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Ergodic Banach problem, flat polynomials

and Mahler’s measures with

combinatorics

el Houcein el Abdalaoui♭

Abstract. We construct a sequence of polynomials that are flat
in the almost everywhere sense. The construction is done by ap-
pealing to the nice combinatorial properties of the Singer’s sets
and Sidon sets. As a consequence, we get a positive answer to
Littlewood’s flatness problem in the class of the Newman polyno-
mials. We further obtain that there exist a rank one map acting
on space of infinite measure with simple Lebesgue spectrum. This
answer an old question attributed to Banach. It is turn out that
our construction answer also positively the Mahler’s problem in the
class of Newman polynomials. Moreover, we get an answer to the
Bourgain’s question on the L1-norm of L2 normalized idempotent
polynomials.
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2 E. H. EL ABDALAOUI

1. Introduction

The purpose of this paper is to address the flatness issue in some
class of analytic trigonometric polynomials, and to give an alterna-
tive proof to the proof given by the author in [2]. Therefore, this
paper can be seen as a revised version of that article with an alterna-
tive proof. But, as in [2], the combinatorial Singer’s construction and
Marcinkiewicz-Zygmund interpolation inequalities [102, p.28, chp. X]
lies in the heart of the proof. We thus construct, in the same spirit
as in [2], a class of polynomials that are flat in the almost everywhere
sense using the Singer’s construction combined with the refinement of
the interpolation methods initiated by Marcinkiewicz & Zygmund. It
follows that the Hardy spaces and the Carleson interpolation theory
play an important role in the proof. For a nice account on the inter-
polation theory and the Hp theory, we refer the reader to [40, p.147,
Chap. 9] and [49, p.275, Chap. 7], [57, p.194], [91, p.328].

Our construction further benefited from ideas of Ben Green and
Gowers related to the flatness problem in connection with Singer and
Sidon sets [37], [52]. We also take advantage from the recent investiga-
tions on the Marcinkiewicz-Zygmund inequalities and its refinements
[33], [31], [72], [83].

We stress that this paper is deeply indebted to the investigation
started in [3], [4] and [5]. So, it is may seen as a companion to those
papers.

We further stress that the proof given here is completely different
than the proof given in the previous version of this work [2]. Although,
it was stated in [2] that one can give an alternative proof of the main
results using a Carlson interpolation theory combined with the meth-
ods of disturbed root of unit due to C. Chui and Zhong [33]. So, here,
our main task is to present this alternative proof .

We remind that the flatness problem was initiated by Littlewood
[70] and Erdös [43], and it has a long history. In the beginning, Lit-
tlewood asked on the existence of the sequence of the polynomials on
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the circle Pn(z) =
∑n−1

j=0 ǫjz
nj with ǫj = ±1 such that

A1

√
n ≤ |Pn(z)| ≤ A2

√
n,

where A1, A2 are positive absolute constants and uniformly on z of
modulus 1. Nowadays the analytic polynomials on the circle with ±1
coefficients are called Littlewood polynomials.

Erdös and Newman [42] considered the problem of the existence of
the positive absolute constant A such that

max
|z|=1

∣∣∣
n∑

j=0

ajz
j
∣∣∣ ≥ A

√
n,

where |aj | = 1. Beller and Newman established that the answer is
affirmative if one asked for the polynomials with coefficients bounded
by 1 [17]. In the opposite, J-P. Kahane disproved the conjecture [58].

Besides, using a construction of Byrnes [25], T. Körner [66] dis-
proved Erdös-Newman’s conjecture. But, it is turn out that the main
ingredient form [25] used by Körner is not valid [87]. Nevertheless,
Kahane’s proof does not used this argument.

Kahane’s result has been strengthened by J. Beck who proves that
the ultraflat polynomials exist from the class of polynomials of degree n
whose coefficients are 400th roots of unity [15]. J. Beck’s construction
is essentially based on the random construction of Kahane.

Since then, it was a long standing problem to obtain effective con-
struction of ultraflat polynomials until solved very recently by Bombieri
and Bourgain [19]. For a deeper treatment on the Kahane ultraflat
polynomials, we refer the reader to [87].

The third extremal problem in the class of analytic trigonometric
polynomials concern L1-flatness. This problem seems to be mentioned
first in [79]. Therein, Newman wrote that it has been conjectured:
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Conjecture (Newman [79]). For any Littlewood polynomial P of
degree n,

∥∥P (z)
∥∥
1
< c

√
n + 1, where c < 1.

In [80], Newman solved the problem of L1-flatness in the class of
analytic trigonometric polynomials with coefficients of modulus 1. He
proved that the Gauss-Fresnel polynomials are L1-flat. We refer to
[5] for a simple proof. This result has been strengthened by Beller
[16], and Beller & Newman in [18] by proving that the sequence of
the Mahler measure of the L2 normalized Gauss-Fresnel polynomials
converge to one.

For the polynomials with random coefficients ak ∈ {+1,−1}, Salem
and Zygmund [95] proved that for all but o(2n) choices of ak = ±1,

c1
√

n ln(n) <

∥∥∥∥
n∑

k=0

akz
k

∥∥∥∥
∞

< c2
√
n ln(n),

for some absolute constant c1, c2 > 0. Halàz [54] strengthened this
result by proving

∥∥∥∥
n∑

k=0

akz
k

∥∥∥∥
∞

=
(
1 + o(1)

)
C
√

n ln(n),

For some absolute constant C > 0. Byrnes and Newman computed
L4-norm of those polynomials [26]. Later, Browein & Lokhart [24],
and Choi & Erdélyi [35] used the central limit theorem to compute the
limit of the Lp-norm and the Mahler measure of the polynomials with
random coefficients ±1. Their results can be linked to the recent re-
sults of Peligrad & Wu [84], Barrera & Peligrad, Cohen & Conze [32]
and Thouvenot & Weiss [100]. Therein, the authors investigated a
dynamical approach with dynamical coefficients, that is, ak = f(T kx),
where T is a measure-preserving transformation on some probability
space and f is a square-integrable function.

We remind that the polynomials with coefficients ak ∈ {0, 1} and
the constant term equal to 1 are nowadays called Newman polynomials.
We further notice that the polynomials with coefficients ak ∈ {0, 1} are
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known as idempotent polynomials, and since we are concern with L1-
flatness, we may assume that the constant term is 1.

The connection between the Banach problem in ergodic theory and
the L1-flatness problem in the class of Littlewood polynomials or New-
man polynomials was established by Bourgain [20], Guenais [50], and
Downarowich & Lacroix [39]. M. Guenais proved that the Littlewood
problem and the Banach problem are equivalent in some class of dy-
namical system [50]. She further constructed a generalized Fekete poly-
nomials on some torsion groups, and proved that those polynomials are
L1-flat. As a consequence, M. Guenais obtained that there exist a group
action with simple Lebesgue component. Subsequently, el Abdalaoui
and Lemańczyk proved that the generalized Fekete polynomials con-
structed by Guenais are ultraflat [7]. Very recently, el Abdalaoui and
Nadkarni strengthened Guenais’s result [5] by proving that there exist
an ergodic non-singular dynamical system with simple Lebesgue com-
ponent.

Here, we exhibit a class of L1-flat polynomials with coefficients
0 and 1. This allow us to produce a dynamical system with simple
Lebesgue spectrum. We thus get an affirmative answer to the Banach
question.

Furthermore, combining our result with that of [3], we provide a
positive answer to the Mahler’s problem in the class of Newman poly-
nomials [21, p.6], [22],[73].

Our methods breaks down for the polynomials with coefficients ±1.
Thus, we are not able to answer the weaker form of Littlewood question
on the existence of L1-flat polynomials with coefficients ±1.

We notice that the flatness problem is connected to the number
theory and to some practical issues arising in the design of a mobile
cellular wireless OFDM system [89]. Consequently, it is related to some
engineering issues [39], [22], [23].
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For the convenience of the reader, we repeat the relevant material
from [3],[5] and [102], without proofs, thus making our exposition self-
contained.

The paper is organized as follows. In section 2, we state our main
results. In section 3, we remind the notion of generalized Riesz products
and its connection to ergodic theory. In section 4, we present several
definitions of flatness in the class of analytic trigonometric polynomials
and the fundamental characterization of L1-flatness. In section 5, we
remind the notion of Singer and Sidon sets in the number theory, and
we establish that the L4-norm strategy can not be apply to the case of
the Newman polynomials. Finally, we prove our main results in section
6.

2. Main results

Consider the torus T =
{
z ∈ C : |z| = 1

}
equipped with the

normalized Lebesgue measure dz. Let n0 < n1 < n2 < · · · be a
positive sequence of integers and put

Pn(z) =

n−1∑

j=0

ǫi
√
piz

ni ,

with |ǫi| = 1 and (p0, · · · , pn−1) is a probability vector. Such poly-
nomials are raised in the study of the spectral type of some class of
dynamical systems in ergodic theory. For more details we refer to [4] .

Here, we restrict ourself to the case ǫi = 1 and pi =
1
n
. We thus

concentred our investigations on the flatness problem in the class of
polynomials of the from

Pn(z) =
1√
n

n−1∑

j=0

zni .

Following [3], this class is called class B.

We state our main results as follows.
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Theorem 2.1. There exist a sequence of analytic trigonometric
polynomials

(
Pn

)
n∈N with coefficients 0 and 1 such that the polynomials

Pn(z)
‖Pn‖2 are flat in almost everywhere sense, that is,

Pn(z)

‖Pn‖2
−−−−→
n→+∞

1,

for almost all z with respect to the Lebesgue measure dz.

As a consequence, we obtain the following theorem.

Theorem 2.2. There exist a dynamical system (X,A, T, µ) with
µ(X) = +∞ and simple Lebesgue spectrum.

We remind that (X,A, T, µ) is a dynamical system if (X,A, µ) is a
measure space with µ is finite or σ-finite measure, and T is a measure-
preserving transformation, that is, for any measurable set A, we have

µ(T−1A) = µ(A).

Theorem 2.2 gives an affirmative answer to the long-standing prob-
lem attributed to Banach on the existence of dynamical system which
simple Lebesgue spectrum and with no-atomic measure. Let us remind
that Ulam in his book [101, p.76] stated the Banach problem as follows.

Questions (Banach Problem). Does there exist a square integrable
function f(x) and a measure preserving transformation T (x), −∞ <
x < ∞, such that the sequence of functions {f(T n(x));n = 1, 2, 3, · · · }
forms a complete orthogonal set in Hilbert space?

The most famous Banach problem in ergodic theory asks if there is
a measure preserving transformation on a probability space which has
simple Lebesgue spectrum. A similar problem is mentioned by Rokhlin
in [90]. Precisely, Rokhlin asked on the existence of an ergodic measure
preserving transformation on a finite measure space whose spectrum is
Lebesgue type with finite multiplicity. Later, Kirillov in his 1966’s pa-
per [61] wrote “there are grounds for thinking that such examples do
not exist”. However he has described a measure preserving action (due
to M. Novodvorskii) of the group (

⊕∞
j=1Z) × {−1, 1} on the compact

dual of discrete rationals whose unitary group has Haar spectrum of
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multiplicity 2. Similar group actions with higher finite even multiplic-
ities are also given.

Subsequently, finite measure preserving transformation having
Lebesgue component of finite even multiplicity have been constructed
by J. Mathew and M. G. Nadkarni [77], Kamea [59], M. Queffelec [88],
and
O. Ageev [10]. Fifteen years later, M. Guenais produce a torsion group
action with Lebesgue component of multiplicity one [50].

Our methods is far from making any contribution to this problem.
At know, it is seems that this problem is a “dark continent” for the
ergodic theory and for the spectral theory of dynamical systems.

Nevertheless, it is turn out that our results allows us to answer
a Bourgain’s question [20] on the supremum of the L1-norm over all
polynomials from class B. Indeed, Theorem 2.1 assert the following.

Corollary 2.3. β = sup
n>1

sup
k1<k2<k3<···<kn

∥∥∥ 1√
n

n∑

j=1

zkj
∥∥∥
1
= 1.

In [3], [11] and [34], the authors established already that β ≥
√
π
2
,

and, it easy to see that the simple case n = 2, k1 = 0, k2 = 1, gives

β ≥ 2
√
2

π
.

We further have.

Corollary 2.4. There exist a sequence of analytic trigonometric
polynomials

(
Pk

)
k∈N with coefficients 0 and 1 such the Mahler measure

of the polynomials Pk

‖Pk‖2 converge to 1.

We remind that the Mahler measure of analytic trigonometric poly-
nomials Pk is given by

M(Pk) = exp
(∫

T

log
(∣∣Pk(z)

∣∣)dz
)
.
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Using Jensen’s formula [91], it can be shown that

M(Pk) =
1√
mk

∏

|α|>1

|α|,

where, α denoted the zero of the polynomial
√
mkPk. In this defini-

tion, an empty product is assumed to be 1 so the Mahler measure of
the non-zero constant polynomial P (x) = a is |a|. A nice account on
the subject may be founded in [46, pp.2-11], [21].

The next proposition list some elementary properties of the Mahler
measure. For the reader’s convenience, we provide its proof.

Proposition 2.5. Let (X,B, ρ) be a probability space. Then, for
any two positive functions f, g ∈ L1(X, ρ), we have

(i) Mρ(f)
def
= exp

(
ρ(log(f))

)
is a limit of the norms ||f ||δ as δ goes

to 0, that is,

||f ||δ def
=

(∫
f δdρ

) 1
δ

−−→
δ→0

Mρ(f),

provided that log(f) is integrable.

(ii) If ρ
{
f > 0

}
< 1 then Mρ(f) = 0.

(iii) If 0 < p < q < 1, then
∥∥f
∥∥
p
≤
∥∥f
∥∥
q
.

(iv) If 0 < p < 1, then Mρ(f) ≤
∥∥f
∥∥
p
.

(v) lim
δ−→0

∫
f δdρ = ρ

{
f > 0

}
.

(vi) Mρ(f) ≤
∥∥f
∥∥
1
.

(vii) Mρ(fg) = Mρ(f)Mρ(g).

Proof. We start by proving (ii). Without loss of generality, as-
sume that f ≥ 0 and put

B =
{
f > 0

}
.
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Let δ = 1/k be in ]0, 1[, k ∈ N∗. Then 1/(1/δ) + 1/(1 − δ) = 1/k +
(k − 1)/k = 1. Hence, by Hölder inequality, we have

∫
f δdρ =

∫
f 1/k.1Bdρ

≤
(∫

(f 1/k)kdz

)1/k(∫
1
k/k−1
B dz

)k−1/k

≤
(∫

fdρ

)1/k(∫
1Bdz

)k−1/k

≤
(∫

fdρ

)1/k(
ρ(B)

)(k−1)/k

.

Thus we have proved

||f ||δ ≤
(∫

fdρ

)(
ρ(B)

)(1−δ)/δ

≤
(∫

fdρ

)(
ρ(B)

)k−1

−−−−→
k→+∞

0.

To prove (i), apply the mean value theorem to the following functions
{

δ 7−→ xδ, if x ∈]0, 1[;
t 7−→ tδ, if x > 1,

Hence, for any δ ∈]0, 1[ and for any x > 0, we have
∣∣∣∣∣
xδ − 1

δ

∣∣∣∣∣ ≤ x+
∣∣∣log(x)

∣∣∣.

Furthermore, it is easy to see that

f δ − 1

δ
=

eδ log(f) − 1

δ
−−→
δ→0

log(f),

and, by Lebesgue dominated convergence theorem, we get that
∫

f δ − 1

δ
dρ −−→

δ→0

∫
log(f)dρ.
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On the other hand, for any δ ∈]0, 1[, we have

∣∣∣∣f
∣∣∣∣
δ
= exp

(
1

δ
log

(∫
f δdρ

))
,

and for a sufficiently small δ, we can write

1

δ
log

(∫
f δdρ

)
∼
∫

f δ − 1

δ
dρ

since log(x) ∼ x− 1 as x −→ 1. Summarizing we have proved

lim
δ−→0

||f ||δ = exp

(∫
log(f)dρ

)
= Mρ(f).

For the proof of (iii) and (iv), notice that the function x 7→ x
q
p is

a convex function and x 7→ log(x) is a concave function. Applying

Jensen’s inequality to

∫ ∣∣f
∣∣pdρ we get

∥∥f
∥∥
p
≤
∥∥f
∥∥
q
,

∫
log(

∣∣f
∣∣)dρ ≤ log

(∥∥f
∥∥
p

)
,

and this finishes the proof, the rest of the proof is left to the reader. �

Using the classical Beurling’s outer and inner decomposition, el
Abdalaoui and Nadkarni in [3] computed the Mahler measure of Pk.
They further apply the Hp theory to establish a formula for the Mahler
measure of the generalized Riesz product. We remind a part of this in
the next section.

3. Generalized Riesz products and connection to ergodic

theory

The classical notion of Riesz products is based on the notion of
dissociation, which can be defined as follows.

Consider the polynomial P (z) = 1 + z. Then, we have

P (z)2 = 1 + z + z + z2.

For any integer N ≥ 2 , we can write

P (z)P (zN) = 1 + z + zN + zN+1.
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In the first case we group terms with the same power of z, while in the
second case all the powers of z in the formal expansion are distinct.
In the second case we say that the polynomials P (z) and P (zN ) are
dissociated. More generally, we have

Lemma 3.1 ([5]). If P (z) =

m∑

j=−m

ajz
j , Q(z) =

n∑

j=−n

bjz
j , m ≤ n,

are two trigonometric polynomials then for some N , P (z) and Q(zN )
are dissociated.

It is well know that if the sequence of polynomials (|Pj|2) is dissoci-
ated (each finite product has dissociation property) with constant term

equal to 1. Then, the sequence of probability measures
( N∏

j=1

|Pj|2dz
)

converge to some probability measure called a Riesz product and de-

noted by

+∞∏

j=1

|Pj|2.

More generally, we have the following definition:

Definition 3.2. Let P1, P2, · · · , be a sequence of trigonometric
polynomials such that

(i) for any finite sequence i1 < i2 < · · · < ik of natural numbers
∫

S1

∣∣∣(Pi1Pi2 · · ·Pik)(z)
∣∣∣
2

dz = 1,

where S1 denotes the circle group and dz the normalized Lebesgue
measure on S1,

(ii) for any infinite sequence i1 < i2 < · · · of natural numbers the
weak limit of the measures | (Pi1Pi2 · · ·Pik)(z) |2 dz, k = 1, 2, · · ·
as k → ∞ exists.

Then the measure µ given by the weak limit of | (P1P2 · · ·Pk)(z) |2 dz
as k → ∞ is called generalized Riesz product of the polynomials | P1 |2
, | P2 |2, · · · and denoted by

µ =
∞∏

j=1

∣∣Pj

∣∣2. (1.1)
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Connection to ergodic theory and rank one transforma-

tions. Using the cut and stack procedure described in [47], [48], one
can construct inductively a family of measure-preserving transforma-
tions, called rank one transformations or rank one maps, as follows.

Let B0 be the unit interval equipped with Lebesgue measure. At
stage one we divide B0 into m0 equal parts, add spacers and form a
stack of height h1 in the usual fashion. At the kth stage we divide the
stack obtained at the (k − 1)th stage into mk−1 equal columns, add
spacers and obtain a new stack of height hk. If during the kth stage
of our construction the number of spacers put above the jth column of

the (k−1)th stack is a
(k−1)
j , 0 ≤ a

(k−1)
j < ∞, 1 ≤ j ≤ mk, then we have

hk = mk−1hk−1 +

mk−1∑

j=1

a
(k−1)
j .

pk towers

Bk

· · · · · ·

...

...

...

...

Bk+1

a
(k)
2

a
(k)
1

a
(k)
i a

(k)
pk

· · ·

· · ·

...

· · ·

Fig. (k + 1)th tower.

Stade k :

Proceeding in this way, we get a rank one map T on a certain measure
space (X,B, | . |) which may be finite or σ−finite depending on the
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number of spacers added.
The construction of a rank one map thus needs two parameters, (mk)

∞
k=0

(cutting parameter), and ((a
(k)
j )mk

j=1)
∞
k=0 (spacers parameter). Put

T
def
= T

(mk ,(a
(k)
j )

mk
j=1)

∞
k=0

In [36] and [63] it is proved that the spectral type of this map is given
(up to possibly some discrete measure) by

dµ = W∗ lim

n∏

k=1

∣∣Pk

∣∣2dz,(3.1)

where

Pk(z) =
1√
mk

(
1 +

mk−1∑

j=1

z−(jhk+
∑j

i=1 a
(k)
i )

)
,

W∗ lim denotes weak star limit in the space of bounded Borel measures
on T.
As mentioned by Nadkarni in [78], the infinite product

+∞∏

l=1

∣∣Pjl

(
z)|2

taken over a subsequence j1 < j2 < j3 < · · · , also represents the max-
imal spectral type (up to discrete measure) of some rank one maps. In
case jl 6= l for infinitely many l, the maps acts on an infinite measure
space.

The spectrum of any rank one map is simple and using a random
procedure, D. S. Ornstein produced a family of mixing rank one maps
[82]. It follows that Ornstein’s class of maps may possibly contain a
candidate for Banach’s problem. Unfortunately, in 1993, J. Bourgain
proved that almost surely Ornstein’s maps have singular spectrum [20].
Subsequently, using the same methods, I. Klemes [62] showed that the
subclass of staircase maps has singular maximal spectral type. In par-
ticular, this subclass contains the mixing staircase maps of Adams-
Smorodinsky [8]. Using a refinement of Peyrière criterium [86], I.
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Klemes & K. Reinhold proved that the rank one maps have a sin-
gular spectrum if the inverse of the cutting parameter is not in ℓ2 (that

is,
∑+∞

k=1
1
m2

k

= +∞, where (mk) ⊂
{
2, 3, 4, · · ·

}
is the cutting param-

eter) [63]. This class contains the mixing staircase maps of Adams &
Friedman [9]. In 1996, H. Dooley and S. Eigen adapted the Brown-
Moran methods [51, pp.203-209] and proved that the spectrum of a
subclass of Ornstein maps is almost surely singular [38].

Later, el Abdalaoui-Parreau and Prikhod’ko extended Bourgain
theorem [20] by proving that for any family of probability measures
in Ornstein type constructions, the corresponding maps have almost
surely a singular spectrum [6]. They obtained the same result for
Rudolph’s construction [92]. In 2007, el Abdalaoui showed that the
spectrum of the rank one map is singular provided that the spacers
(aj)

mk

j=1 ⊂ N, are lacunary for all k [1]. The author used the Salem-
Zygmund central limit theorem methods. As a consequence, the author
presented a simple proof of Bourgain’s theorem [20].

Recently, by appealing to the martingale approximation technique,
C. Aistleitner and M. Hofer [12] proved a counterpart of the result of
[1]. Precisely, they proved that the spectrum of the rank one maps
is singular provided that the cutting parameter (mk) ∈ N∗ and the
spacers (aj)

mk

j=1 ⊂ N satisfy

(i)
log(mkn)

hkn

converge to 0;

(ii) the proportion of equal terms in the spacers is at least c.mkn for
some fixed constant c and some subsequence (kn).

We further recall that I. Klemes & K. Reinhold in [63] conjectured
that all rank one maps have singular spectrum, and in the same spirit,
C. Aistleitner and M. Hofer wrote in the end of their paper “several
authors believe that all rank one transformations could have singular
maximal spectral type.”. It seems that this conjecture was formulated
since Baxter result [14], [99]. We remind that the cutting and stack-
ing rank one construction may goes back to Ornstein’s paper in 1960
[81]. Indeed, therein, Ornstein constructed a non-singular map for
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which there is non σ-finite measure equivalent to Lebesgue measure. Of
course, this example is connected to the example of non-singular map
with simple Lebesgue component obtain by el Abdalaoui and Nadkarni
[4]. Notice that in [82], the rank one maps are called transformations
of class one.

It follows from Bourgain’s observation ((eq 2.15)[20]) that if the
spectral type of any rank one map acting on infinite measure is singu-
lar then the spectral type of any rank one is singular. Unfortunately,
by our main result, this strategy fails. Therefore, the new approaches
are needed to tackle this conjecture.

We remind that in [3], it is proved that if µ =

+∞∏

n=1

|Pn|2, then the

absolutely continuous part dµ
dz

verify

∥∥∥∥∥

N∏

n=1

|Pn| −
√

dµ

dz

∥∥∥∥∥
1

−−−−→
N→+∞

0.

Furthermore, the Mahler measure of µ 1 satisfy

M
(dµ
dz

)
=

+∞∏

n=0

M(P 2
n).(3.2)

We further remind from [3] the following notion of generalized Riesz
products from dynamical origin.

Definition 3.3. A generalized Riesz product µ =

∞∏

j=1

∣∣Qj(z)
∣∣2,

where Qj(z) =

nj∑

i=0

bi,jz
ri,j , bi,j 6= 0,

nj∑

i=0

∣∣bi,j
∣∣2 = 1,

∞∏

j=1

∣∣bnj ,j

∣∣ = 0, is said

1The Mahler measure of the finite measure µ on the circle is given by

M
(dµ
dz

)
= inf

P
‖P − 1‖L2(µ),

where P ranges over all analytic trigonometric polynomials with zero constant term.
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to be of dynamical origin if with

h0 = 1, h1 = rn1,1 + h0, · · · , hj = rnj ,j + hj−1, j ≥ 2

it is true that for j = 1, 2, · · · ,
r1,j ≥ hj−1, ri+1,j − ri,j ≥ hj−1.

If, in addition, the coefficients bi,j are all positive, then we say that µ
is of purely dynamical origin.

The following is proved in [3] .

Lemma 3.4. Given a sequence Pn =

mn∑

j=0

aj,nz
j , , n = 1, 2, · · · of an-

alytic trigonometric polynomials in L2(S1, dz) with non-zero constant

terms and L2(S1, dz) norm 1,

∞∏

n=1

∣∣amn,n

∣∣ = 0. Then there exist a se-

quence of positive integers N1, N2, · · · such that
∞∏

j=1

∣∣∣Pj(z
Nj )
∣∣∣
2

is a generalized Riesz product of dynamical origin.

Applying carefully the previous lemma, the following theorem is
proved in [3].

Theorem 3.5. Let Pj , j = 1, 2, · · · be a sequence of non-constant
polynomials of L2(S1, dz) norm 1 such that lim

j→∞

∣∣Pj(z)
∣∣ = 1 a.e. (dz)

then there exists a subsequence Pjk , k = 1, 2, · · · and natural numbers
l1 < l2 < · · · such that the polynomials Pjk(z

lk), k = 1, 2, · · · are dis-

sociated and the infinite product

∞∏

k=1

∣∣Pjk(z
lk)
∣∣2 has finite nonzero value

a.e (dz).

4. flats polynomials

A sequence Pj , j = 1, 2, · · · of trigonometric polynomials is said to

be Lp-flat if the sequence
|Pj |
‖Pj‖2 , j = 1, 2, · · · converge to the constant
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function 1 in the Lp-norm, p ∈ [1,+∞], p 6= 2 . If p = +∞ the se-
quence Pj is said to be ultraflat.

The flatness issue can be considered for three class of analytic
trigonometric polynomials. The polynomials with non-negative coef-
ficients, the Littlewood polynomials which correspond to the polyno-
mials with coefficients ±1, and the Newman polynomials which cor-
respond to the polynomials with coefficients 0 or 1 and the constant
term 1. For all those polynomials, it seems that the existence of Lp-flat
polynomials is unknown.

The following notion of almost everywhere flatness is introduced in
[3].

Definition 4.1. A sequence Pj, j = 1, 2, · · · of trigonometric poly-
nomials with L2-norm one is said to be flat almost everywhere, if Pj(z)
converge almost everywhere to 1 with respect to dz.

Applying Vitali convergence theorem [91] one can see that if Pj is
almost everywhere flat then Pj is L1-flat. In the opposite direction, if
Pj is L

1-flat then one can drop a subsequence over which Pj is almost
everywhere flat.

We further have the following.

Proposition 4.2. Let (Pn)n∈N be a sequence of analytic trigono-
metric polynomials with L2-norm one. Then, the following are equiv-
alent

(1)
(
Pn

)
is L1-flat,

(2)
(
‖Pn‖1

)
converge to 1.

Moreover, if
(
Pn

)
is almost everywhere flat then

‖|Pn|2 − 1‖1 −−−−→
n→+∞

0.

Proof. (1) implies (2) is straightforward. For (2) implies (1), no-
tice that

‖|Pn| − 1‖22 = 1 = 2
(
1− ‖Pn‖1

)
.(4.1)
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For the last fact, by Cauchy-Schwarz inequality, we have

‖|Pn|2 − 1‖1 ≤ ‖|Pn| − 1‖2‖|Pn|+ 1‖2 ≤ 2‖|Pn| − 1‖2.
The last inequality is due to ‖Pn‖2 = 1 combined with the triangle
inequality. Thus, it is suffice to see that

‖|Pn| − 1‖2 −−−−→
n→+∞

0.

But, by (4.1), this equivalent to (‖Pn‖1)n∈N converge to 1 which follows
from the Vitali convergence theorem. �

We remind that the classical strategy introduced by Newman and
Beller to produce the L1-flat polynomials is based on the reduction of
the problem of L1-flatness to L4-flatness problem. For the polynomials
form class B this strategy fails. This is proved in [3]. For sake of
completeness, we give the proof in the next section.

5. Sidon sets, Singer sets and flatness

Let R be a positive integer and let S = {s1 < s2 < s3 < · · · < sR}
be a subset of [0, R). Put

[S − S]+ =
{
sj − si, i < j

}
=
{
r1, r2, · · · , rN(n)

}
.

Evidently, [S − S]+ is a subset of [0, R) since

0 ≤ sj − si ≤ sj < sR < R.

It can be useful to see [S−S]+ as a upper part of the following matrix

MS =




0 s2 − s1 s3 − s1 · · · sR−1 − s1 sR − s1
· 0 s3 − s2 · · · sR−1 − s2 sR − s2
· · 0 s4 − s3 · · · sR − s3
...

...
...

...
...

...
· · · · · · 0 sR − sR−1

. . · · · 0




We will denote by m(l) the multiplicity of rl which correspond to
the number of the pair (si, sj) such that sj − si = rl, and we set

M(R) = sup
{
m(l), l = 1, · · · , N(R)

}
.
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Following Chidambaraswamy and Kurtz-Shah [29], [67], the sequence{
s1 < s2 < s3 < · · · < sR

}
is δ-admissible ifM(R) = δ, δ ≥ 1. If δ = 1,

then S is called Sidon set. We remind that the classical definition of
Sidon sets goes back to Sidon how introduce the notion in 1932 or 1933
according to Erdös [42]. This definition can be stated as follows.

Definition 5.1. A set S is called a Sidon set if all the sums s+ t,
s ≤ t ∈ S, are distinct.

More generally, one can defined Bh[g] sets, where h and g are a
positive integers. A subset A of [1, N ] is said to be Bh[g] set if the lin-

ear equation n =
∑h

i=1 ai, has at most g solutions up to permutations.
B2[1] correspond to the Sidon sets. It is easy to see that a subset is
Sidon set if and only if all the difference are distinct. This last property
is not shared with the Bh[g] sets, h ≥ 3 [64].

Sidon asked on the maximal size of the Sidon set subset of {1, · · · , H}.
Erdös and Turán [42] proved that if T ⊂ [0, H ] is a Sidon set then

|T | <
√
H + 10

4
√
H + 1.

Lindström strengthened this result and proved [69]

|T | <
√
H +

4
√
H + 1.

In the other direction it has been shown by Chowla [30] and Erdös
using a theorem of Singer [97] that

|T | ≥
√
H − o(

√
H).

Nowadays, it is customary to use algorithmically a Singer’s theorem
to produce a Sidon subset of the given set {1, · · · , N}. Furthermore,
the construction can be used to produce a Sidon subset with some
desired proprieties of its sumsets [53, p.83], [93]. We notice that Singer
established his theorem in the finite projective geometry setting. In the
number theoretic setting, the theorem can be stated as follows.

Theorem 5.2 (Singer [97]). Let p be a prime and let q = p2+p+1.
Then, there exist A ⊂ Z/qZ with |A| = p + 1 such that for all x ∈
Z/qZ \ {0}, there exist a1, a2 such that x = a1 − a2.
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Such set, in which every non-zero difference mod q arises exactly
one is called a perfect difference set or Singer set. For the construction
of Singer set, we refer the reader to [97]. Using the Singer set Erdös-
Sárközy-Sós [44], [45] and Rusza [93], [94] constructed a Sidon set S
subset of {1, · · · , N} such that

|S| ≥
√
N − o(

√
N) (ER),

With some desired properties.

We notice that Singer’s construction is based on the nice properties
of finite fields [97].

Let us further mention that the lower bound and the upper bound
of the quantities M(R) and N(R) can be obtained by considering the
following toy examples.

For the first example we take si = i. This gives

PS(z) =
1√
R

R∑

i=1

zi,

and
∣∣∣PS(z)

∣∣∣
2

= 1 +
1

R

R∑

l=1

(R− l)zl +
1

R

R∑

l=1

(R + l)z−l.

Therefore M(R) = R − 1 and N(R) = R. We thus have M(R) is
maximal and N(R) is minimal. Indeed, For any n ∈ N∗, the number
of solution of the equation n = sj − si is less than R − n since any
solution (sj, si), when it exists, satisfy n ≤ sj ≤ R.

The second example correspond to the case for which the support
of the Fourier transform is a Sidon subset S of [1, R]. In this case

M(R) = 1 and N(R) = |S|(|S|−1)
2

. Indeed, by definition of the Sidon set
all (sj −si) are distinct. Hence, the first row of the matrix MS contain
R − 1 elements, the second row R − 2, and the last row one element.
By adding, we get

(R − 1) + (R− 2) + · · ·+ 1 =
R(R− 1)

2
.
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Whence M(R) is minimal and N(R) is maximal. It is seems that the
quantity M(R)N(R) is balanced.

On L4-norm strategy and Newman polynomials. It is hidden
in the proof given by Chidambaraswamy [29] that the L2-norm of the
polynomials (|Pn(z)|2 − 1) does not converge to 0. Indeed,

∣∣∣Pn(z)
∣∣∣
2

− 1 =
1

n

N(n)∑

l=1

m(l)zrl +
1

n

N(n)∑

l=1

m(l)z−rl ,

where m(l) is the multiplicity of rl given by

m(l) =
∣∣∣
{
(i, j) : sj − si = rl

}∣∣∣,

and rl is defined by
{
sj − si, j < i

}
=
{
r1, r2, · · · , rN(n)

}
.

Whence

∥∥∥|Pn(z)|2 − 1
∥∥∥
2

2
=

2

n2

N(n)∑

j=1

m(j)2

≥ 2

n2

N(n)∑

j=1

m(j)

≥ 2

n2

n(n− 1)

2
,

since
N(n)∑

j=1

m(j) =
n(n− 1)

2
.

Therefore ∥∥∥|Pn(z)|2 − 1
∥∥∥
2

2
≥ 1 +

1

n
,

which complete the proof of the claim. From this it easy to see that
‖Pn‖4 ≥ 2, for any n. Hence, ‖Pn‖4 never converge to 1. Thus the
L4-norm strategy of Beller-Newman can not be used.
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6. Proofs of the main results

For any finite subset of integer A, we put

PA(z) =
1√
|A|
∑

a∈A
za, z ∈ T,

Where |A| is the number of elements in A. The L2-norm of PA is one
since

∣∣PA(z)
∣∣2 = 1 +

1

|A|
∑

a,b∈A−A

a6=b

zb−a,(6.1)

where A−A is the set of difference of A.
If |A−A| = |A|2 then A is a Sidon set. The nice properties of Singer’s
set allows us to prove the following.

Lemma 6.1. Let p be a prime number and S a Singer set of Z/qZ
with q = p2 + p+ 1.. Then for any r ∈ Z/qZ \ {0}, we have

∣∣∣PS

(
e2πi

r
q

)∣∣∣ =
√

p

p+ 1
.

Proof. Applying (6.1) we get

∣∣∣PS

(
e2πi

r
q

)∣∣∣
2

= 1 +
1

|S|

q−1∑

t=1

e2πi
t.r
q

= 1− 1

|S| ,

since
q−1∑

t=0

e2πi
t.r
q = 1 +

q−1∑

t=1

e2πi
t.r
q = 0.

Therefore, we can write
∣∣∣PS

(
e2πi

r
q

)∣∣∣
2

=
|S| − 1

|S| =
p

p+ 1
,

and the proof of the lemma is complete. �

The second main ingredient of our proof is based on the classical
Marcinkiewicz-Zygmund inequalities (see [102, Theorem 7.5, Chapter
X, p.28]) and some ideas linked to its recent refinement obtained by
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Chui-Shen-Zhong [33] and many others authors. Therefore, by ap-
pealing to some classical results form the Hp theory and interpolation
theory of Carleson, we will gives an alternative proof to the proof given
in [2].

As is customary, [x] is the integer part of x, Dn is the Dirichlet
kernel, Kn is the Fejér kernel and Vn is the de la Vallé de Poussin
kernel. We remind that

Dn(x) =

n∑

j=−n

e2πijx =
sin
(
π(2n+ 1)x

)

sin(πx)
,

Kn(x) =

n∑

j=−n

(
1− |j|

n+ 1
e2πijx

)
=

1

n + 1

{
sin
(
π(n+ 1)x

)

sin(πx)

}2

,

and
Vn(x) = 2K2n+1(x)−Kn(x).

We remind that the Poisson kernel Pr, 0 < r < 1, is given by

Pr(θ) =
+∞∑

−∞
r|n|einθ

=
1− r2

|1− reiθ|2(6.2)

=
1− r2

1− 2r cos(θ) + r2
.

This kernel is related to the Cauchy kernel Cr(θ)
def
=

1

1− reiθ
by the

following relation

Pr = Re(Hr), where Hr = 2Cr − 1.

The imaginary part of Hr is called the conjugate Poisson kernel and
denoted by

Qr(θ) =
2r sin(θ)

1− 2r cos(θ) + r2
.

Let us also remind that if f = u+ iũ is analytic in the closed disc with
f(0) is real then

f(reiθ) = u ∗Hr(θ),
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and

ũ(θ) = u ∗Qr(θ).

We notice that ũ is the harmonic conjugate to u, which vanishes at
the origin, and of course, Qr is the the harmonic conjugate to Pr. For
f ∈ L1(T), the harmonic conjugate of f is given by

f̃(reiθ) = Qr ∗ f(θ) = −i
+∞∑

n=−∞

n 6=0

n

|n|r
|n|f̂(n)eint.

It is well known that the radial limit of f̃(reiθ) exist almost everywhere,

and this radial limit denoted by f̃ is the conjugate function of f .

We will use often the following classical property: If F = exp(H),
where H is an analytic function. Then

|F | = exp(Re(H)).

Given a continuous function f on the torus T and a triangular
family of equidistant points zn,j ∈ T, j = 0, · · ·2n, n ∈ N∗, that is,

zn,j = zn,0 +
j

2n+ 1
, j = 0, · · · , 2n.

We define the Lagrange polynomial interpolation of f at {zn, j} by

Ln(f, {zn, j})(e2πix) =
1

2π

∫ 2π

0

f(t)Dn(x− zn,j)dω2n+1(t),

where ω2n+1 is a function defined by

ω2n+1(t) =
2πj

2n+ 1
for

2πj

2n+ 1
≤ t <

2π(j + 1)

2n + 1
, j = 0,±1,±2, · · · .

ω2n+1 is a step function with jump 2π
2n+1

at the points 2πj
2n+1

and dω2n+1

its Riemann-Stieltjes integral. In the same manner, we define the step
function ωm, for any m ∈ N∗ and we denote its Riemann-Stieltjes inte-
gral by dωm.

We will need the following classical inequality due to S. Bernstein
and A. Zygmund. For its proof, we refer to [102, Theorem 3.13, Chap-
ter X, p. 11].
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Theorem 6.2. [Bernstein-Zygmund inequality]. For any p ≥ 1, for
any polynomial P of degree n, we have

∥∥P ′∥∥
p
≤ n

∥∥P
∥∥
p
,

where P ′ is the derivative of P . The equality holds if and only if
P (eix) = M cos(nx+ ξ).

Máté, Nevai and Arestov extended Bernstein-Zygmund inequality
by proving that it is valid for p ≥ 0. [21, p.142]. For p = 0, the result
is due to Mahler, a simple proof can be found in [46]. Although we
will not need this result in such generality.

The Marcinkiewicz-Zygmund interpolation inequalities assert that
for α > 1, n ≥ 1, and polynomial P of degree ≤ n− 1,

Aα

n

n−1∑

j=0

∣∣P (e2πi
j
q )
∣∣α ≤

∫

T

∣∣∣P (z)
∣∣∣
α

dz ≤ Bα

n

n−1∑

j=0

∣∣P (e2πi
j
q )
∣∣α,(6.3)

where Aα and Bα are independent of n and P .

The left hand inequality in (6.3) is valid for any non-negative non-
decreasing convex function and in the more general form [102, Remark,
Chapter X, p. 30]. For sake of completeness, we will state and present
a sketch of the proof of it.

Theorem 6.3. Let κ > 0, m ≥ (1 + κ)2n. Then, for any non-
negative, non-decreasing and convex function φ, for any trigonometric
polynomial Q of degree n, we have

∫ 2π

0

φ(Aκ|Q|)dωm ≤
∫ 2π

0

φ(|Q|)dx,

where

Aκ =
1

1 + κ−1
.

Proof. The proof is the same as in [102, p.29]. One only needs
to substitute the de Vallé de Poussin kernel Vn−1 by

Vn,h =
(
1 +

n

h

)
Kn+h−1 −

n

h
Kn−1,
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where h = [2κn] + 1 and 1
3
by 1

1+ 2n
h

. Vn,h is the de Vallé de Poussin

kernel of order h. �

Remark. In [102, Theorem 7.28, Chapter X, p. 33], one may found
the proof of the right hand inequality in the Marcinkiewicz-Zygmund
inequalities under the same assumptions as in Theorem 6.3.

The next lemma is crucial for the proof of our main result.

Lemma 6.4. Let p be a prime number and S a Singer set of Z/qZ
with q = p2 + p+ 1. Then, for any α > 1, we have

1

q

q−1∑

r=0

∣∣∣PS

(
e2πi

r
q

)∣∣∣
α

=
1

q

(
(p+ 1)

α
2 + (q − 1)

( p

p+ 1

)α
2
)
.

Proof. It is straightforward from Lemma 6.1. �

Lemma 6.4 yields for any 0 < α < 4,

lim
q−→+∞

1

q

q−1∑

r=0

∣∣∣PS

(
e2πi

r
q

)∣∣∣
α

= 1.(6.4)

Now, following the strategy in [33], we perturb the root of unity as
follows. Put

tq,r =
r

q
, and

t∗q,r =
r

q
± δ

q.p1/2+ǫ
, δ > 0, ǫ > 0.

We thus have

Lemma 6.5. For any 0 < α < 4,

lim
q−→+∞

1

q

q−1∑

r=0

∣∣∣PS

(
e2πit

∗
q,r
)∣∣∣

α

= 1.

Proof. Applying Bernstein theorem (Theorem 6.2), we get
∣∣P (e2πitr,q)− P (e2πit

∗
q,r,δ)

∣∣ ≤ q‖PS‖∞
∣∣∣e2πitr,q − e2πit

∗
q,r,δ

∣∣∣

≤
√
p+ 1

2π

δ

p1/2+ǫ
−−−→
q→∞

0.
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This combined with the standard triangle inequalities gives
∣∣∣∣∣

(
1

q

q−1∑

r=0

∣∣∣PS

(
e2πitq,r

)∣∣∣
α
) 1

α

−
(
1

q

q−1∑

r=0

∣∣∣PS

(
e2πit

∗
q,r,δ

)∣∣∣
α
) 1

α
∣∣∣∣∣

≤
(
1

q

q−1∑

r=0

∣∣∣PS

(
e2πitq,r

)
− PS

(
e2πit

∗
q,r,δ

)∣∣∣
α
) 1

α

≤
√
p + 1

2π

δ

p1/2+ǫ
−−−→
q→∞

0,

and the proof of the lemma is complete. �

Lemma 6.5 allow us to construct a new families of nodal points for
which (6.4) holds.

Now, we are able to prove our main results.

6.1. Proof of Theorems 2.1, 2.2. In the previous version of
this work [2], Theorem 2.1 was proved by showing that the L1-flatness
holds by appealing to Lemma 6.5 to construct a disturbed triangle

family of nodal points
{
z∗q,j
}m−1

j=0
of
{
zq,j
}
that satisfy (6.4) and with

m ≥ (1 + κ)2q, κ ≪ q, where κ > 0 is given. As a consequence, by
Theorem 6.3, we obtain that

lim
q−→+∞

∥∥Pq

∥∥
1
≥
(
1 + κ−1

)−1

,(6.5)

and letting κ −→ +∞, we get

lim
q−→+∞

∥∥Pq

∥∥
1
= 1.(6.6)

We notice that there is many way to obtain such sequence of dis-
turbed points. Here, we follows the spirit of the Kadets 1/4 theorem
for polynomials due to Marzo-Seip [76]. This new strategy is based on
the Carleson interpolation theory and the very recent refinement of the
Marcinkiewicz-Zygmund inequalities.

We start by proving Theorem 2.1.
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Let S be a fixed Singer set in Z/qZ with q = p2 + p + 1, p prime
number and put

Pq(z) = PS(z).

Define

zj,q = e2πi
j
q ,

and for a given δq,j > 0, j = 0, · · · , q − 1, we put

z∗r,q,(δq,j) = e2πi
(

j
q
+

δq,j
q

)
.

Let δ > 0. We define

zr,2q,δ =

{
z r

2
,q, if r is even;

z∗r−1
2

,q,δ
, if r is odd,

with δq,j = δ, j = 0, · · · , q − 1, and ρq = 1− 1
2q
. We thus have

{
zr,2q,δ

}
=
{
zr,q

}q−1

r=0

⋃{
z∗r,q,δ

}q−1

r=0
,

and we set

F2q−1(z) =

2q−1∏

r=0

(
1− ρqzr,2q,δz

)
, where ρq =

2q − 1

2q
.

We remind that the family of nodal points Z =
{
{zj,n}nj=0

}
n≥0

is said

to be an Lα Marcinkiewicz-Zygmund family if the Lα Marcinkiewicz-
Zygmund inequalities holds for the nodal points {zj,n}nj=0, for every
n ≥ 0.

We associate to any family of nodal points Z =
{
{zj,n}nj=0

}
n≥0

the

function Fn defined by

Fn(z) =

n∏

r=0

(
1− ρnzr,nz

)
, where ρn = 1− 1

n+ 1
.

The family Z is said to be uniformly separated if there is a positive
number c such that

inf
j 6=k

∣∣zn,j − zn,k
∣∣ ≥ c

n+ 1
, ∀ n ≥ 0.
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This notion is related to the notion of Carleson measures and following
[96] the sequence X = {ξn} of points in the open unit disk D is said to
satisfy Carleson’s condition if,

γ = inf
k

∞∏

j=1

j 6=k

∣∣∣ ξj − ξj

1− ξkξj

∣∣∣ > 0.(6.7)

Of course this condition is connected to the well-known Carleson’s in-
terpolation theorem [28]. For the proof of Carleson’s interpolation
theorem, we refer the reader to [40, p.157], [65, p.1], [49, p.274].

We remind that a finite measure µ is a Carleson measure if the
injection mapping from Hα, α > 0 to the space Lα(D, µ) is bounded.
These measures were described geometrically in Carlson’s theorem [27],
[40, p.156], which assert that the finite measure µ is a Carleson measure
if and only if there exist a constant Cα > 0 such that

∫

D

|f(z)|αdµ ≤ Cα

∥∥f
∥∥α
Hα f ∈ Hα,

for any α > 0 . Furthermore, by Carleson’s interpolation theorem, we
have that the discrete measure µ given by

µ =
+∞∑

n=1

(1− |zk|2)δzk ,

where δw is the Dirac measure on w, is a Carlson measure if the family
{zk} is uniformly separated. This result was strengthened in [15] by
McDonald and Sundberg [74], who proved that the sequence {zk} of
points in D generates a discrete Carleson measure µ if and only if {zk}
is a finite union of uniformly separated sequences. For a simple proof,
we refer to [41]. We notice that if the sequence is uniformly separated
then the constant Cα depend uniquely on γ. In this setting, we have
the following lemma

Lemma 6.6. The sequences Z =
{{

ρqzr,q
}}

q≥0
and Z∗ =

{{
ρqz

∗
r,q,δ

}}
q≥0

are uniformly separated sequences.
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Proof. Put

ξ∗r = ρqz
∗
r,q,δ = ρqe

itr,q ,

where tr,q = 2π( r
q
+ δ

q
), r = 0, · · · , q − 1. Then

∣∣∣ ξ
∗
r − ξ∗s

1− ξ∗sξ
∗
r

∣∣∣
2

=
2ρ2q

(
1− cos

(
tr,q − ts,q

))

1− 2ρ2q cos
(
tr,q − ts,q

)
+ ρ4q

=
4ρ2q

(
sin
( tr,q−ts,q

2

))2

(
1− ρ2q

)2
+ 4ρ2q

(
sin
( tr,q−ts,q

2

))2

=
4ρ2q

(
sin
(
π r−s

q

))2

(
1− ρ2q

)2
+ 4ρ2q

(
sin
(
π r−s

q

))2(6.8)

Notice that π. r−s
q

∈] − π, π[, and the function x 7→ sin2(x) is an
even function. We further have, for any x ∈ R,

sin2(x− π) = sin2(x).

Therefore, we can reduce our study to the case of π. r−s
q

∈]0, π/2], and
if π. r−s

q
∈ [π/2, π[ we substitute π. r−s

q
by π. r−s

q
− π ∈ [−π/2, 0[.

Now, assuming π. r−s
q

∈]0, π/2], it follows that

sin2
(
π.
r − s

q

)
≥ 4

(r − s)2

q2
,

since, for any x ∈]0, π/2], we have sin(x) ≥ 2

π
x. Whence

4ρ2q

(
sin
(
π r−s

q

))2

(
1− ρ2q

)2
+ 4ρ2q

(
sin
(
π r−s

q

))2 ≥
4ρ2q

(
4 (r−s)2

q2

)

(
1− ρ2q

)2
+ 4ρ2q

(
4 (r−s)2

q2

) ,(6.9)

by the monotonicity of the function φ(x) =
4ρ2qx(

1− ρ2q
)2

+ 4ρ2qx
.

We further have
(
1− ρ2q

)2 ≤
8ρ2q
q2

≤
16ρ2q
q2

,
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since, for any n ≥ 1, (n− 1) ≤ 2
√
2(n− 1). This combined with (6.8)

and (6.9) gives

∣∣∣ ξ
∗
r − ξ∗s

1− ξ∗sξ
∗
r

∣∣∣
2

≥ (r − s)2

1 + (r − s)2
.(6.10)

We thus get

inf
s

q−1∏

r=0
r 6=s

∣∣∣ ξ
∗
r − ξ∗s

1− ξ∗sξ
∗
r

∣∣∣
2

≥
+∞∏

t=1

(1− 1

1 + t2
)
def
= γ2 > 0,

by the convergence of
+∞∑

t=1

1

1 + t2
. �

It follows from Lemma 6.6 that the union of the families Z and Z∗

generates a Carleson measure since the sum of two Carleson measures
is a Carlson measure. We further deduce the following

Lemma 6.7. The sequence Z =
{{

ρqzr,q
}}

q≥0
∪
{{

ρqz
∗
r,q,δ

}}
q≥0

is

uniformly separated, and we have

inf
ξ∈Z

∏

χ∈Z

χ 6=ξ

∣∣∣ χ− ξ

1− ξχ

∣∣∣ ≥ γ2.
δ√

1 + δ2
,

where

γ2 =

+∞∏

t=1

(
1− 1

1 + t2

)
.

Proof. Put

ξr = ρqzr,q, and ξ∗r = ρqz
∗
r,q,δ,
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and let ξs ∈ Z, s = 0, · · · q − 1. Then, either ξs ∈
{
ρqzr,q

}
or ξs ∈{

ρqz
∗
r,q,δ

}
. Assuming that ξs ∈

{
ρqzr,q

}
, it follows that

∏

χ∈Z

χ 6=ξ

∣∣∣ χ− ξ

1− ξχ

∣∣∣ =
∏

r 6=s

∣∣∣ ξr − ξs

1− ξsξr

∣∣∣
q−1∏

r=0

∣∣∣ ξ
∗
r − ξs

1− ξsξ∗r

∣∣∣

=
∏

r 6=s

∣∣∣ ξr − ξs

1− ξsξr

∣∣∣
∏

r 6=s

∣∣∣ ξ
∗
r − ξs

1− ξsξ∗r

∣∣∣
∣∣∣ ξ

∗
s − ξs

1− ξsξ∗s

∣∣∣

≥ γ2 δ√
1 + δ2

,

by the same arguments as in Lemma 6.6 (see also [31]) combined with
(6.10). The same conclusion can be drawn for the case ξs ∈

{
ρqz

∗
r,q,δ

}

since the two sets plays symmetric roles. The proof of the lemma is
complete.

�

According to Chui-Zhong’s theorem [31] the family X =
{{ξn,j}nj=0}n≥0 of the points on the unit circle is an Lα Marcinkiewicz-
Zygmund family if and only if it is uniformly separated and there exist
a constant Kα such that

( 1

|I|

∫

I

|Fn(e
iθ)|αdθ

) 1
α
( 1

|I|

∫

I

|Fn(e
iθ)|− α

α−1dθ
) 1

α ≤ Kα(6.11)

For every subarc I of the unit circle and every n ≥ 0.
We notice that the fact that the family is uniformly separated insure
that this family generates a Carlson measure, and it is turn out that the
second condition (6.11) is well-known as Aα condition in the setting of
the BMO spaces (Bounded Mean Oscillation) [49, p.215]. We remind
that locally integrable positive function w satisfy Aα condition if

sup
I

( 1

|I|

∫

I

w(x)dx
)( 1

|I|

∫

I

w(x)−
1

α−1dx
)α−1

< ∞.(6.12)

It turn out that in the case p = 2 the condition (6.12) is equivalent
to the following Helson-Szegö condition:
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Helson-Szegö condition. There are real-valued function u, v ∈
L∞(T) such that

‖v‖∞ <
π

2
and w = eu+ṽ, (HS)

where ṽ is the conjugate function of v.

For the proof of the equivalence of (6.12) when p = 2 and (HS), we
refer to [49, p.246-259]. Therein, the reader can found also the proof
of the prediction Helson-Szegö’s theorem related to (HS) [56].

Now, according to the equivalence of (6.12) when p = 2 and (HS),
Marzo and Seip [76] observe that in order to prove that the condition
(6.11) holds it suffices to establish that the following uniform Helson-
Szegö condition holds:

Uniform Helson-Szegö condition. There exist sequence un

and vn of real-valued function in L∞(T) such that

sup
n

‖vn‖∞ <
π

2
, sup

n
‖un‖∞ < +∞ and |Fn|2 = eun+ṽn,

where ṽn is the conjugate function of vn.

We are going to prove that the uniform Helson-Szegö condition
holds. Let κ > 0 and n = 2q − 1. We claim first that we have

|Fn(e
iθ)|2 = eun,κ(θ)|Fn,κ(e

iθ)|2,

where

Fn,κ(z) =

n∏

r=0

(
1− ρn,κzr,n+1,δz

)
and ρn,κ = max

{1
2
, 1− κ

n+ 1

}
.

Indeed, the Mahler measure of the fonction φn,κ(θ)
def
=

Fn(e
iθ)2

Fn,κ(eiθ)2
verify

M(|φn,κ|) =
n∏

r=0

( M
(
1− ρnzr,n+1,δe

iθ
)

M
(
1− ρn,κzr,n+1,δeiθ

)
)
= 1,
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by Proposition 2.5 combined with the well-know Jensen formula. We
further have

1− ρnzr,n+1,δe
iθ

1− ρn,κzr,n+1,δeiθ
=

(
1− ρnzr,n+1,δe

iθ
)( +∞∑

l=0

ρln,κzr,n+1,δ
leilθ
)

= 1 +

+∞∑

l=0

ρl−1
n,κzr,n+1,δ

l
(
ρn,κ − ρn

)
eilθ.

Therefore φn,κ is in H1 and log |φn,κ| is integrable. Put

G(z) = exp
( 1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |φn,κ(θ)|dθ

)
.

Then G is an analytic function in the unit disc D and
∣∣G
∣∣ = eun,κ,

where un,κ is the Poisson integral of log(|φn,κ|), that is, un,κ(re
iθ) =

Pr ∗ log(|φn,κ|) where Pr is the Poisson kernel and ∗ is the convolution
operator. By Fatou theorem [57, p.34], |G| = eun,κ = |φn,κ| almost
everywhere on the unit circle T. We further have

un,κ(θ) = 2Re
(
Log

(
Fn(θ)

)
− Log

(
Fn,κ(θ)

))

= 2Re
( n∑

r=0

(
Log

(
1− ρnzr,n+1,δe

iθ
)
− Log

(
1− ρn,κzr,n+1,δe

iθ
)))

= 2Re
( n∑

r=0

( +∞∑

l=1

ρln,κ − ρln
l

zr,n+1,δ
leilθ
))

,

where Log is the principal value of the logarithm. Writing

un,κ(θ) = 2Re(I + II),

where

I =

q−1∑

r=0

+∞∑

l=1

ρln,κ − ρln
l

zr,q
leilθ, and II =

q−1∑

r=0

+∞∑

l=1

ρln,κ − ρln
l

zr,q
le−2iπ lδ

2q eilθ.

It follows that

I =

+∞∑

l=1

ρlqn,κ − ρlqn
l

eilqθ, and II =

+∞∑

l=1

ρlqn,κ − ρlqn
l

e−2ilπ δ
2 eilqθ,
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since

q−1∑

r=0

zr,q
l =

{
q, if l ∈ qZ;
0, if not.

We can thus write

∣∣un,κ

∣∣ ≤ |I|+ |II|

≤ 2
( +∞∑

l=1

ρlqn,κ
l

+
+∞∑

l=1

ρlqn
l

)

≤ 2
(
log
( 1

1− ρqn,κ

)
+ log

( 1

1− ρqn

))
,

≤ 2

1− e−
κ
2

+
2

1− e−
1
2

since log(x) ≤ x for any x > 0, and log(1 − x) ≤ −x for 0 ≤ x < 1 .
We thus conclude that

sup
n

∥∥un,κ

∥∥
∞ < +∞,

and the proof of the claim is complete.

We move now to construct the functions vn. For that, we start by
proving the following lemma

Lemma 6.8. Let F (z) = (1 − rz0z), with 0 < r < 1 and z0 = eiθ0.
Then |F |2(eiθ) = eṽ, where ṽ is the conjugate function of the function
v given by

v(θ) = Pr ∗ 1[0,θ](θ0)− θ − c,(6.13)

and c is any suitable constant.

Proof. Obviously F 2 is an outer function since the zeros of F 2

are out of the disc D. We further have F 2(0) = 1. Whence |F |2 = eṽ,
where ṽ is the conjugate function of the function v given by (6.13).
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Indeed, for any θ, we have

Log
(
F (eiθ)

)
= −

+∞∑

n=1

rn

n
ein(θ−θ0)

= −
+∞∑

n=1

rn

n
cos
(
n(θ − θ0)

)
+ i

+∞∑

n=1

rn

n
sin
(
n(θ − θ0)

)
,(6.14)

where Log is the principal value of the logarithm. We further have

v(θ) = Pr ∗ 1[0,θ](θ0)− θ − c =

∫ θ

0

Pr(θ0 − t)dt− θ − c

=

∫ θ

0

Pr(t− θ0)dt− θ − c,

Since Pr is an even function. But
∫ θ

0

Pr(t− θ0)dt =

∫ θ

0

+∞∑

n=−∞
r|n|ein(t−θ0)dt

=
∑

n 6=0

r|n|

in
ein(θ−θ0) −

∑

n 6=0

r|n|

in
e−inθ0 + θ,(6.15)

by (6.2). Consequently

v(θ) =
∑

n 6=0

r|n|

in
ein(θ−θ0) −

∑

n 6=0

r|n|

in
e−inθ0 − c,

and

ṽ(θ) = −i
∑

n 6=0

n

|n|
r|n|

in
ein(θ−θ0),

= −2
+∞∑

n=1

rn

n
cos
(
n(θ − θ0)

)
(6.16)

Combining (6.14) with (6.16), we obtain

Re
(
Log(F 2(eiθ))

)
= ṽ(θ),

which gives
|F 2| = eṽ,
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since for any analytic function g, we have

|eg| = eRe
(
g
)
,

and the proof of the lemma is complete. �

We now apply Lemma 6.13 to write

|Fn,κ(e
iθ)|2 = eṽn,κ(θ),

where

vn,κ(θ) =

n∑

j=0

∫ θ

0

Pρn,κ

(
θn,j − t

)
dt− (n + 1)θ − c,(6.17)

θn,j =

{
2π j

2q
, if j is even;

2π
(
j−1
2q

+ δ
q

)
, if j is odd,

and c is any suitable constant. Taking

c =
n∑

j=0

∫ 0

−2πγn,j

Pρn,κ

((
2π

j − 1

2q

)
− t
)
dt,

with

γn,j =

{
0, if j is even;
2π δ

q
, if j is odd.

We can rewrite (6.17) as

vn,κ(θ) =

n∑

j=0

∫ θ−2πγn,j

0

Pρn,κ

(
θn,j − t

)
dt− (n+ 1)θ,(6.18)

since, for any odd j, we have
∫ θ

0

Pρn,κ
(θn,j − t)dt =

∫ θ

0

Pρn,κ

((
2π
(j − 1

2q

)
+ γn,j

)
− t
)
dt,

=

∫ θ−2πγn,j

−2πγn,j

Pρn,κ

((
2π
(j − 1

2q

))
− t
)
dt

Again writing

vn,κ(θ) = I + II,
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where

I =

q−1∑

r=0

∫ θ

0

Pρn,κ

(2πj
q

−t
)
dt−qθ and II =

q−1∑

r=0

∫ θ− 2πδ
q

0

Pρn,κ

(2πj
q

−t
)
dt−qθ.

We thus need to estimate |I| and |II|. But, by the same reasoning as
above, it is easy to check that

I =
∑

l 6=0

ρlqn,κ
1− e−ilqθ

il
and II =

∑

l 6=0

ρlqn,κ
1− e−ilq(θ− 2πδ

q
)

il
− 2πδ.

Consequently, we get

|I| ≤ 4
∑

l≥1

ρlqn,κ
l

= −4 log(1− ρqn,κ).

Whence

|I| . −4 log
(
1− e−

κ
2

)
.

It is still to estimate |II|. In the same manner it can be seen that

|II| . 2πδ + 4
∑

l≥1

ρlqn,κ
l

≤ 2πδ − 4 log
(
1− e−

κ
2

)
,

and by choosing κ sufficiently large and δ < 1
8
, we obtain

sup
n

‖vn,κ(θ)‖∞ <
π

2
.

From this we conclude that the uniform Helson-Szegö condition holds
for α = 2.
For the case 1 < α 6= 2. Assuming δ < 1

8β
where β = max

{
α, α

α−1

}
,

one may apply the standard argument from the Hp theory combined
with the Hölder inequality and Lemma 2 from [76] to conclude that
the uniform Helson-Szegö condition holds.

Now, let 0 < α < 2 and 0 < δ < 1
4β
, with β = α

α−1
. By Lemma 6.7

the family Z =
{{

ρqzr,q
}}

q≥0
∪
{{

ρqz
∗
r,q,δ

}}
q≥0

is uniformly separated.
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We can thus write

∫ ∣∣∣
∣∣Pq

∣∣2 − 1
∣∣∣
α

dθ

≤ Cα,δ

( 1

2q

q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,q)|2 − 1

∣∣∣
α

+
1

2q

q−1∑

r=0

∣∣∣
∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣
α)

,(6.19)

where

Cα,δ =
2Cγ

γ2. δ√
1+δ2

=
2Cγ

√
1 + δ2

γ2.δ
.

The computation of constant Cα,δ can be found in [40, p.153]. Therein,
by appealing to the duality argument, it is shown that for any w =
(wj) ∈ ℓα, there exist g ∈ Hα such that for some f ∈ Hβ, with

∥∥f
∥∥
β
=

1, and β is the conjugate of α, one can assert

∥∥g
∥∥
α
≤

√
1 + δ2

γ2.δ
‖w‖α

(∫

D

|f(z)|βdµZ +

∫

D

|f(z)|βdµZ∗

)
,

where

µZ =
+∞∑

q=3

( q−1∑

r=0

(
1−|ρqzr,q|

)
δzr,q , and µZ∗ =

+∞∑

q=3

( q−1∑

r=0

(
1−|ρqz∗r,q,δ|

)
δzr,q .

But the measures µZ and µZ∗ are a Carleson measures. Therefore,

∫

D

|f(z)|βdµZ +

∫

D

|f(z)|βdµZ∗ ≤ 2Cγ‖f‖β = 2Cγ,

where

Cγ =
2

γ4

(
1− 2 log(γ)).

An alternative proof can be found in [57, p.195-202]. The reader may
notice that the proof of Theorem F in [33] can be drawn from the above
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proof. We further have

∣∣∣
(1
q

q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,q)|2 − 1

∣∣∣
α) 1

α −
(1
q

q−1∑

r=0

∣∣∣
∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣
α) 1

α
∣∣∣

≤
(1
q

q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,q)|2 −

∣∣Pq

(
z∗r,q,δ)|2

∣∣∣
α) 1

α

≤ 2
1
α

( 1

2q

2q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,2q)|2 −

∣∣Pq

(
z∗r,2q,2δ)|2

∣∣∣
α) 1

α

≤ cα
δ

2q

(∫ ∣∣∣
(
|P (θ)|2

)′∣∣∣
α

dθ
) 1

α

.

The second inequality is due to the simple fact that z2r,2q = zr,q and
z∗2r,2q,2δ = z∗r,2q,δ, and the third inequality follows by the same argu-
ments as in the proof of Lemma 12 and Theorem 9 from [83]. Apply-
ing Bernstein-Zygmund inequality (Theorem 6.2) combined with the
classical Marcinkiewicz-Zygmund inequalities, we obtain

∣∣∣
(1
q

q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,q)|2 − 1

∣∣∣
α) 1

α −
(1
q

q−1∑

r=0

∣∣∣
∣∣Pq

(
z∗r,q,δ)|2 − 1

∣∣∣
α) 1

α
∣∣∣

≤ cαδ
(∫

|P (θ)|2αdθ
) 1

α

≤ c′αδ
(1
q

q−1∑

r=0

|P (zr,q)|2α
) 1

α

.

The reader should notice that the constant c′α depend only on α. If
follows that

1

q

q−1∑

r=0

∣∣∣
∣∣Pq

(
z∗r,q)|2 − 1

∣∣∣
α

≤
((1

q

q−1∑

r=0

∣∣∣
∣∣Pq

(
zr,q)|2 − 1

∣∣∣
α) 1

α

+ c′αδ
(1
q

q−1∑

r=0

|P (zr,q)|2α
) 1

α
)α

.

Combined these inequalities with Lemma 6.4, we can rewrite (6.19) as
∫ ∣∣∣
∣∣Pq

∣∣2 − 1
∣∣∣
α

dθ ≤ Cα,δ

(1
2
Iα,p +

1

2

(
I

1
α
α,p + c′αδJ

1
α
α,p

)α)
,
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where

Iα,p =
pα

q
+
(q − 1

q

)( p

p+ 1
− 1
)
, and

Jα,p =
(p+ 1)α

q
+
(q − 1

q

)( p

p+ 1

)

Letting q −→ +∞, we obtain

lim
q−→+∞

∫ ∣∣∣
∣∣Pq

∣∣2 − 1
∣∣∣
α

dθ ≤ Cα,δ
c′αα
2
δα =

Cγ

γ2

√
1 + δ2c′

α
αδ

α−1,

and by letting δ −→ 0, we conclude that

lim
q−→+∞

∫ ∣∣∣
∣∣Pq

∣∣2 − 1
∣∣∣dθ = 0,

Since ∫ ∣∣∣
∣∣Pq

∣∣2 − 1
∣∣∣dθ ≤ 2, and α > 1.

Hence the sequence of polynomials (Pq)q∈N is L1-flat.

Therefore, by appealing to Proposition 4.2, we deduce that the
sequence of polynomials (Pq(z)) is almost everywhere flat over some
subsequence. Thus the proof of Theorem 2.1 is complete.

Theorem 2.2 follows from Theorem 2.1 combined with Proposition
4.2 and Lemma 6.6. Finally, by (3.2), we deduce that the spectral type
σ of the rank one map constructed in Theorem 2.2 verify

M
(dσ
dz

)
=

+∞∏

j=0

M(P 2
j ) > 0.

Whence,

M(Pj) −−−−→
j→+∞

1.

This finishes the proof. For more details on the construction of rank
one map in Theorem 2.2, we refer the reader to [3] and [4].

Remarks. Obviously, as in the proof given by Zygmund in [102,
p.29, Chap X], in our proof of Theorem 6.3, we take advantage of the
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following classical identity [102, p.35, Chap II]

1

d

d−1∑

j=0

e
2πijk

d =

{
0 if d ∤ k

1 if d | k,
for any d, k ≥ 1.

The reader may notice that there is some analogies between our proof
and the Fast Fourier Transform algorithm (FFT). We refer the reader
to [98] for more details on the FFT.

Applying Carleson interpolation theory, one can prove that for any
p > 0, there is a constant Cp > 0 such that, for any polynomial P of
degree less than n,

C−1
p

4n

4n−1∑

j=0

∣∣P (e2πi
j
2n )
∣∣p ≤

∥∥P
∥∥p
p
.

An alternative proof can be found in [85]. Besides this, Marcinkiewicz
and Zygmund proved [75] that for any p ≥ 1 and for any polynomial
P of degree less or equal than n, we have

(
1

2n

2n−1∑

j=0

∣∣P (e2πi
j
2n )
∣∣p
) 1

p

≤
(
pπ + 1

) 1
p
∥∥P
∥∥
p
.

To the best of this author’s knowledge, the explicit constant for the
case p = 0 seems not to be known. Nevertheless, in the case of the
classical Riesz product, if we consider the polynomial

P (θ) = 1 + α cos(nθ),

where α is non-negative number less than 1. Then

Mdω4n+1(P ) = exp

(
1

4n

4n−1∑

j=0

log
(∣∣P (e2πi

j
2n )
∣∣
))

(6.20)

≤ Mdz(P ).

This can be proved as follows.

Following [60], we put

P (θ) = |Q(eiθ)|2,
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where

Q(z) =
1 + azn

1 + a2
, with a =

α

1 +
√
1− α2

.

It is easily seen that Q(z) does not vanish on the disc D
def
=
{
|z| ≤ 1

}
.

We thus get that the function log
(∣∣Q(eiθ)

∣∣2) is harmonic. Applying
the mean property, we obtain

log
(∣∣Q(0)

∣∣2) = 1

2π

∫ 2π

0

log(
∣∣Q(eiθ)

∣∣2)dθ.(6.21)

Rewriting (6.21), we see that

M(P ) =
1

1 + a2
.

Now, any easy computation shows that

P
(
e2πi

j
2n

)
= 1 + α(−1)j,

for j = 0, · · · , 2n− 1.
Whence

Mdω4n+1(P ) =
√
1− α2.

Obviously
√
1− α2 ≤ 1

1 + a2
.

We conclude that (6.20) holds.

This leads us to ask.

Questions.

(1) Can one prove or disapprove that C
1
p
p converge to 1 as p −→ 0.

(2) Let Sp be a family of Singer sets, p is a prime number and
consider the sequence of polynomials

Pq(z) =
1√
|Sp|

∑

s∈Sq

zs, |z| = 1.

Can one prove or disapprove that the sequence of the Mahler
measure of Pq converge to 1.



ERGODIC BANACH PROBLEM, FLAT POLYNOMIALS,... 45

(3) Let (X,B, µ, T ) be an ergodic dynamical system where µ is a
finite measure. Can one prove or disapprove that there exist
a Borel set A with µ(A) > 0 such that for µ-almost all x ∈ X ,

∫ ∣∣∣ 1√
Nµ(A)

N−1∑

j=0

1A(T jx)zj
∣∣∣dz −−−−→

N→+∞
1.

(4) In the same setting as in the previous question, can one prove
or disapprove that for any measurable f with values ±1, for
µ-almost all x ∈ X , we have

lim sup
N−→+∞

∫ ∣∣∣ 1√
N

N−1∑

j=0

f(T jx)zj
∣∣∣dz < 1.

As mentioned in introduction, this problem can be linked to
the annealed and quenched business.
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