k−1)
j < ∞, 1 ≤ j ≤ mk, then we have

hk = mk−1hk−1 +

mk−1∑
j=1

a
(k−1)
j .

Proceeding in this way, we get a rank one map T on a certain measure
space (X,B, | . |) which may be finite or σ−finite depending on the
number of spacers added.
The construction of a rank one map thus needs two parameters, (mk)

∞
k=0

(cutting parameter), and ((a
(k)
j )mk

j=1)
∞
k=0 (spacers parameter). Put
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T
def
= T

(mk,(a
(k)
j )

mk
j=1)

∞
k=0

In [34] and [61] it is proved that the spectral type of this map is given
(up to possibly some discrete measure) by

dµ = W∗ lim
n∏

k=1

∣∣Pk

∣∣2dz,(3.1)

where

Pk(z) =
1

√
mk

(
1 +

mk−1∑
j=1

z−(jhk+
∑j

i=1 a
(k)
i )

)
,

W∗ lim denotes weak star limit in the space of bounded Borel measures
on T.

pk towers

Bk

· · · · · ·

...

...

...

...

Bk+1

a
(k)
2

a
(k)
1

a
(k)
i a

(k)
pk

· · ·

· · ·

...

· · ·

Fig. (k + 1)th tower.

Stade k :
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As mentioned by Nadkarni in [76], the infinite product

+∞∏
l=1

∣∣Pjl

(
z)|2

taken over a subsequence j1 < j2 < j3 < · · · , also represents the max-
imal spectral type (up to discrete measure) of some rank one maps. In
case jl ̸= l for infinitely many l, the maps acts on an infinite measure
space.

The spectrum of any rank one map is simple and using a random
procedure, D. S. Ornstein produced a family of mixing rank one maps
[80]. It follows that Ornstein’s class of maps may possibly contain
a candidate for Banach’s problem. Unfortunately, in 1993, J. Bour-
gain proved that almost surely Ornstein’s maps have singular spec-
trum [18]. Subsequently, using the same methods, I. Klemes [60]
showed that the subclass of staircase maps has singular maximal spec-
tral type. In particular, this subclass contains the mixing staircase
maps of Adams-Smorodinsky [6]. Using a refinement of Peyrière crite-
rion [83], I. Klemes & K. Reinhold proved that the rank one maps have
a singular spectrum if the inverse of the cutting parameter is not in ℓ2

(that is,
∑+∞

k=1
1
m2

k
= +∞, where (mk) ⊂

{
2, 3, 4, · · ·

}
is the cutting pa-

rameter) [61]. This class contains the mixing staircase maps of Adams
&
Friedman [7]. In 1996, H. Dooley and S. Eigen adapted the Brown-
Moran methods [49, pp.203-209] and proved that the spectrum of a
subclass of Ornstein maps is almost surely singular [36].

Later, el Abdalaoui-Parreau and Prikhod’ko extended Bourgain the-
orem [18] by proving that for any family of probability measures in Orn-
stein type constructions, the corresponding maps have almost surely a
singular spectrum [5]. They obtained the same result for Rudolph’s
construction [89]. In 2007, el Abdalaoui showed that the spectrum of
the rank one map is singular provided that the spacers (aj)

mk
j=1 ⊂ N,

are lacunary for all k [1]. The author used the Salem-Zygmund cen-
tral limit theorem methods. As a consequence, the author presented a
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simple proof of Bourgain’s theorem [18].

Recently, by appealing to a martingale approximation technique, C.
Aistleitner and M. Hofer [10] proved a counterpart of the result of
[1]. Precisely, they proved that the spectrum of the rank one maps
is singular provided that the cutting parameter (mk) ∈ N∗ and the
spacers (aj)

mk
j=1 ⊂ N satisfy

(i)
log(mkn)

hkn

converge to 0;

(ii) the proportion of equal terms in the spacers is at least c.mkn for
some fixed constant c and some subsequence (kn).

We further recall that I. Klemes & K. Reinhold in [61] conjectured
that all rank one maps have singular spectrum, and in the same spirit,
C. Aistleitner and M. Hofer wrote in the end of their paper “several
authors believe that all rank one transformations could have singular
maximal spectral type.”. It seems that this conjecture was formu-
lated since Baxter result [12], [96]. We remind that the cutting and
stacking rank one construction may goes back to Ornstein’s paper in
1960 [79]. Indeed, therein, Ornstein constructed a non-singular map for
which there is non σ-finite measure equivalent to Lebesgue measure. Of
course, this example is connected to the example of non-singular map
with simple Lebesgue component obtain by el Abdalaoui and Nadkarni
[3]. Notice that in [80], the rank one maps are called transformations
of class one.

It follows from Bourgain’s observation ((eq 2.15)[18]) that if the spec-
tral type of any rank one map acting on infinite measure is singular
then the spectral type of any rank one is singular. Unfortunately, by
our main result, this strategy fails. Therefore, the new approaches are
needed to tackle this conjecture.

We remind that in [2], it is proved that if µ =
+∞∏
n=1

|Pn|2, then the

absolutely continuous part dµ
dz

verify
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∥∥∥∥∥
N∏

n=1

|Pn| −
√

dµ

dz

∥∥∥∥∥
1

−−−−→
N→+∞

0.

Furthermore, the Mahler measure of µ 1 satisfy

M
(dµ
dz

)
=

+∞∏
n=0

M(P 2
n).(3.2)

We further remind from [2] the following notion of generalized Riesz
products from dynamical origin.

Definition 3.3. A generalized Riesz product µ =
∞∏
j=1

∣∣Qj(z)
∣∣2, where

Qj(z) =

nj∑
i=0

bi,jz
ri,j , bi,j ̸= 0,

nj∑
i=0

∣∣bi,j∣∣2 = 1,
∞∏
j=1

∣∣bnj ,j

∣∣ = 0, is said to be

of dynamical origin if with

h0 = 1, h1 = rn1,1 + h0, · · · , hj = rnj ,j + hj−1, j ≥ 2

it is true that for j = 1, 2, · · · ,

r1,j ≥ hj−1, ri+1,j − ri,j ≥ hj−1.

If, in addition, the coefficients bi,j are all positive, then we say that µ
is of purely dynamical origin.

The following is proved in [2] .

Lemma 3.4. Given a sequence Pn =
mn∑
j=0

aj,nz
j, , n = 1, 2, · · · of an-

alytic trigonometric polynomials in L2(S1, dz) with non-zero constant

1The Mahler measure of the finite measure µ on the circle is given by

M
(dµ
dz

)
= inf

P
∥P − 1∥L2(µ),

where P ranges over all analytic trigonometric polynomials with zero constant term.
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terms and L2(S1, dz) norm 1,
∞∏
n=1

∣∣amn,n

∣∣ = 0. Then there exist a se-

quence of positive integers N1, N2, · · · such that

∞∏
j=1

∣∣∣Pj(z
Nj)
∣∣∣2

is a generalized Riesz product of dynamical origin.

Applying carefully the previous lemma, the following theorem is
proved in [2].

Theorem 3.5. Let Pj, j = 1, 2, · · · be a sequence of non-constant poly-
nomials of L2(S1, dz) norm 1 such that lim

j→∞

∣∣Pj(z)
∣∣ = 1 a.e. (dz)

then there exists a subsequence Pjk , k = 1, 2, · · · and natural numbers
l1 < l2 < · · · such that the polynomials Pjk(z

lk), k = 1, 2, · · · are dis-

sociated and the infinite product
∞∏
k=1

∣∣Pjk(z
lk)
∣∣2 has finite nonzero value

a.e (dz).

4. flats polynomials

A sequence Pj, j = 1, 2, · · · of trigonometric polynomials is said to

be Lp-flat if the sequence
|Pj |
∥Pj∥2 , j = 1, 2, · · · converge to the constant

function 1 in the Lp-norm, p ∈ [1,+∞], p ̸= 2 . If p = +∞ the se-
quence Pj is said to be ultraflat.

The flatness issue can be considered for three class of analytic trigono-
metric polynomials. The polynomials with non-negative coefficients,
the Littlewood polynomials which correspond to the polynomials with
coefficients ±1, and the Newman polynomials which correspond to the
polynomials with coefficients 0 or 1 and the constant term 1. For all
those polynomials, it seems that the existence of Lp-flat polynomials is
unknown.

The following notion of almost everywhere flatness is introduced in
[2].
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Definition 4.1. A sequence Pj, j = 1, 2, · · · of trigonometric polyno-
mials with L2-norm one is said to be flat almost everywhere, if Pj(z)
converge almost everywhere to 1 with respect to dz.

Applying Vitali convergence theorem [88] one can see that if Pj is
almost everywhere flat then Pj is L1-flat. In the opposite direction, if
Pj is L

1-flat then one can drop a subsequence over which Pj is almost
everywhere flat.

We further have the following.

Proposition 4.2. Let (Pn)n∈N be a sequence of analytic trigonometric
polynomials with L2-norm one. Then, the following are equivalent

(1)
(
Pn

)
is L1-flat,

(2)
(
∥Pn∥1

)
converge to 1.

Moreover, if
(
Pn

)
is almost everywhere flat then

∥|Pn|2 − 1∥1 −−−−→
n→+∞

0.

Proof. (1) implies (2) is straightforward. For (2) implies (1), notice
that

∥|Pn| − 1∥22 = 1 = 2
(
1− ∥Pn∥1

)
.(4.1)

For the last fact, by Cauchy-Schwarz inequality, we have

∥|Pn|2 − 1∥1 ≤ ∥|Pn| − 1∥2∥|Pn|+ 1∥2 ≤ 2∥|Pn| − 1∥2.

The last inequality is due to ∥Pn∥2 = 1 combined with the triangle
inequality. Thus, it is suffice to see that

∥|Pn| − 1∥2 −−−−→
n→+∞

0.

But, by (4.1), this equivalent to (∥Pn∥1)n∈N converge to 1 which follows
from the Vitali convergence theorem. □

We remind that the classical strategy introduced by Newman and
Beller to produce the L1-flat polynomials is based on the reduction of
the problem of L1-flatness to L4-flatness problem. For the polynomials
form class B this strategy fails. This is proved in [2]. In the next
section we will prove much more by giving the proof of Theorem 2.3.
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5. Sidon sets, Singer sets and flatness

Let R be a positive integer and let S = {s1 < s2 < s3 < · · · < sR}
be a subset of [0, R). Put

[S − S]+ =
{
sj − si, i < j

}
=
{
r1, r2, · · · , rN(n)

}
.

Evidently, [S − S]+ is a subset of [0, R) since

0 ≤ sj − si ≤ sj < sR < R.

It can be useful to see [S−S]+ as a upper part of the following matrix

MS =



0 s2 − s1 s3 − s1 · · · sR−1 − s1 sR − s1
· 0 s3 − s2 · · · sR−1 − s2 sR − s2
· · 0 s4 − s3 · · · sR − s3
...

...
...

...
...

...
· · · · · · 0 sR − sR−1

. . · · · 0


We will denote by m(l) the multiplicity of rl which correspond to

the number of the pair (si, sj) such that sj − si = rl, and we set

M(R) = sup
{
m(l), l = 1, · · · , N(R)

}
.

Following Chidambaraswamy and Kurtz-Shah [27], [65], the sequence{
s1 < s2 < s3 < · · · < sR

}
is δ-admissible ifM(R) = δ, δ ≥ 1. If δ = 1,

then S is called Sidon set. We remind that the classical definition of
Sidon sets goes back to Sidon how introduce the notion in 1932 or 1933
according to Erdös [40]. This definition can be stated as follows.

Definition 5.1. A set S is called a Sidon set if all the sums s + t,
s ≤ t ∈ S, are distinct.

More generally, one can defined Bh[g] sets, where h and g are a pos-
itive integers. A subset A of [1, N ] is said to be Bh[g] set if the linear

equation n =
∑h

i=1 ai, has at most g solutions up to permutations.
B2[1] correspond to the Sidon sets. It is easy to see that a subset is
Sidon set if and only if all the difference are distinct. This last property
is not shared with the Bh[g] sets, h ≥ 3 [62].
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Sidon asked on the maximal size of the Sidon set subset of {1, · · · , H}.
Erdös and Turán [40] proved that if T ⊂ [0, H] is a Sidon set then

|T | <
√
H + 10

4
√
H + 1.

Lindström strengthened this result and proved [67]

|T | <
√
H +

4
√
H + 1.

In the other direction it has been shown by Chowla [28] and Erdös
using a theorem of Singer [94] that

|T | ≥
√
H − o(

√
H).

Nowadays, it is customary to use algorithmically a Singer’s theorem
to produce a Sidon subset of the given set {1, · · · , N}. Furthermore,
the construction can be used to produce a Sidon subset with some
desired proprieties of its sumsets [51, p.83], [90]. We notice that Singer
established his theorem in the finite projective geometry setting. In
the number theoretic setting, the theorem can be stated as follows.

Theorem 5.2 (Singer [94]). Let p be a prime and let q = p2 + p + 1.
Then, there exist A ⊂ Z/qZ with |A| = p + 1 such that for all x ∈
Z/qZ \ {0}, there exist a1, a2 such that x = a1 − a2.

Such set, in which every non-zero difference mod q arises exactly one
is called a perfect difference set or Singer set. For the construction of
Singer set, we refer the reader to [94]. Using the Singer sets, Erdös-
Sárközy-Sós [42], [43] and Rusza [90], [91] constructed a Sidon set S
subset of {1, · · · , N} such that

|S| ≥
√
N − o(

√
N) (ER),

With some desired properties.

We notice that Singer’s construction is based on the nice properties
of finite fields [94].

Let us further mention that the lower bound and the upper bound
of the quantities M(R) and N(R) can be obtained by considering the
following toy examples.
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For the first example we take si = i. This gives

PS(z) =
1√
R

R∑
i=1

zi,

and ∣∣∣PS(z)
∣∣∣2 = 1 +

1

R

R∑
l=1

(R− l)zl +
1

R

R∑
l=1

(R + l)z−l.

Therefore M(R) = R − 1 and N(R) = R. We thus have M(R) is
maximal and N(R) is minimal. Indeed, For any n ∈ N∗, the number
of solution of the equation n = sj − si is less than R − n since any
solution (sj, si), when it exists, satisfy n ≤ sj ≤ R.

The second example correspond to the case for which the support
of the Fourier transform is a Sidon subset S of [1, R]. In this case

M(R) = 1 and N(R) = |S|(|S|−1)
2

. Indeed, by definition of the Sidon set
all (sj−si) are distinct. Hence, the first row of the matrix MS contain
R − 1 elements, the second row R − 2, and the last row one element.
By adding, we get

(R− 1) + (R− 2) + · · ·+ 1 =
R(R− 1)

2
.

Whence M(R) is minimal and N(R) is maximal. It is seems that the
quantity M(R)N(R) is balanced.

It is hidden in the proof given by Chidambaraswamy [27] that the L2-
norm of the polynomials (|Pn(z)|2− 1) does not converge to 0. Indeed,
write ∣∣∣Pn(z)

∣∣∣2 − 1 =
1

n

N(n)∑
l=1

m(l)zrl +
1

n

N(n)∑
l=1

m(l)z−rl ,

where m(l) is the multiplicity of rl given by

m(l) =
∣∣∣{(i, j) : sj − si = rl

}∣∣∣,
and rl is defined by{

sj − si, j < i
}
=
{
r1, r2, · · · , rN(n)

}
.
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Whence ∥∥∥|Pn(z)|2 − 1
∥∥∥2
2

=
2

n2

N(n)∑
j=1

m(j)2

≥ 2

n2

N(n)∑
j=1

m(j)

≥ 2

n2

n(n− 1)

2
,

since
N(n)∑
j=1

m(j) =
n(n− 1)

2
.

Therefore ∥∥∥|Pn(z)|2 − 1
∥∥∥2
2
≥ 1 +

1

n
,

which complete the proof of the claim. From this it easy to see that
∥Pn∥4 ≥ 2, for any n. Hence, ∥Pn∥4 never converge to 1. We thus get
that for any α ≥ 4, (Pn) are not Lα-flat, since if not then ∥Pn∥α will
converge to 1 which is impossible. This achieve the proof of Theorem
2.3.

6. Proofs of the main results

Let us first outline the main ideas of our strategy. The proof is
divided into two part. In the first part, we construct a sequence of
analytic polynomials (Pq), q = p2 + p+ 1 and p prime with coefficents
given by the indicator function of Singer sets, and we proved that the
sequences |P (zq,j| where zq,j are not trivial q-root of unity, converge to
1. We proceed next to establish that the sequence of analytic poly-
nomials (Pq) is Lα-flat, α ∈ (0, 2). For that we need to estimate the
Lα-norms of the sequence of trigonometric polynomials (|Pq|2−1). For
that, we use Marcinkiewicz-Zygmund inequalities with the nodal points{
zq,j,δ

}
j=0,··· ,2q−1

given by the q-root of unity and its δ-perturbation.

This sequence of the nodal points has the property that each element
is invariant under the map j 7→ j + q. Therefore, by taking into ac-
count the nice properties of Singer sets, we conclude that the sequence
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∥∥∥
α

)
, α ∈ (0, 2) converge to zero.

In the second part, we use the material from [2],[3] and [4] to con-
clude that there exist a conservative map on σ-finite measure space with
simple Lebesgue spectrum. This answer affirmatively Banach question
from the Scottish book. As a consequence, we obtain an answer to
Bourgain’s question and Mahler’s question.

Let us now proceed to the proof.

We start by putting, for any finite subset of integer A,

PA(z) =
1√
|A|

∑
a∈A

za, z ∈ T,

Where |A| is the number of elements in A. The L2-norm of PA is one
since ∣∣PA(z)

∣∣2 = 1 +
1

|A|
∑

a,b∈A−A

a ̸=b

zb−a,(6.1)

where A− A is the set of difference of A.
If |A−A| = |A|2 then A is a Sidon set. The nice properties of Singer’s
set allows us to prove the following.

Lemma 6.1. Let p be a prime number and S a Singer set of Z/qZ
with q = p2 + p+ 1.. Then for any r ∈ Z/qZ \ {0}, we have∣∣∣PS

(
e2πi

r
q
)∣∣∣ =√ p

p+ 1
.

Proof. Applying (6.1) we get

∣∣∣PS

(
e2πi

r
q
)∣∣∣2 = 1 +

1

|S|

q−1∑
t=1

e2πi
t.r
q

= 1− 1

|S|
,
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since

q−1∑
t=0

e2πi
t.r
q = 1 +

q−1∑
t=1

e2πi
t.r
q = 0.

Therefore, we can write∣∣∣PS

(
e2πi

r
q
)∣∣∣2 = |S| − 1

|S|
=

p

p+ 1
,

and the proof of the lemma is complete. □

The second main ingredient of our proof is based on the classical
Marcinkiewicz-Zygmund inequalities (see [99, Theorem 7.5, Chapter
X, p.28]) and some ideas linked to its recent refinement obtained by
Chui-Shen-Zhong [31] and many others authors. Therefore, by ap-
pealing to some classical results form the Hp theory and interpolation
theory of Carleson, we will gives an alternative proof to the proof given
in [?].

Dn is the Dirichlet kernel, Kn is the Fejér kernel and Vn is the de la
Vallé-Poussin kernel. We remind that

Dn(x) =
n∑

j=−n

e2πijx =
sin
(
π(2n+ 1)x

)
sin(πx)

,

Kn(x) =
n∑

j=−n

(
1− |j|

n+ 1
e2πijx

)
=

1

n+ 1

{
sin
(
π(n+ 1)x

)
sin(πx)

}2

,

and

Vn(x) = 2K2n+1(x)−Kn(x).

We also put

D∗
n(e

2πix) =
n−1∑
j=0

e2πijx.
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We recall that the Poisson kernel Pr, 0 < r < 1, is given by

Pr(θ) =
+∞∑
−∞

r|n|einθ

=
1− r2

|1− reiθ|2
(6.2)

=
1− r2

1− 2r cos(θ) + r2
.

This kernel is related to the Cauchy kernel Cr(θ)
def
=

1

1− reiθ
by the

following relation

Pr = Re(Hr), where Hr = 2Cr − 1.

The imaginary part of Hr is called the conjugate Poisson kernel and
denoted by

Qr(θ) =
2r sin(θ)

1− 2r cos(θ) + r2
.

Let us also remind that if f = u+ iũ is analytic in the closed disc with
f(0) is real then

f(reiθ) = u ∗Hr(θ),

and
ũ(θ) = u ∗Qr(θ).

We notice that ũ is the harmonic conjugate to u, which vanishes at
the origin, and of course, Qr is the the harmonic conjugate to Pr. For
f ∈ L1(T), the harmonic conjugate of f is given by

f̃(reiθ) = Qr ∗ f(θ) = −i
+∞∑

n=−∞
n ̸=0

n

|n|
r|n|f̂(n)eint.

It is well known that the radial limit of f̃(reiθ) exist almost everywhere,

and this radial limit denoted by f̃ is the conjugate function of f .

We will use often the following classical property: If F = exp(H),
where H is an analytic function. Then

|F | = exp(Re(H)).



ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS,... 27

Given a continuous function f on the torus T and a triangular family
of equidistant points zn,j ∈ T, j = 0, · · · 2n, n ∈ N∗, that is,

zn,j = zn,0 +
j

2n+ 1
, j = 0, · · · , 2n.

We define the Lagrange polynomial interpolation of f at {zn, j} by

Ln(f, {zn, j})(e2πix) =
1

2π

∫ 2π

0

f(t)Dn(x− zn,j)dω2n+1(t),

where ω2n+1 is a function defined by

ω2n+1(t) =
2πj

2n+ 1
for

2πj

2n+ 1
≤ t <

2π(j + 1)

2n+ 1
, j = 0,±1,±2, · · · .

ω2n+1 is a step function with jump 2π
2n+1

at the points 2πj
2n+1

and dω2n+1

its Riemann-Stieltjes integral. In the same manner, we define the step
function ωm, for any m ∈ N∗ and we denote its Riemann-Stieltjes inte-
gral by dωm.

We will need the following classical inequality due to S. Bernstein
and A. Zygmund. For its proof, we refer to [99, Theorem 3.13, Chapter
X, p. 11].

Theorem 6.2. [Bernstein-Zygmund inequality]. For any p ≥ 1, for
any polynomial P of degree n, we have∥∥P ′∥∥

p
≤ n

∥∥P∥∥
p
,

where P ′ is the derivative of P . The equality holds if and only if
P (eix) = M cos(nx+ ξ).

Máté, Nevai and Arestov extended Bernstein-Zygmund inequality by
proving that it is valid for p ≥ 0. [19, p.142]. For p = 0, the result is
due to Mahler, a simple proof can be found in [44]. Although we will
not need this result in such generality.

The Marcinkiewicz-Zygmund interpolation inequalities assert that
for α > 1, n ≥ 1, and a polynomial P of degree ≤ n− 1,

Aα

n

n−1∑
j=0

∣∣P (e2πi
j
q )
∣∣α ≤

∫
T

∣∣∣P (z)
∣∣∣αdz ≤ Bα

n

n−1∑
j=0

∣∣P (e2πi
j
q )
∣∣α,(6.3)
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where Aα and Bα are independent of n and P .

The left hand inequality in (6.3) is valid for any non-negative non-
decreasing convex function and in the more general form [99, Remark,
Chapter X, p. 30].

The next lemma is crucial for the proof of our main result.

Lemma 6.3. Let p be a prime number and S a Singer set of Z/qZ
with q = p2 + p+ 1. Then, for any α > 1, we have

1

q

q−1∑
r=0

∣∣∣PS

(
e2πi

r
q
)∣∣∣α =

1

q

(
(p+ 1)

α
2 + (q − 1)

( p

p+ 1

)α
2
)
.

Proof. It is straightforward from Lemma 6.1. □

Lemma 6.3 yields for any 0 < α < 4,

lim
q−→+∞

1

q

q−1∑
r=0

∣∣∣PS

(
e2πi

r
q
)∣∣∣α = 1.(6.4)

Now, following the strategy in [31], we perturb the root of unity as
follows. Put

tq,r =
r

q
, and

t∗q,r =
r

q
± δ

q.p1/2+ϵ
, δ > 0, ϵ > 0.

We thus have

Lemma 6.4. For any 0 < α < 4,

lim
q−→+∞

1

q

q−1∑
r=0

∣∣∣PS

(
e2πit

∗
q,r
)∣∣∣α = 1.

Proof. Applying Bernstein theorem (Theorem 6.2), we get∣∣P (e2πitr,q)− P (e2πit
∗
q,r,δ)

∣∣ ≤ q∥PS∥∞
∣∣∣e2πitr,q − e2πit

∗
q,r,δ

∣∣∣
≤

√
p+ 1

2π

δ

p1/2+ϵ
−−−→
q→∞

0.



ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS,... 29

This combined with the standard triangle inequalities gives∣∣∣∣∣
(
1

q

q−1∑
r=0

∣∣∣PS

(
e2πitq,r

)∣∣∣α) 1
α

−

(
1

q

q−1∑
r=0

∣∣∣PS

(
e2πit

∗
q,r,δ
)∣∣∣α) 1

α
∣∣∣∣∣

≤

(
1

q

q−1∑
r=0

∣∣∣PS

(
e2πitq,r

)
− PS

(
e2πit

∗
q,r,δ
)∣∣∣α) 1

α

≤
√
p+ 1

2π

δ

p1/2+ϵ
−−−→
q→∞

0,

and the proof of the lemma is complete. □

Lemma 6.4 allow us to construct a new families of nodal points for
which (6.4) holds.

Now, we will follows the spirit of this strategy to prove our main
results.

6.1. Proof of Theorems 2.1, 2.2. Following the spirit of the Kadets
1/4 theorem for polynomials due to Marzo-Seip [74], and the very re-
cent refinement of the Marcinkiewicz-Zygmund inequalities, we start
by establishing a necessary and sufficient conditions for a sequence of
the analytic trigonometric polynomials to be Lα-flat, α > 0.

Let S be a fixed Singer set in Z/qZ with q = p2 + p + 1, p prime
number and put

Pq(z) = PS(z).

Define

zj,q = e2πi
j
q ,

and for a given δq,j > 0, j = 0, · · · , q − 1, we put

z∗r,q,(δq,j) = e2πi
(

j
q
+

δq,j
q

)
.

Let δ > 0. We define

zr,2q,δ =

{
z r

2
,q, if r is even;

z∗r−1
2

,q,δ
, if r is odd,
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with δq,j = δ, j = 0, · · · , q − 1, and ρq = 1− 1
2q
. We thus have{

zr,2q,δ

}
=
{
zr,q

}q−1

r=0

∪{
z∗r,q,δ

}q−1

r=0
,

and we set

F2q−1(z) =

2q−1∏
r=0

(
1− ρqzr,2q,δz

)
, where ρq =

2q − 1

2q
.

We remind that the family of nodal points Z =
{
{zj,n}nj=0

}
n≥0

is said

to be an Lα Marcinkiewicz-Zygmund family if the Lα Marcinkiewicz-
Zygmund inequalities holds for the nodal points {zj,n}nj=0, for every
n ≥ 0.

We associate to any family of nodal points Z =
{
{zj,n}nj=0

}
n≥0

the

function Fn defined by

Fn(z) =
n∏

r=0

(
1− ρnzr,nz

)
, where ρn = 1− 1

n+ 1
.

The family Z is said to be uniformly separated if there is a positive
number c such that

inf
j ̸=k

∣∣zn,j − zn,k
∣∣ ≥ c

n+ 1
, ∀ n ≥ 0.

This notion is related to the notion of Carleson measures and following
[93] the sequence X = {ξn} of points in the open unit disk D is said to
satisfy Carleson’s condition if,

γ = inf
k

∞∏
j=1

j ̸=k

∣∣∣ ξj − ξj

1− ξkξj

∣∣∣ > 0.(6.5)

Of course this condition is connected to the well-known Carleson’s in-
terpolation theorem [26]. For the proof of Carleson’s interpolation the-
orem, we refer the reader to [38, p.157], [63, p.1], [47, p.274].

We remind that a finite measure µ is a Carleson measure if the
injection mapping from Hα, α > 0 to the space Lα(D, µ) is bounded.
These measures were described geometrically in Carleson’s theorem
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[25], [38, p.156], which assert that the finite measure µ is a Carleson
measure if and only if there exist a constant Cα > 0 such that∫

D
|f(z)|αdµ ≤ Cα

∥∥f∥∥α
Hα f ∈ Hα,

for any α > 0 . Furthermore, by Carleson’s interpolation theorem, we
have that the discrete measure µ given by

µ =
+∞∑
n=1

(1− |zk|2)δzk ,

where δw is the Dirac measure on w, is a Carleson measure if the family
{zk} is uniformly separated. This result was strengthened in [15] by
McDonald and Sundberg [72], who proved that the sequence {zk} of
points in D generates a discrete Carleson measure µ if and only if {zk}
is a finite union of uniformly separated sequences. For a simple proof,
we refer to [39]. We notice that if the sequence is uniformly separated
then the constant Cα depend uniquely on γ. In this setting, we have
the following lemma

Lemma 6.5. The sequences Z =
{{

ρqzr,q
}}

q≥0
and Z∗ ={{

ρqz
∗
r,q,δ

}}
q≥0

are uniformly separated sequences.

Proof. Put

ξ∗r = ρqz
∗
r,q,δ = ρqe

itr,q ,

where tr,q = 2π( r
q
+ δ

q
), r = 0, · · · , q − 1. Then

∣∣∣ ξ∗r − ξ∗s
1− ξ∗sξ

∗
r

∣∣∣2 =
2ρ2q

(
1− cos

(
tr,q − ts,q

))
1− 2ρ2q cos

(
tr,q − ts,q

)
+ ρ4q

=
4ρ2q

(
sin
( tr,q−ts,q

2

))2
(
1− ρ2q

)2
+ 4ρ2q

(
sin
( tr,q−ts,q

2

))2
=

4ρ2q

(
sin
(
π r−s

q

))2
(
1− ρ2q

)2
+ 4ρ2q

(
sin
(
π r−s

q

))2(6.6)



32 E. H. EL ABDALAOUI

Notice that π. r−s
q

∈]−π, π[, and the function x 7→ sin2(x) is an even

function. We further have, for any x ∈ R,

sin2(x− π) = sin2(x).

Therefore, we can reduce our study to the case of π. r−s
q

∈]0, π/2], and
if π. r−s

q
∈ [π/2, π[ we substitute π. r−s

q
by π. r−s

q
− π ∈ [−π/2, 0[.

Now, assuming π. r−s
q

∈]0, π/2], it follows that

sin2
(
π.
r − s

q

)
≥ 4

(r − s)2

q2
,

since, for any x ∈]0, π/2], we have sin(x) ≥ 2

π
x. Whence

4ρ2q

(
sin
(
π r−s

q

))2
(
1− ρ2q

)2
+ 4ρ2q

(
sin
(
π r−s

q

))2 ≥
4ρ2q

(
4 (r−s)2

q2

)
(
1− ρ2q

)2
+ 4ρ2q

(
4 (r−s)2

q2

) ,(6.7)

by the monotonicity of the function ϕ(x) =
4ρ2qx(

1− ρ2q
)2

+ 4ρ2qx
.

We further have (
1− ρ2q

)2 ≤ 8ρ2q
q2

≤
16ρ2q
q2

,

since, for any n ≥ 1, (n− 1) ≤ 2
√
2(n− 1). This combined with (6.6)

and (6.7) gives ∣∣∣ ξ∗r − ξ∗s
1− ξ∗sξ

∗
r

∣∣∣2 ≥ (r − s)2

1 + (r − s)2
.(6.8)

We thus get

inf
s

q−1∏
r=0
r ̸=s

∣∣∣ ξ∗r − ξ∗s
1− ξ∗sξ

∗
r

∣∣∣2 ≥ +∞∏
t=1

(1− 1

1 + t2
)
def
= γ2 > 0,

by the convergence of
+∞∑
t=1

1

1 + t2
. □
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It follows from Lemma 6.5 that the union of the families Z and Z∗

generates a Carleson measure since the sum of two Carleson measures
is a Carleson measure. We further deduce the following

Lemma 6.6. The sequence Z =
{{

ρqzr,q
}}

q≥0
∪
{{

ρqz
∗
r,q,δ

}}
q≥0

is

uniformly separated, and we have

inf
ξ∈Z

∏
χ∈Z
χ ̸=ξ

∣∣∣ χ− ξ

1− ξχ

∣∣∣ ≥ γ2.
δ√

1 + δ2
,

where

γ2 =
+∞∏
t=1

(
1− 1

1 + t2

)
.

Proof. Put

ξr = ρqzr,q, and ξ∗r = ρqz
∗
r,q,δ,

and let ξs ∈ Z, s = 0, · · · q − 1. Then, either ξs ∈
{
ρqzr,q

}
or ξs ∈{

ρqz
∗
r,q,δ

}
. Assuming that ξs ∈

{
ρqzr,q

}
, it follows that

∏
χ∈Z
χ ̸=ξ

∣∣∣ χ− ξ

1− ξχ

∣∣∣ =
∏
r ̸=s

∣∣∣ ξr − ξs

1− ξsξr

∣∣∣ q−1∏
r=0

∣∣∣ ξ∗r − ξs

1− ξsξ∗r

∣∣∣
=

∏
r ̸=s

∣∣∣ ξr − ξs

1− ξsξr

∣∣∣∏
r ̸=s

∣∣∣ ξ∗r − ξs

1− ξsξ∗r

∣∣∣∣∣∣ ξ∗s − ξs

1− ξsξ∗s

∣∣∣
≥ γ2 δ√

1 + δ2
,

by the same arguments as in Lemma 6.5 (see also [29]) combined with
(6.8). The same conclusion can be drawn for the case ξs ∈

{
ρqz

∗
r,q,δ

}
since the two sets plays symmetric roles. The proof of the lemma is
complete.

□

According to Chui-Zhong’s theorem [29] the family X =
{{ξn,j}nj=0}n≥0 of the points on the unit circle is an Lα Marcinkiewicz-
Zygmund family if and only if it is uniformly separated and there exist
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a constant Kα such that( 1

|I|

∫
I

|Fn(e
iθ)|αdθ

) 1
α
( 1

|I|

∫
I

|Fn(e
iθ)|−

α
α−1dθ

) 1
α ≤ Kα(6.9)

For every subarc I of the unit circle and every n ≥ 0.
We notice that the fact that the family is uniformly separated insure
that this family generates a Carleson measure, and it is turn out that
the second condition (6.9) is well-known as Aα condition in the setting
of the BMO spaces (Bounded Mean Oscillation) [47, p.215]. We remind
that locally integrable positive function w satisfy Aα condition if

sup
I

( 1

|I|

∫
I

w(x)dx
)( 1

|I|

∫
I

w(x)−
1

α−1dx
)α−1

< ∞.(6.10)

It turn out that in the case p = 2 the condition (6.10) is equivalent
to the following Helson-Szegö condition:

Helson-Szegö condition. There are real-valued function u, v ∈ L∞(T)
such that

∥v∥∞ <
π

2
and w = eu+ṽ, (HS)

where ṽ is the conjugate function of v.

For the proof of the equivalence of (6.10) when p = 2 and (HS), we
refer to [47, p.246-259]. Therein, the reader can found also the proof
of the prediction Helson-Szegö’s theorem related to (HS) [54].

Now, according to the equivalence of (6.10) when p = 2 and (HS),
Marzo and Seip [74] observe that in order to prove that the condition
(6.9) holds it suffices to establish that the following uniform Helson-
Szegö condition holds:

Uniform Helson-Szegö condition. There exist sequence un and vn of
real-valued function in L∞(T) such that

sup
n

∥vn∥∞ <
π

2
, sup

n
∥un∥∞ < +∞ and |Fn|2 = eun+ṽn ,

where ṽn is the conjugate function of vn.

We are going to prove that the uniform Helson-Szegö condition holds.
Let κ > 0 and n = 2q − 1. We claim first that we have

|Fn(e
iθ)|2 = eun,κ(θ)|Fn,κ(e

iθ)|2,
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where

Fn,κ(z) =
n∏

r=0

(
1− ρn,κzr,n+1,δz

)
and ρn,κ = max

{1
2
, 1− κ

n+ 1

}
.

Indeed, the Mahler measure of the fonction ϕn,κ(θ)
def
=

Fn(e
iθ)2

Fn,κ(eiθ)2
verify

M(|ϕn,κ|) =
n∏

r=0

( M
(
1− ρnzr,n+1,δe

iθ
)

M
(
1− ρn,κzr,n+1,δeiθ

)) = 1,

by Proposition 2.6 combined with the well-know Jensen formula. We
further have

1− ρnzr,n+1,δe
iθ

1− ρn,κzr,n+1,δeiθ
=

(
1− ρnzr,n+1,δe

iθ
)( +∞∑

l=0

ρln,κzr,n+1,δ
leilθ
)

= 1 +
+∞∑
l=0

ρl−1
n,κzr,n+1,δ

l
(
ρn,κ − ρn

)
eilθ.

Therefore ϕn,κ is in H1 and log |ϕn,κ| is integrable. Put

G(z) = exp
( 1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |ϕn,κ(θ)|dθ

)
.

Then G is an analytic function in the unit disc D and
∣∣G∣∣ = eun,κ ,

where un,κ is the Poisson integral of log(|ϕn,κ|), that is, un,κ(re
iθ) =

Pr ∗ log(|ϕn,κ|) where Pr is the Poisson kernel and ∗ is the convolution
operator. By Fatou theorem [55, p.34], |G| = eun,κ = |ϕn,κ| almost
everywhere on the unit circle T. We further have

un,κ(θ) = 2Re
(
Log

(
Fn(θ)

)
− Log

(
Fn,κ(θ)

))
= 2Re

( n∑
r=0

(
Log

(
1− ρnzr,n+1,δe

iθ
)
− Log

(
1− ρn,κzr,n+1,δe

iθ
)))

= 2Re
( n∑

r=0

( +∞∑
l=1

ρln,κ − ρln
l

zr,n+1,δ
leilθ
))

,

where Log is the principal value of the logarithm. Writing

un,κ(θ) = 2Re(I + II),
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where

I =

q−1∑
r=0

+∞∑
l=1

ρln,κ − ρln
l

zr,q
leilθ, and II =

q−1∑
r=0

+∞∑
l=1

ρln,κ − ρln
l

zr,q
le−2iπ lδ

2q eilθ.

It follows that

I =
+∞∑
l=1

ρlqn,κ − ρlqn
l

eilqθ, and II =
+∞∑
l=1

ρlqn,κ − ρlqn
l

e−2ilπ δ
2 eilqθ,

since
q−1∑
r=0

zr,q
l =

{
q, if l ∈ qZ;
0, if not.

We can thus write∣∣un,κ

∣∣ ≤ |I|+ |II|

≤ 2
( +∞∑

l=1

ρlqn,κ
l

+
+∞∑
l=1

ρlqn
l

)
≤ 2

(
log
( 1

1− ρqn,κ

)
+ log

( 1

1− ρqn

))
,

≤ 2

1− e−
κ
2

+
2

1− e−
1
2

since log(x) ≤ x for any x > 0, and log(1 − x) ≤ −x for 0 ≤ x < 1 .
We thus conclude that

sup
n

∥∥un,κ

∥∥
∞ < +∞,

and the proof of the claim is complete.

We move now to construct the functions vn. For that, we start by
proving the following lemma

Lemma 6.7. Let F (z) = (1 − rz0z), with 0 < r < 1 and z0 = eiθ0.
Then |F |2(eiθ) = eṽ, where ṽ is the conjugate function of the function
v given by

v(θ) = Pr ∗ 1[0,θ](θ0)− θ − c,(6.11)

and c is any suitable constant.
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Proof. Obviously F 2 is an outer function since the zeros of F 2 are out
of the disc D. We further have F 2(0) = 1. Whence |F |2 = eṽ, where ṽ
is the conjugate function of the function v given by (6.11). Indeed, for
any θ, we have

Log
(
F (eiθ)

)
= −

+∞∑
n=1

rn

n
ein(θ−θ0)

= −
+∞∑
n=1

rn

n
cos
(
n(θ − θ0)

)
+ i

+∞∑
n=1

rn

n
sin
(
n(θ − θ0)

)
,(6.12)

where Log is the principal value of the logarithm. We further have

v(θ) = Pr ∗ 1[0,θ](θ0)− θ − c =

∫ θ

0

Pr(θ0 − t)dt− θ − c

=

∫ θ

0

Pr(t− θ0)dt− θ − c,

Since Pr is an even function. But∫ θ

0

Pr(t− θ0)dt =

∫ θ

0

+∞∑
n=−∞

r|n|ein(t−θ0)dt

=
∑
n ̸=0

r|n|

in
ein(θ−θ0) −

∑
n ̸=0

r|n|

in
e−inθ0 + θ,(6.13)

by (6.2). Consequently

v(θ) =
∑
n̸=0

r|n|

in
ein(θ−θ0) −

∑
n̸=0

r|n|

in
e−inθ0 − c,

and

ṽ(θ) = −i
∑
n ̸=0

n

|n|
r|n|

in
ein(θ−θ0),

= −2
+∞∑
n=1

rn

n
cos
(
n(θ − θ0)

)
(6.14)

Combining (6.12) with (6.14), we obtain

Re
(
Log(F 2(eiθ))

)
= ṽ(θ),
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which gives

|F 2| = eṽ,

since for any analytic function g, we have

|eg| = eRe
(
g
)
,

and the proof of the lemma is complete. □
We now apply Lemma 6.11 to write

|Fn,κ(e
iθ)|2 = eṽn,κ(θ),

where

vn,κ(θ) =
n∑

j=0

∫ θ

0

Pρn,κ

(
θn,j − t

)
dt− (n+ 1)θ − c,(6.15)

θn,j =

{
2π j

2q
, if j is even;

2π
(
j−1
2q

+ δ
q

)
, if j is odd,

and c is any suitable constant. Taking

c =
n∑

j=0

∫ 0

−2πγn,j

Pρn,κ

((
2π

j − 1

2q

)
− t
)
dt,

with

γn,j =

{
0, if j is even;
2π δ

q
, if j is odd.

We can rewrite (6.15) as

vn,κ(θ) =
n∑

j=0

∫ θ−2πγn,j

0

Pρn,κ

(
θn,j − t

)
dt− (n+ 1)θ,(6.16)

since, for any odd j, we have∫ θ

0

Pρn,κ(θn,j − t)dt =

∫ θ

0

Pρn,κ

((
2π
(j − 1

2q

)
+ γn,j

)
− t
)
dt,

=

∫ θ−2πγn,j

−2πγn,j

Pρn,κ

((
2π
(j − 1

2q

))
− t
)
dt

Again writing
vn,κ(θ) = I + II,
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where

I =

q−1∑
r=0

∫ θ

0

Pρn,κ

(2πj
q

−t
)
dt−qθ and II =

q−1∑
r=0

∫ θ− 2πδ
q

0

Pρn,κ

(2πj
q

−t
)
dt−qθ.

We thus need to estimate |I| and |II|. But, by the same reasoning as
above, it is easy to check that

I =
∑
l ̸=0

ρlqn,κ
1− e−ilqθ

il
and II =

∑
l ̸=0

ρlqn,κ
1− e−ilq(θ− 2πδ

q
)

il
− 2πδ.

Consequently, we get

|I| ≤ 4
∑
l≥1

ρlqn,κ
l

= −4 log(1− ρqn,κ).

Whence

|I| ≲ −4 log
(
1− e−

κ
2

)
.

It is still to estimate |II|. In the same manner, it can be seen that

|II| ≲ 2πδ + 4
∑
l≥1

ρlqn,κ
l

≤ 2πδ − 4 log
(
1− e−

κ
2

)
,

and by choosing κ sufficiently large and δ < 1
8
, we obtain

sup
n

∥vn,κ(θ)∥∞ <
π

2
.

From this we conclude that the uniform Helson-Szegö condition holds
for α = 2.
For the case 1 < α ̸= 2. Assuming δ < 1

8β
where β = max

{
α, α

α−1

}
,

one may apply the standard argument from the Hp theory combined
with the Hölder inequality and Lemma 2 from [74] to conclude that
the uniform Helson-Szegö condition holds.

Now, let 1 < α < 2 and 0 < δ < 1
4β
, with β = α

α−1
. By Lemma 6.6

the family Z =
{{

ρqzr,q
}}

q≥0
∪
{{

ρqz
∗
r,q,δ

}}
q≥0

is uniformly separated.
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We can thus write∫ ∣∣∣∣∣Pq

∣∣2 − 1
∣∣∣αdθ

≤ Cα,δ

( 1

2q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 − 1

∣∣∣α +
1

2q

q−1∑
r=0

∣∣∣∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣α),(6.17)

where

Cα,δ =
2Cγ

γ2. δ√
1+δ2

=
2Cγ

√
1 + δ2

γ2.δ
.

The computation of constant Cα,δ can be found in [38, p.153]. Therein,
by appealing to the duality argument, it is shown that for any w =
(wj) ∈ ℓα, there exist g ∈ Hα such that for some f ∈ Hβ, with

∥∥f∥∥
β
=

1, and β is the conjugate of α, one can assert∥∥g∥∥
α
≤

√
1 + δ2

γ2.δ
∥w∥α

(∫
D
|f(z)|βdµZ +

∫
D
|f(z)|βdµZ∗

)
,

where

µZ =
+∞∑
q=3

( q−1∑
r=0

(
1−|ρqzr,q|

)
δzr,q , and µZ∗ =

+∞∑
q=3

( q−1∑
r=0

(
1−|ρqz∗r,q,δ|

)
δzr,q .

But the measures µZ and µZ∗ are a Carleson measures. Therefore,∫
D
|f(z)|βdµZ +

∫
D
|f(z)|βdµZ∗ ≤ 2Cγ∥f∥β = 2Cγ,

where

Cγ =
2

γ4

(
1− 2 log(γ)).

An alternative proof can be found in [55, p.195-202]. The reader may
notice that the proof of Theorem F in [31] can be drawn from the above
proof.
Let us stress at this point that we have proved that for any α > 0, the
sequence of polynomials (Pq(z)) is L

α-flat if and only if

1

q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 − 1

∣∣∣α −−−−→
q→+∞

0,
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and

1

q

q−1∑
r=0

∣∣∣∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣α −−−−→
q→+∞

0.

Now, we are going to prove that (Pq) is L
α-flat, 1 < α < 2. We start

by writing

∣∣∣(1
q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 − 1

∣∣∣α) 1
α −

(1
q

q−1∑
r=0

∣∣∣∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣α) 1
α
∣∣∣

≤
(1
q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 −

∣∣Pq

(
z∗r,q,δ)|2

∣∣∣α) 1
α

(6.18)

Moreover, by the nice properties of Singer sets, we have

(1
q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 −

∣∣Pq

(
z∗r,q,δ)|2

∣∣∣α) 1
α

=
(1
q

q−1∑
r=0

∣∣∣D∗
q

(
zr,q
)
−D∗

q

(
z∗r,q,δ)

∣∣∣α) 1
α

=
(1
q

q−1∑
r=0

∣∣∣ 1|S|
q−1∑
ℓ=0

zℓr,q
(
1− e2πi

ℓ.δ
q
)∣∣∣α) 1

α

≤
(1
q

q−1∑
r=0

∣∣∣ 1|S|
q−1∑
ℓ=0

zℓr,q
(
1− e2πi

ℓ.δ
q
)∣∣∣2) 1

2

We further have

1

q

q−1∑
r=0

∣∣∣ 1|S|
q−1∑
ℓ=0

zℓr,q
(
1− e2πi

ℓ.δ
q
)∣∣∣2 =

∫ ∣∣∣ 1|S|
q−1∑
ℓ=0

zℓ
(
1− e2πi

ℓ.δ
q
)∣∣∣2dz

=
1

|S|2
q−1∑
ℓ=0

∣∣1− e2πi
ℓ.δ
q

∣∣2
≤ 2π

q

|S|2
.δ2

≤ 2πδ2.

Whence
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1

q

q−1∑
r=0

∣∣∣∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣α
≤
((1

q

q−1∑
r=0

∣∣∣∣∣Pq

(
zr,q)|2 − 1

∣∣∣α) 1
α
+
√
2πδ
)α

.

Combined these inequalities with Lemma 6.3, we can rewrite (6.17) as∫ ∣∣∣∣∣Pq

∣∣2 − 1
∣∣∣αdθ ≤ Cα,δ

(1
2
Iα,p +

1

2

(
I

1
α
α,p +

√
2.πδ

)α)
,

where

Iα,p =
pα

q
+
(q − 1

q

)( p

p+ 1
− 1
)
,

Letting q −→ +∞, we obtain

lim
q−→+∞

∫ ∣∣∣∣∣Pq

∣∣2 − 1
∣∣∣αdθ ≤ Cα,δ

(
2.π
)α

2 δα =
2Cγ

γ2

√
1 + δ2

(
2.π
)α

2 δα−1,

and by letting δ −→ 0, we conclude that

lim
q−→+∞

∫ ∣∣∣∣∣Pq

∣∣2 − 1
∣∣∣αdθ = 0,

Hence the sequence of polynomials (Pq)q∈N is Lα-flat, for 0 < α < 2.

Therefore, by appealing to Proposition 4.2, we deduce that the se-
quence of polynomials (Pq(z)) is almost everywhere flat over some sub-
sequence, and the proof of Theorem 2.1 is complete.

Theorem 2.2 follows from Theorem 2.1 combined with Proposition
4.2. Finally, by (3.2), we deduce that the spectral type σ of the rank
one map constructed in Theorem 2.2 verify

M
(dσ
dz

)
=

+∞∏
j=0

M(P 2
j ) > 0.

Whence

M(Pj) −−−−→
j→+∞

1.
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This finishes the proof. For more details on the construction of rank
one map in Theorem 2.2, we refer the reader to [2] and [3].

Remarks. Obviously, as in the proof given by Zygmund in [99, p.29,
Chap X], we take advantage of the following classical identity [99, p.35,
Chap II]

1

d

d−1∑
j=0

e
2πijk

d =

{
0 if d ∤ k
1 if d | k,

for any d, k ≥ 1.

The reader may notice that there is some analogies between our proof
and the Fast Fourier Transform algorithm (FFT). We refer the reader
to [95] for more details on the FFT.

Applying Carleson interpolation theory, one can prove that for any
p > 0, there is a constant Cp > 0 such that, for any polynomial P of
degree less than n,

C−1
p

4n

4n−1∑
j=0

∣∣P (e2πi
j
2n )
∣∣p ≤ ∥∥P∥∥p

p
.

An alternative proof can be found in [82]. Besides this, Marcinkiewicz
and Zygmund proved [73] that for any p ≥ 1 and for any polynomial
P of degree less or equal than n, we have(

1

2n

2n−1∑
j=0

∣∣P (e2πi
j
2n )
∣∣p) 1

p

≤
(
pπ + 1

) 1
p
∥∥P∥∥

p
.

To the best of this author’s knowledge, the explicit constant for the
case p = 0 seems not to be known. Nevertheless, in the case of the
classical Riesz product, if we consider the polynomial

P (θ) = 1 + α cos(nθ),

where α is non-negative number less than 1. Then

Mdω4n+1(P ) = exp

(
1

4n

4n−1∑
j=0

log
(∣∣P (e2πi

j
2n )
∣∣))(6.19)

≤ Mdz(P ).
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This can be proved as follows.

Following [58], we put

P (θ) = |Q(eiθ)|2,

where

Q(z) =
1 + azn

1 + a2
, with a =

α

1 +
√
1− α2

.

It is easily seen that Q(z) does not vanish on the disc D
def
=
{
|z| ≤ 1

}
.

We thus get that the function log
(∣∣Q(eiθ)

∣∣2) is harmonic. Applying
the mean property, we obtain

log
(∣∣Q(0)

∣∣2) = 1

2π

∫ 2π

0

log(
∣∣Q(eiθ)

∣∣2)dθ.(6.20)

Rewriting (6.20), we see that

M(P ) =
1

1 + a2
.

Now, any easy computation shows that

P
(
e2πi

j
2n

)
= 1 + α(−1)j,

for j = 0, · · · , 2n− 1.
Whence

Mdω4n+1(P ) =
√
1− α2.

Obviously
√
1− α2 ≤ 1

1 + a2
.

We conclude that (6.19) holds.

This leads us to ask.

Questions.

(1) Can one prove or disapprove that C
1
p
p converge to 1 as p −→ 0.
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(2) Let Sp be a family of Singer sets, p is a prime number and
consider the sequence of polynomials

Pq(z) =
1√
|Sp|

∑
s∈Sq

zs, |z| = 1.

Can one prove or disapprove that the sequence of the Mahler
measure of Pq converge to 1.

(3) Let (X,B, µ, T ) be an ergodic dynamical system where µ is a
finite measure. Can one prove or disapprove that there exist a
Borel set A with µ(A) > 0 such that for µ-almost all x ∈ X,∫ ∣∣∣ 1√

Nµ(A)

N−1∑
j=0

1A(T
jx)zj

∣∣∣dz −−−−→
N→+∞

1.

(4) In the same setting as in the previous question, can one prove
or disapprove that for any measurable f with values ±1, for
µ-almost all x ∈ X, we have

lim sup
N−→+∞

∫ ∣∣∣ 1√
N

N−1∑
j=0

f(T jx)zj
∣∣∣dz < 1.

As mentioned in introduction, this problem can be linked to the
annealed and quenched business.
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671-681.
[6] T. R. Adams, On Smorodinsky conjecture, Proc. Amer. Math. Soc., 126 (1998),
no. 3, 739-744.
[7] T. R. Adams & N. A. Friedman, Staircase mixing, preprint.
[8] O Ageev, Dynamical System With an Even-Multiplicity Lebesgue Component
in the Spectrum, Math. USSR, 64, 1987, 305.
[9] C. Aistleitner, On a problem of Bourgain concerning the L1-norm of exponential
sums, Math. Z., 275 (2013), no. 3-4, 681-688.
[10] C. Aistleitner & M. Hofer. On the maximal spectral type of a class of rank one
transformations. Dyn. Syst., 27 (4), 2012, 515-523.
[11] D. Barrera and M. Peligrad, Quenched Limit Theorems for Fourier Transforms
and Periodogram, http://arxiv.org/abs/1405.0834v1.
[12] J. R. Baxter, On the class of ergodic transformations, PhD Thesis, University
of Toronto, 1969
[13] J. Beck, Flat polynomials on the unit circle – note on a problem of Littlewood,
Bull. London Math. Soc. 23 (1991), 269–277.
[14] E. Beller, Polynomial extremal problems in Lp, Proc. Amer. Math. Soc. 30
(1971), 249-259.
[15] E. Beller and D. J. Newman, The minimum modulus of polynomials, Proc.
Amer. Math. Soc., Volume 45, Number 3, 1974.
[16] E. Beller and D. J. Newman, An extremal problem for the geometric mean of
polynomials, Proc. Amer. Math. Soc., Vol. 39, No. 2 (Jul., 1973), pp. 313-317
[17] E. Bombieri & J. Bourgain, On Kahane’s ultraflat polynomials, J. Eur. Math.
Soc. (JEMS) 11 (2009), no. 3, 627-703.
[18] J. Bourgain, On the spectral type of Ornstein class one transformations, Isr.
J. Math. ,84 (1993), 53-63.
[19] P. Borwein, Computational excursions in analysis and number theory. CMS
Books in Mathematics; 10. Springer, New York, 2002.



ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS,... 47

[20] P. Borwein, M. J. Mossinghoff, Barker sequences and flat polynomials, Num-
ber Theory and Polynomials, 71-88, Lond. Math. Soc. Lecture Notes Series, 352,
Cambridge Univ Press, Cambridge, 2008.
[21] P. Borwein, M. J. Mossinghoff, Wiefrich pairs and Barker sequences II,
Preprint, July 2013.
[22] P. Borwein and R.Lockhart, The expected Lp norm of random polynomials,
Proc. Amer. Math. Soc. 129 (2001), no. 5, 1463–1472
[23] J. S. Byrnes, On polynomials with coefficients of modulus one. Bull. London
Math. Soc. 9, 1977, 171–176.
[24] J.S. Byrnes and D. J. Newman, The L4 norm of a polynomial with coefficients
±1. Amer. Math. Monthly 97 (1990), no. 1, 42–45.
[25] L. Carleson, Interpolations by bounded analytic functions and the corona prob-
lem, Ann. of Math., 76 (1962), 547-559.
[26] L. Carleson, An interpolation problem for bounded analytic functions, Amer.
J. Math., 80 (1958), 921-930.
[27] J. Chidambaraswamy, on the mean modulus of trigonometric polynomials and a
conjecture of S. chowla ,Proc. Amer. Math. Soc., Volume 36, Number I, November
197.
[28] S. Chowla, Some applications of a method of A. Selberg, J. Reine Angew.
Math., 217 (1965),128-132.
[29] C.K.Chui, L.Zhong, Polynomial interpolation and Marcinkiewicz–Zygmund in-
equalities on the unit circle, J.Math. Anal.Appl., 233 (1) (1999) 387–405.
[30] G. Cohen, J-P. Conze, The CLT for rotated ergodic sums and related processes.
Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 3981–4002.
[31] C. K. Chui, X. C. Shen, and L. Zhong, On Lagrange interpolation at disturbed
roots of unity, Trans. Amer. Math. Soc., 336 1993, 817-830.
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