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MULTIVARIATE OPTIMIZATION FOR MULTIFRACTAL-BASED TEXTUR E
SEGMENTATION

Jordan Frecon, Nelly Pustelnik, Herwig Wendht, Patrice Abry,
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ABSTRACT In most applications, however, texture analysis combiwes t

. . . . : . different issues: Segmentation of the images into pieces or
This work aims at segmenting a texture into different regjon : . .
regions, of a priori unknown boundaries, where texture prop

each characterized by a priori unknown multifractal prop-_ > . o
. . . o . erties can be considered as homogeneous and characterizati
erties. The multifractal properties are quantified using th

. . e : of texture properties in each different homogeneous parts.
multiscale functionC} ; that quantifies the evolution along Solution for i tation has b . di
analysis scaleg’ of the empirical mean of the log of the olution forimage segmentation has been envisaged in

wavelet leaders. The segmentation procedure, applied d{ﬁany dllffer_(-:;t yvaysl [?_’ 7, 8,9, 10, tllg)' Hok\)/ve\t/?r, none of
(C1j)1<j<J, involves a multivariate Mumford-Shah relax- ese algorithmic solutions appears 1o be robust to norse, u

ation formulated as a convex optimization problem invajvin superwsedt an{_j edxpllomng the c:lorrglﬁthns trlwgugh dt&_lihe r
a structure tensor penalization and an efficient algorid:hmiComponen s. To derive a new algorithmic solution satigyin

solution based on primal-dual proximal algorithm. The per_aII these constraints, we focus on a segmentation procedure

formances are evaluated over simulated data. derived from [12],' ] o
Goals and contributions. The present contribution elabo-

Index Terms— Local regularity, multifractal spectrum, rates on earlier works [13, 14], aiming to segment a texture

segmentation, convex optimization, wavelet Leaders into local regularity piecewise constant regions, by pspo
ing one of the first and rare attempt to segment a texture into
1. INTRODUCTION regions, with unknown boundaries, and within multifractal

. L - . properties can be considered homogeneous. The proposed
Multifractal texture characterization. Multidimensional procedure thus aims at segmenting a texture into different
multifractal analysis lis now considered as a classical tooilegions, each characterized by a different a priori unknown
fo_r texture chargcterlza}tlon (cf. eg. [1]). I_t notably P multifractal spectrum. To that end, wavelet leader based-ch
mits to capture in a refined manner the detailed fluctuationg e rization of texture is first recalled in Section 2. In the
of regularity of a texture along space and thus ground x5 esent work, multifractal properties are quantified using-
ture characterization on the_ measurement of global and! locscale quantityCs ; that quantifies the evolution along anal-
smoothness. Local regularity is technically measuredhéa t ysis scale@? of the empirical mean of the log of the wavelet

concept of H'O_I(_:ier exponent, and the muItlfracta_ll Spectiunaders at a given scale. This function is deeply relateldo t
provides practitioners with a global and geometrical cbara 5 erage or global regularity of the texture. Thus, it does no
terization of the statistical fluctuations of Holder expats o ~.qunt for the entire multifractal properties of the tegtu
measured across the texture of interest. Multifractalstoolbut provides us with a satisfactory partial description ofm
have be_en used to_ chgracterlz_e real-world textures from fractal properties that can be involved into texture segm
"?fge va_rlety of applications of dlf_ferent_natyres rangfiragn . tation. The multivariate segmentation procedure is dedai
biomedical (cf. e.g., [2]) to art |_nvest|gat|ons [3’ 4. Hi Section 3. It consists in a multivariate Mumford-Shah relax
also well documented that multifractal analysis should be;sqn formulated as a convex optimization problem invagyin

grounded on wavelet leaders, consisting of local supremum (e ngor structure penalization and an efficient algorittsui
of 2D wavelet transform coefficients taken across all finefj 1y based on primal-dual proximal algorithm is propossed

scales [5, 1]. Section 4. In Section 5 preliminary results are conducted on

Texture segmentation. However, in its current formulation, gy nhetic texture, designed to have piecewise constartt-mul
multifractal analysis, as most texture characterizati@mee-  r5ctq) properties.

dures, assumes a priori that the texture to analyze comdists
a single piece with homogeneous properties, that is, textur
properties of any subpart of the image available are idehtic 2. MULTIFRACTAL ANALYSIS

Work supported by GdR 720 ISIS under the junior researcheptoj . .
GALILEO, ANR AMATIS grant 112432, 2010-2014, and CNRS Imag'in  -0Cal regularity and multifractal spectrum.  We denote
project under grant 20150PTIMISME. X = (X¢)1<e<n the image to analyze havinyy pixels.



Its local regularity around positiod can be quantified by 3. MULTIVARIATE SEGMENTATION

the Holder exponenk,: while largeh, points to a locally

smooth portion of the field, lovk, indicates local high ir-  Original formulation.  The original Mumford-Shah prob-
regularity. Texture regularity fluctuations can be desamlib lem consists in labeling an imageéinto @ distinct areas hav-
by the so-calledD(h) that describes the fluctuations bf ~ ing & mean value of,, with by conventiony, < ve41. The
along space in a global and geometrical manner (cf. e_gminimization problemis

[15, 5, 1] for details). For practical purposes, the mudiifial

spectrum can often be approximated as a paratli(a) = mu}l Z / —wg)?dx + = Z Per(Q2,)
2+(h—c1)?/(2¢2). The practical estimation @ (h) requires fle g

the use of wavelet leaders. UQ Q, =0,

Wavelet leaders. We denotel}) = (X,v!)) the (L'- subj. to { 5)
normalized) 2D discrete Wavelet coefﬂmentslﬁf at loca- (Vg #p), 2,00 =1,

tionk = 277, at scale2’ with j € {1,...,J}, and where where the penalization P&?,) imposes the solution to have a
m stands for the hO”Zontal/VGrucal/d|agonal subband. FOh’]|n|ma| penmeter and the constraints Over@]ereas ensure
a detailed definition of the 2D-DWT, readers are referred tton-overlapping of the partition.

e.g., [16]. In several work [17, 18], a relevant convexification of
Wavelet leaders were recently introduced [15, 5] to perthjs criterion has been proposed. The resulting mininizati
mit an accurate characterization of the multifractal prips  problem is specified for our study where the usual univariate
of a texture. The wavelet leadér, , located around position quantity Y is replaced by the multivariate; j)1<j<J, SO
f = 2‘71{/’ is defined as the local supremum of all wavelet COthat Eq (5) consists in |abe||r@1 g by est|mat|ng for every

efﬁuents taken within a spatial neighborhood across adirfin ; ¢ {1,...,Q + 1} 0, = (0,,)1<j<s € R7N such that
scalex’’ < 27, that s,
L N2
Le s W o e 30,0 (€ -

m=1,2,3, = j=1g¢=1

’\j’,ﬁ/CAj,E
with A = [k27, (k+1)27) andA; . = Upe{fl,().l}z Ajk+p + )‘Z ZTV(GW)
[151 5] ’ j=1q=1
Multifractal analysis. ~ We defineC; ; € RN andCy ; € 0, =1,
RY as the sample estimates of the mean and variance of the subj. to ©g+1=0 (6)

variableln L;, i.e., averages across spd@ each given scale
27. It has been shown that functio6$ ; andC, ; are related
to the multifactal spectrur®(h) via the coefficientg; and  whereX > 0 and where TV denotes the usual total-variation

1>6,>...>0¢9 >0,

co involved in it approximate expansion [1]: penalization as defined in [19], i.e., for eveérg RY,
; N
ECi;, =c?+cIn27, 2
o aran 2 ™V(6) = 3 (D) ™
ECQJ = 02 + Co hl 2] . (3)
Multifractal segmentation.  To segment textures, one whereD € R*¥*N denotes the discrete horizontal/vertical

could naturally consider estimatin@, ; andC, ; locally in  difference operator and thuyg#), € R The choice of

a neighborhood of each pixé} estimate the corresponding v,,; € R will be discussed later. It clearly appears that this
local parameters; ;, andcz ¢, and then perform a multivari- criterion, separable ovgr does notimpose coupling between
ate segmentation dfc; ¢, co4}. This however relies on the the scaleg’.

strong assumption that real-world textures follow prdgise Proposed solution. We propose to introduce correlations
the scaling behaviors prescribed in Egs. (2) and (3) abovéy modifying the criterion as

In the present contribution, it has been chosen to relax this
requirement. Therefore, the proposed segmentation m@ties minimize Z Z(QW Oy ])T(Cl P j)2

the multiscale functio; ; = (C’LM)KKN as a function ©1.--00+1 £
of scale2?, defined as a local sample mean estimate, Q
+A)» STV(O
Chji= |S | > InLjy (4) ; (©q)
74l hies; , o 1
. 1= b
whereS; , denotes a spatial (small) neighborhood ef 27k subj. to Qo1 =0 ®)
i . +1 — Y

at scale2’ and|S; .| the number of coefficients in that neigh-
borhood. 1>05>...>0¢g >0,



where, for every € {1,..., N}, the structure tensor penal-
ization is defined as

STV(© Z ||Cq ZHP where (g0 = (Cq,é 1,Gq.02) €
=1

with p > 1 and where, for every € {1,...,Q + 1} and
je{l,....J},
ug; = DO, ; € R*N (9)

and, forevery € {1,..., N},
Ugt = UgeXqe(Var)' € RT (10)

be the singular value decompositiomgf. , € R7*2 where

7 T (11)
X, = Cqe1 0O ... ... 0
L =
0 Cge2 0 ... 0
This multivariate formulation could be interpreted as & dis
crete version of the relaxation proposed in [12].

4. PRIMAL-DUAL ALGORITHM

Reformulation  To propose an efficient algorithm for min-
imizing such a criterion, we first rewrite (8) as

minimize ZZHM(CLJ Vq,5) —(Cl,j—vq—Lj)Q)

©=(02,...,0q) q=2 j=1

+ZSTV )+ 15,(0) + 1, (©) + 15, () (12)

where, for everyk € {0,1,2}, g, denoted the indica-
tor function of the non-empty closed convex sBf C
R@=DIN “that istp, (©) = 0if © € Ej and+oco oth-

erwise. Ey denotes a dynamic range constraint that impose

O to leave in[0, 1](@=17N that is

Ey ={© € [0,1](@" /Ny
and where

B = {@ e RQ=DIN | @y — Oy 11 >0,

(Vg e{L....[(Q-1)/2]}} (9)
= {@ € ROQDIN Qg 11 — Oggpz >0,

(ke {L,....[(@=-2)/2]}}. (19)

The criterion (12) is a sum of five convex, lower-semiconti

and

Algorithm 1 Multivariate segmentation algorithm.
Initialization
Set 7 >0 ando € } (7‘ max {||DTDH} + 3)71 [

Set0ll = (017 ]J)zsqsca,lgygf € R(Q-IN
Setyl0 € R@ZDIEN) anglol 5101 70 ¢ R@-1IN
Forn=0,1,...
Primal steps: update the variabf”t1]
Foreveryg € {2,...,Q}

Foreveryj € {1,...,J}

2l gln) _o(pTylnl i) _ giel _ glaly
g9, q,] q,] q,J g9, q,]

Sln+1) = py inl
Oln+1l — ogin+1] _ gln]
Dual steps:
update the variableg" !, glnt1l glnt1] glnti]
Foreveryg € {2,..., Q}

Foreveryj € {1,...,J}

[n+1] [n] “Tn+1]

Ugi = Yaj + UDQ
a["'i'l] — y —|— 0’@[”""1]
g+l = glnl L ;0n+1]

alnt1l — gl 4 5@n+1l
Foreveryq € {2,...,Q}
Foreveryl € {1,...,N}
Compute!;!)! andg“q”;;l fromu_"",) (cf. (10))

[n+1] C["Jrl] — oprox, 1., (@ . ([]72:1])

Computeg 41) I from 77["+1] (cf. (10))
For everyj € {1 SJ}

[nH] = ut[lnjr” OPrOX,—1y, (0_1~([1";r1])

_[n+1] _ u[nJrl] _ O'PE (O’ u[nJrl]
y[n+11 — 1) _ oy, (oLl

introduced in [20, 21]. The iterations are summarized in Al-

aorlthm 1. Under some technical assumptions insuring the

existence of a solution, the |teraté§["]) convergesto a
L neN

minimizer of (12).

Proximity operator.  In Algorithm 1, the notatioprox de-
noted the proximity operator [22]. The proximity operater i
defined for a convex, lower semi-continuous convex function
@ fromRM to |—oo, +00], denotedvrox,,, is defined as, for
everyu € RM, prox,, (u) = arg min,cgu 2lu—v]2+o(v).
Wheny = 1 with C being a non-empty closed convex sub-
set of RM then the proximity operator reduces to the projec-
tion, denotedP, onto the convex set.

The proximity operators involved in Algorithm 1 have a
elosed-form expression. Indeed, the closed form expressio

nuous and proper functions, possibly non-smooth, and whoder prox;. ~with p = 2 is given in [23], while the case

structure tensor penalization involves a linear operatie
thus propose iterations resulting from the proximal alidponi

p = 1 reduces to the soft-thresholding operator. Note that

whenp = 2, the singular value decomposition step could be
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Mask OriginalX Ci1 Ci2 Ci3

y @

Solution of (6) . 9071 — 91_]1 9072 — 91_]2 9073 — 9173
Misclassified coefficients : 17.1% 16.2% 13.0%

- “-a )

Proposed solution (i.e., (8)) : 6p1 — 611 B2 — 01,2 603 — 013

Misclassified coefficients : 15.5% 15.2% 12.9%

Fig. 1. Results of the proposed multivariate segmentation aasegmentation procedure done for each component sdgarate
1st line (left to right): mask allowing to generate the dataginal data, estimates of the meanf ; for j = 1, j = 2, and

j = 3. 2nd line (left to right): Results of the segmentation pahae described in (6) fof = 1, j = 2, andj = 3. 3rd line (left

to right): Results of the proposed segmentation procedeseribed in (8) forf = 1, j = 2, andj = 3.

avoided [24]. On the other hand, we have denoted

(V0 € RN)  apg;(0) =0T ((Cl,j*Uq,j)27(cl,jqufl,j)2)

whose proximity operator reduces to

prox, -1, 0 =0- o ! ((C1,j —vg;)? = (Chj— Uq_l,j)2)

every scalej € {1,...,J}, (vq;)i1<q<q are chosen to be
equally distributed between the minimum and maximum val-
ues ofC'; ;. The proposed solution, whose result is depicted
in Fig. 1-(bottom line), achieves a smaller rate of misdlass
fied coefficients for each scale, which illustrate the irdecd
such a multivariate approach. The information of each scale
. L can then be combined to achieve a segmentation of the orig-
Finally, the projections ontd, £1, and £ reduce 10 ;o eypyrex. Segmentation have been performed over sev-

projection onto hyperslabs [25, E>_<ample 28.17] eral realizations and similar conclusions can be done.
Some other primal-dual solution should have been pro-

posed such as the one derived in [26, 27]. For a summary on

primal-dual strategy, the reader could refer to [28]. 6. CONCLUSIONS AND PERSPECTIVES

Elaborating on our previous works aiming to segment testure
5. EXPERIMENTS into local regularity piecewise constant regions, the Gbut

Performance of the proposed segmentation procedures d#an of the present work is twofold : (i) it constitutes a fiedt
assessed on synthetic data, numerically produced by if€mpt to achieve texture segmentation into regions, eamh ch
clusion of a patch of 2D MRW [29] into a background of acterized with homogeneous multifractal properties aidt (i
2D-MRW with different multifractal parameterg;;, c;) =  Proposes a multivariate segmentation procedure to take int
(0.8, —0.005) and(0.5, —0.05) respectively. Patch and back- a&ccount correlations between several components. Insfead
ground have been normalized to ensure that the local varianéhaking direct use of multifractal attributes parametigzihe

does not depend on the image location. An example of suchultifractal spectrumd, cs,...), it has been chosen here to
texture is shown in Figure 1. recourse to the multiscale quantiti€s ; from which¢; can

Our simulations are performed using a standddDWT  theoretically be extracted. We have shown that the multivar
with orthonomal tensor product Daubechies mother waveletdte (multiple scales) segmentation@f,; permits to detect
with 2 vanishing moments ovef = 3 scales. We propose the change of texture through the scales in order to identify
to compare the performance of the proposed multivariate s¢€gions with homogeneous multifractal properties.
lution against a segmentation proceeded for e&dch sepa-
rately. In our simulationg) = 2, A = 20, andp = 2. For
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