
HAL Id: hal-01252099
https://hal.science/hal-01252099v1

Submitted on 8 Jan 2016 (v1), last revised 10 Jan 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing and Improving the Mutation Testing Practice
of PIT

Thomas Laurent, Anthony Ventresque, Mike Papadakis, Christopher Henard,
Yves Le Traon

To cite this version:
Thomas Laurent, Anthony Ventresque, Mike Papadakis, Christopher Henard, Yves Le Traon. As-
sessing and Improving the Mutation Testing Practice of PIT. [Technical Report] Lero@UCD, School
of Computer Science, University College Dublin, Ireland; Ecole Centrale de Nantes (ECN); Interdis-
ciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg. 2015.
�hal-01252099v1�

https://hal.science/hal-01252099v1
https://hal.archives-ouvertes.fr

Assessing and Improving the
Mutation Testing Practice of PIT

Thomas Laurent∗†, Anthony Ventresque∗, Mike Papadakis‡, Christopher Henard‡, and Yves Le Traon‡
∗Lero@UCD, School of Computer Science, University College Dublin, Ireland

†Ecole Centrale de Nantes, France
‡Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
†thomas.laurent@eleves.ec-nantes.fr, ∗anthony.ventresque@ucd.ie, ‡{firstname.lastname@uni.lu}

Abstract—Mutation testing is used extensively to support the
experimentation of software engineering studies. Its application
to real-world projects is possible thanks to modern tools that
automate the whole mutation analysis process. However, popular
mutation testing tools use a restrictive set of mutants which do
not conform to the community standards as supported by the
mutation testing literature. This can be problematic since the
effectiveness of mutation depends on its mutants. We therefore
examine how effective are the mutants of a popular mutation
testing tool, named PIT, compared to comprehensive ones, as
drawn from the literature and personal experience. We show
that comprehensive mutants are harder to kill and encode faults
not captured by the mutants of PIT for a range of 11% to 62%
of the Java classes of the considered projects.

I. INTRODUCTION

Software testing constitutes the current practice for checking
programs. In such a scenario, sets of test cases are selected and
used to examine the behavior of the programs under investi-
gation. To quantify the “quality” of the test cases, researchers
and practitioners use the so-called adequacy metrics or testing
criteria [1]. These metrics measure the quality achieved by the
employed test sets.

Mutation analysis is an established test criterion [1], [2] that
promises to thoroughly examine the programs under investiga-
tion. It operates by evaluating the ability of the candidate test
cases to distinguish between the program under test and a set
of altered program versions, called mutants. Mutants represent
program defects and are used to measure the ability of the test
cases to reveal them. The power of the technique is based on
the ability of the mutants to represent real faults [3], [4] and
to lead testers in writing test cases that cover almost all the
other test criteria [5], [6], [7].

The downfall of mutation is its application cost. This is
related to the number of possible mutants which can be
prohibitively high [8], [9]. Each mutant forms a different
program version that needs to be executed with the candidate
test cases. Therefore, a large number of test executions is
required in order to compute the adequacy measurement.

Because of the large number of mutants, practitioners be-
lieved that mutation does not scale to real-world programs.
However, modern tools proved this belief wrong and as a result
mutation “entered the mainstream” of practice [5]. To this end,
several tools have been developed, linked with build systems
and development tools. Modern tools are also robust and they

can easily be used by developers [10]. As a result, they are
used extensively in software engineering studies.

Unfortunately, popular tools like PIT [11] employ a re-
strictive set of mutants that does not fully conform to the
recommendations made by the mutation testing literature. This
fact indicates potential issues with the effectiveness of the tools
given that mutation is sensitive to its mutants [12]. Since these
tools are extensively used in software engineering studies, it is
mandatory to validate the extent to which their adopted mutant
set is representative of the community standards as supported
by the mutation testing literature.

This paper presents a thorough study investigating the
above-mentioned issue using PIT [11]. We use PIT since it
was found to be the most robust available mutation testing tool
[10] and it has been used extensively for research purposes
in the recent years, e.g., [13], [14], [15], [16]. Our study
indicates significant limitations of the popular mutants and
thus, motivate the need for a more comprehensive one.
In summary, the contributions of this paper are:

• We describe and implement a comprehensive mutant set
for Java that reflects the beliefs of the mutation testing
community as it has been recorded in the literature [9],
[4] and discussed during the Mutation 2014 and 2015
workshops, e.g., [17].

• We provide empirical evidence that the comprehensive
mutant set is superior to the one often used by mutation
testing tools. This set is statistically significant superior
from 11% to 62% of the studied program classes.

• To support future research, we will submit our code to
the PIT repository to became available. Our new version
of PIT that supports the comprehensive mutants is also
available on request1.

II. TERMINOLOGY & BACKGROUND

This section introduces the terminology and the concepts
that are used throughout the paper. First, II-A presents the
mutation testing process. Then, Section II-B describes the
selection of mutants. Finally, the notion of disjoint mutants
is introduced in Section II-C.

1For inquires please contact Anthony Ventresque, an-
thony.ventresque@ucd.ie

A. Mutation Testing

Mutation analysis operates by injecting defects in the
software under investigation. Thus, given a program, several
variants of this program are produced, each variant containing
a defect. These are called mutants and they are made by
altering (mutating) the code, either source code or executable
binary code, of the program under test. The creation of mutants
is based on syntactic rules, called mutant operators, that trans-
form the syntax of the program. For example, an arithmetic
mutant operator changes an instance of an arithmetic language
operator such as the ’+’ to another one, such as ’−’.

Mutants are produced by syntactic changes introduced by
mutant operators. These are the instances that are produced
by applying an operator on every point of the code under
investigation that matches their respective rule. Thus, every
mutant has a single and specific syntactic difference from
the original program. For reasons that we will discuss in the
related work (see Section VI), mutation testing uses mutants
produced by simple syntactic changes.

Mutants are used to measure how good the employed test
cases are in checking the software under assessment. This
is done by observing the runtime behavior of the original,
non-mutated, and the mutated programs. When comparing the
program outputs of the original with the mutated programs,
and found differences, we exhibit behavior discrepancies [18].
Such differences are attributed to the ability of the used
test to project the syntactic program changes to its behavior,
i.e., to show a semantic difference. When mutants exhibit
such differences in their behavior, they are called “killed”.
Those that do not exhibit such differences are called “live”.
Mutants might not exhibit any difference in their behavior
either because the employed test cases were not capable of
revealing them or because they are functionally equivalent with
the original program. Mutants belonging to the latter case are
called equivalent [18].

Mutation testing refers to the process of using mutation
analysis as a means of quantifying the level of thoroughness
of the test process. Thus, it measures the number of mutants
that are killed and calculates the ratio of those over the total
number of mutants. This ratio represents the adequacy metric
and is called mutation score. Ideally, to have an accurate
metric, equivalent mutants must be removed from the calcula-
tion of the score. However, this is not possible since judging
programs’ equivalence is an undecidable problem [19].

B. Mutant Selection

Selective mutation was shown to be valid in several studies
involving programs written in Fortran [9] and in C [20]. As a
result, Java mutation tools were built based on the findings of
these studies. To address the scalability issues of the method,
tool developers made further reductions. Thus, popular tools
like PIT [11] support a very small and restrictive set of mutants
that neither follows any suggestion from previous studies nor
practical experience.

PIT, even in its latest version that supports an extended
mutant set, has several shortcomings. One such example is

the relational operator for which PIT replaces one instance
of the operator by only another one, i.e., mutates < only to
<=, or <= only to <, or > only to >=, or >= only to
>. However, this practice is not sufficient. Indeed, previous
studies have shown that three mutants are needed to avoid a
reduced effectiveness of the method [21], [22].

Although practical, mutant reduction should not be at the
expense of the method effectiveness. Almost all previous
studies were based on the assumption that mutants are equal
[23]. However, this does not hold in practice and has the
potential to bias the conducted research as recent studies show
[24], [23], [25]. Therefore, when using mutation for research
purposes, it is mandatory to make sure that a representative
mutant set is employed.

C. Disjoint Mutants

In literature, mutation testing is extensively used to support
experimentation [3], [8], i.e., it is used to measure the level
of test thoroughness achieved by various testing methods.
Mutation score serves as a comparison basis between testing
techniques and hence, as a yardstick to judge the winning one.
This practice is quite popular, and introduce severe problems
that can threaten the validity of the conducted research.

The problem is that not all mutants are of equal power [23],
which means that some are useful and some are not. Indeed,
mutants cover the full spectrum of cases, including trivial ones,
very easy to kill, duplicated, equivalent ones and also hard to
kill ones. Those of the last category are of particular interest
since they lead to strong tests [4], [23]. Hard to kill, trivial and
easy to kill mutants are defined with respect to the employed
test suite [23]. Thus, mutants killed by a small percentage of
tests that exercise them are hard to kill, while, those killed by
a large one are easy to kill.

When using mutation as a basis for comparing testing
methods, a filtering process that sweeps out the duplicated
and equivalent mutants is needed [26]. However, this process
might not be adequate since in most cases many mutants tend
to be killed jointly [25]. Thus, they do not contribute to the
test process despite being considered. This has an inflation
effect on the mutation score computation since only a very
small fraction of mutants contribute to the test process2.

This issue was initially raised by Kintis et al. [25] who
introduced the concept of disjoint mutants, i.e., minimum
number of mutants that contribute to mutation score. Their
use is motivated by the same study which demonstrated that
hard to kill mutants also suffer from the inflation problem.
Later Amman et al. [24] formalized this concept, name it as
“minimum mutants”, and suggested using it as a way to bypass
the mutation score inflation problem.

In this paper we follow an analysis based on both all
and disjoint mutants. Disjoint mutants have the advantage to
cover the whole spectrum of mutants and suffer less from the
mutant inflation effect. Their identification is an NP-complete

2Kintis et al. [25] reports that this is 9% of mutants, for Java programs
using the muJava mutation testing tool, Amman et al. [24] report 10% for the
Java mutants of muJava tool and 1% for the C mutants of the Proteum tool.

Algorithm 1: Disjoint Mutants
Input: A set S of mutants
Input: A set T of test cases
Input: A matrix M of size |T | × |S| such as Mij = 1 if testi kills mutantj
Output: The disjoint mutant set D from S

1 D = ∅
/* Remove live mutants */

2 S = S \ {m ∈ S | ∀i ∈ 1..|T |,Mij 6= 1}
/* Remove duplicate mutants */

3 S = S \ {m ∈ S | ∃m′ ∈ S | ∀i ∈ 1..|T |,Mij(m) = Mij(m′)}
4 while (|S| > 0) do
5 maxSubsumed = 0
6 subsumedMut = null
7 maxMutSubsuming = null

/* Select the most subsuming mutant */
8 foreach (m ∈ S) do
9 subm = {m′ ∈ S|∀i ∈ 1..|T |, (Mij(m) = 1)⇒ (Mij(m′) = 1)}

10 if (|subm| > maxSubsumed) then
11 maxSubsumed = |subm|
12 maxMutSubsuming = m
13 subsumedMut = subm
14 end
15 end

/* Add the most subsuming mutant to D */
16 D = D ∪ {maxMutSubsuming}

/* Remove the subsumed mutants from the remaining */
17 S = S \ subsumedMut
18 end
19 return D

problem [24] and thus, we use a greedy approximation method.
Algorithm 1 details their computation from a set of mutant
S. First, the live and duplicate mutants are removed from S
(lines 2 and 3). Then, the most subsuming mutant is retrieved
(lines 8 to 15). It is the mutant which, when killed, implies
the highest number of other mutants to be killed as well. This
mutant is then added to the disjoint set D (line 16) and the
subsumed mutants are removed from S (line 17). This process
is repeated until S is empty. Finally, the set of disjoint mutants,
D, is returned.

III. MOTIVATION

Mutation testing is extensively used by researchers and
has an increasing use by practitioners and the open source
community [8], mainly due to the existence of automated tools.
However, mutation is sensitive to the set of mutants that are
used [12]. Therefore, it is mandatory to equip these tools with
a comprehensive set of mutants that can adequately measure
test thoroughness.

In this paper, we deal with this issue by investigating
the extent to which the mutant sets employed by popular
mutation testing tools meet the standards as expressed by the
mutation testing literature and community. We call the first
set as the “common” mutant set and the second one as the
“comprehensive” one.

Our goal is to validate the use of the popular mutant set
which was introduced by the developers of popular mutation
testing tools. We seek to investigate this issue since modern
tools like PIT [11] have been extensively used in the recent
years3. Thus, a possible issue with their adopted mutants can
question the effectiveness of the mutation method and hence
the conducted research. We therefore compare the extent to

3For instance, [13], [14], [15], [16] are recent publications that use PIT.

which the popular mutant set conforms to the test requirements
possessed by the mutation testing literature. To validate this
practice we use large open source projects written in Java with
mature test suites.

IV. EXPERIMENTAL STUDY

This section first states the Research Questions (RQs) under
investigation. Then, the subjects, settings and tools used for
the experiments are described. Finally, the last subsections
detail the studied mutant operators and the analysis procedure
followed to answer the RQs.

A. Definition of the Experiment and Research Questions

Current research on software engineering has largely fo-
cused on using mutation analysis as supported by the existing
mutation testing tools. However, a central role in mutation
testing is played by the mutants that are used; meaning that
the effectiveness of the method is sensitive to the employed
mutants [12]. Therefore, it is important to know whether the
commonly used mutants, as supported by these tools, are
suitable. In other words we seek to determine the degree to
which the commonly used mutants are representative of those
suggested by the literature, i.e., the comprehensive mutant set.
This leads us to our first research question:

RQ1 (Effectiveness). Is there any effectiveness difference
between the commonly used mutants and the com-
prehensive ones?

Since we are interested in testing, we seek to identify
the mutants that are more effective at measuring the ability
of test cases to exercise each point of the program under
investigation. Mutation score measurements can differ when
different mutant sets are employed. The measurements are
affected by the number of: mutants, of equivalent ones, of
trivial and hard to kill ones. To deal with this issue, we perform
an objective comparison, i.e., we measure the extent to which
one method covers the requirements of the other, between the
two examined mutant sets. Thus, we seek to measure the ratio
of mutants, of the one set, that are found by the tests that are
selected based on the other mutant set. Thus, the ”weaker”
mutants will lead to ”weaker” tests and hence kill a smaller
fraction of the ”stronger” mutants. Here, it should be noted that
objective comparisons form a common practice in mutation
testing literature, e.g., [4], [6], [9].

As discussed previously, in Section II-C, there is a potential
problem with this practice due to the inflation effect of the
trivial mutants. We thus measure the ratios of the disjoint
mutants that are killed. Therefore, to answer RQ1 we report
results based on two effectiveness measures; the percentage of
all mutants killed and the percentage of the disjoint ones that
are killed.

So far, our investigations focus on whether mutants of one
set can capture all the faults introduced by the other set.
However, this analysis tells us nothing about the difficulty of
exposing mutants. Thus, mutant easiness is another important
attribute of mutants [4], [23]. This is due to the fact that
hard to kill mutants indicate a relatively small semantic

TABLE I
SUBJECTS USED IN THE EXPERIMENTS. THE REPORTED LINES OF CODE
(LOC) AND CLASSES ARE ONLY THOSE CORRESPONDING TO CLASSES

HAVING TEST CASES.

Subjects Version LoC Classes Tests

joda-time 2.8.1 18,611 210 4,129
jfreechart 1.0.19 46,986 290 1,320
jaxen 1.1.6 6,790 152 646
commons-lang 3.3.4 16,286 199 3,373
commons-collections 4.4.0 11,281 243 2,210

change difference [23], [27] that is often easy to overlook
when testing. Thus, through our second research question, we
investigate whether the comprehensive mutant set introduces
harder to kill mutants than the commonly used one:

RQ2 (Easiness). What is the difference, in terms of dif-
ficulty to expose mutants, between the common and
the comprehensive mutants?

Mutation testing has a widespread reputation of being
computationally demanding. In the past, practitioners believed
that it cannot scale to real-world systems mainly due to
the large number of mutants. However, tools like PIT and
Javalanche proved that this belief was incorect [28]. This
ability of the tools can be attributed to the restricted mutant
set they employ and to the advanced mutant generation and
execution techniques used. Therefore, it is possible that the
comprehensive mutant set is too expensive to be used in
practice. Hence, we investigate:

RQ3 (Scalability). What is the execution time differences
of the comprehensive mutants when compared with
the common ones?

We measure execution time since it forms a direct measure
of the application cost of the method. We do not consider
other parameters that can influence the application cost, such
as the number of equivalent mutants, the test generation cost,
since they fall outside the scope of the present paper. Here,
we focus on the effectiveness of the method as conducted by
recent studies and thus, leaving the issue of its application cost
open for future research.

B. Subject Programs

The experiments are conducted on the 5 Java projects
recorded in Table I. For each of them, the version, lines of
code (calculated with the JavaNCSS tool [29]), number of
classes (for which test suites exist) and number of tests are
reported.

Joda-time is a date and time manipulation library. Jfreechart
is a popular library for creating charts and plots. Jaxen is
an engine for evaluating XPath expressions. Commons-lang
provides a set of utility methods for the commons classes of
Java. Finally, commons-collections provides data structures in
addition to those existing in the standard Java framework.

C. Experimental Environment

All the experiments were performed on a quad-core Intel
Xeon processor (3.1GHz) with 8GB of RAM and running
Ubuntu 14.04.3 LTS (Trusty Tahr).

D. Employed Tools

We use PIT, a popular mutation testing tool, to support our
experiments. We use the 1.1.5 release with the extended set
of mutants that it supports. To enable a comparison with the
comprehensive mutants, we modified PIT to support them. The
next section details all the considered mutants.

E. Employed Mutants

The employed mutant sets are described in Table II. The
common mutants are described in the upper part of the table
while the comprehensive ones are described in the lower part.
The comprehensive mutant set was formed based on the beliefs
of the mutation testing community [17] and the literature.
In particular we adapt to Java the set of mutants that was
suggested and used in the following studies [9], [4], [2].

Note that the comprehensive set of mutants includes all the
common ones. For each mutant, Table II records its name, a
description of the transformation performed and an example.

Special care was taken in order to reduce the duplicated
mutant instances [26] by removing the overlap between the
operators. It is also possible that some mutants might be
redundant [30]. However, using an analysis similar to [30] may
degrade the effectiveness of the method in cases of mutants
that cannot be propagated. We discuss this issue in the related
work section, i.e., VI-C. To avoid such risk we rely on disjoint
mutants to remove redundancies among the mutants.

Table III presents some descriptive statistics (minimum
median, mean and maximum values) about the employed
mutants as they appear in the classes of the studied projects.
Thus, the table records details about the number of mutants,
the number of killable mutants (determined based on the
available test suite), and mutation score for the common and
comprehensive operators for each project.

F. Analysis Procedure for Answering the Research Questions

To answer RQ1, we constructed test suites using the com-
mon set. This was performed by incrementally adding random
tests in the suites and keeping only those that increase mutation
score. So, if the randomly selected tests failed to kill any addi-
tional mutant, i.e., it is redundant with respect to the employed
mutants, the test was not included. This is a typical process
followed by many previews studies, e.g., [4], [7]. Thus, we
measured (a) the number of mutants of the comprehensive set
that are killed by the tests selected based on the common set
and (b) the number of mutants of the comprehensive sets found
when using all available tests. Since the tests were selected
at random, this process was repeated 30 times. As a result,
we obtain 30 instances for each one of the two measures for
every class of each project. We compared them with Wilcoxon
test using the R statistical computing project [31]. From this
test, we obtain a p-value which represents the probability that

TABLE II
COMMON AND COMPREHENSIVE MUTANTS.

Name Transformation Example Name Transformation Example

C
om

m
on

op
.

Cond. Bound.
Replaces one relational operator instance
with another one (single replacement).

< ≤ Return Values
Transforms the return value of a function
(single replacement).

return 0 return

1

Negate Cond.
Negates one relational operator (single
negation).

== != Void Meth. Call Deletes a call to a void method. void m()

Remove Cond. Replaces a cond. branch with true or false. if (...) if (true) Meth. Call Deletes a call to a non-void method. int m()

Math
Replaces a numerical op. by another one
(single replacement).

+ − Constructor Call Replaces a call to a constructor by null. new C() null

Increments
Replace incr. with decr. and vice versa
(single replacement).

++ −− Member Variable
Replaces an assignment to a variable with
the Java default values.

a = 5 a

Invert Neg. Removes the negative from a variable. −a a Switch
Replaces switch statement labels by the
Java default ones.

Inline Const.
Replaces a constant by another one or
increments it.

1 0, a a + 1

C
om

pr
eh

en
si

ve
op

. ABS Replaces a variable by its negation. a −a OBBN
Replaces the operators & by | and vice
versa.

a&b a|b

AOD
Replaces an arithmetic expression by one of
the operand.

a + b a ROR
Replaces the relational operators with
another one. It applies every replacement.

< ≥, < ≤

AOR
Replaces an artihmetic expression by
another one.

a + b a ∗ b UOI
Replaces a variable with a unary operator or
removes an instance of an unary operator.

a a++

CRCR
Replaces a constant a with its negation, or
with 1, 0, a + 1, a− 1.

a −a, a a − 1. Commons All the common operators as described above.

TABLE III
NUMBER OF MUTANTS, KILLABLE MUTANTS AND MUTATION SCORE (MS) FOR THE COMMON AND COMPREHENSIVE MUTANTS.

joda-time jfreechart jaxen commons-lang commons-collections
Measure Common op. Compre. op. Common op. Compre. op. Common op. Compre. op. Common op. Compre. op. Common op. Compre. op.

#Mutants

Min. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Med. 97.00 224.00 98.00 260.50 24.00 39.00 27.00 57.00 27.00 42.00
Mean 164.17 462.06 219.14 685.48 77.48 188.97 156.82 457.05 62.32 126.53
Max. 973.00 2,915.00 3,436.00 9,742.00 3,901.00 14,493.00 4,545.00 14,586.00 1,094.00 2,349.00

#Killable

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Med. 60.99 136.99 26.00 49.00 11.99 21.00 17.00 33.50 5.00 5.00
Mean 117.32 295.71 59.59 131.20 37.91 69.31 124.74 338.86 21.66 41.34
Max. 834.00 2,108.00 1,356.00 2,488.00 773.00 1,793.00 3,928.99 11,522.99 867.00 1,553.00

MS

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Med. 0.80 0.71 0.24 0.16 0.73 0.66 0.84 0.74 0.50 0.45
Mean 0.71 0.64 0.29 0.24 0.60 0.56 0.72 0.66 0.44 0.41
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

measure (a) is higher than measure (b). Following the usual
statistical inference procedures we consider the differences as
statistically significant if they provide a p-value lower than
0.05, i.e., 5% is our significance level. In RQ1, we record the
number of classes for which there is a statistically significance
difference. The ratio (a)/(b) forms the objective comparison
score when using all mutants. The values of Table III imply
that the projects have classes with only 1 mutant and 0 killable
ones. Also, there are classes where all mutants are killed. Thus,
we base the results of the objective comparison at the class
granularity level and present them according the first three
quartiles, i.e., according to the ordered 25%, median (50%)
and 75% values. Finally, we compute the ratio of the disjoint
mutants of the comprehensive set that are found by the tests
selected based on the common set. The distance from value 1
on both the objective comparison and disjoint mutants scores
quantify the effectiveness differences between the examined
mutants.

To answer to RQ2, we measure the easiness of killing

mutants. The easiness of killing a mutant is defined as the
number of test cases that kill a mutant, towards the total
number of test cases. As a result, when 100% of the test cases
kill a mutant, the latter is denoted as very easy to kill.

To answer RQ3, we applied mutation analysis as it is
supported by the current version of the tool and record the
time required.

V. RESULTS & ANSWERS TO THE RESEARCH QUESTIONS

This section reports on the experimental results and answers
the RQs stated in previous section.

A. RQ1 - Effectiveness

For this question, we first consider the number of com-
prehensive mutants killed by test cases selected based on the
common mutants, and the number of comprehensive mutants
killed by test cases targeting them. This forms two mutation
scores for each Java class of the considered projects. The

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

joda-time
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

joda-time (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

jfreechart
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

jfreechart (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

jaxen
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

jaxen (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

commons-lang
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

commons-lang (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

commons-collections
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

O
bj

ec
tiv

e
co

m
pa

ri
so

n
sc

or
e

commons-collections (disj.)
min - 1st quartile

1st quartile - median
median - 3rd quartile

3rd quartile - max

Fig. 1. Objective comparison results (RQ1 - effectiveness). The plots on the left side display the results of all mutants while on the right side the results of
the disjoint mutants. The y-axis represents the distribution of the 30 scores per class, i.e., the minimum, first quartile, median, third quartile and maximum,
while the x-axis represents the Java classes of the programs.

comparison has been performed 30 times, thus yielding 30
mutation scores of the two types per class.

Table IV records the classes for which there is a statistical
significance between the two measures. As can be seen, there
is a significant difference for 11% of the classes for commons-
collections, for 62% of them for joda-time.

We now evaluate the percentage of mutants of the com-
prehensive set that are killed by the test cases selected based
on the common set. This percentage is denoted as objective
comparison score. Figure 1 records the objective comparisons
scores for the 5 programs. The objective comparison has been
performed 30 times per class (represented on the x-axis), thus

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

M
ut

an
ts

' e
as

in
es

s

joda-time
Common mutants

Comprehensive mutants
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

M
ut

an
ts

' e
as

in
es

s

joda-time
Common mutants (disj.)

Comprehensive mutants (disj.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ut

an
ts

' e
as

in
es

s

jfreechart
Common mutants

Comprehensive mutants
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

M
ut

an
ts

' e
as

in
es

s

jfreechart
Common mutants (disj.)

Comprehensive mutants (disj.)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

M
ut

an
ts

' e
as

in
es

s

jaxen
Common mutants

Comprehensive mutants
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

M
ut

an
ts

' e
as

in
es

s
jaxen

Common mutants (disj.)
Comprehensive mutants (disj.)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

M
ut

an
ts

' e
as

in
es

s

commons-lang
Common mutants

Comprehensive mutants
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

M
ut

an
ts

' e
as

in
es

s

commons-lang
Common mutants (disj.)

Comprehensive mutants (disj.)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

M
ut

an
ts

' e
as

in
es

s

commons-collections
Common mutants

Comprehensive mutants
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

M
ut

an
ts

' e
as

in
es

s

commons-collections
Common mutants (disj.)

Comprehensive mutants (disj.)

Fig. 2. Easiness of killing mutants (RQ2 - easiness). The plots on the left side display the easiness of all mutants while on the right side they display the
easiness of the disjoint mutants. The y-axis represents the median mutant easiness, while x-axis represents the Java classes of the programs.

yielding 30 different scores for each class of each program.

The 4 colors of the plot represent the distribution of the
30 ordered scores according to the quartiles. Thus, from the
lightest to the darkest color, the first, second, third and fourth
25% of the resulting scores are represented. For instance, a
light gray bar (the first quartile reaching 0.6) means that the
lowest 25% of the 30 scores obtained are below or equal to 0.6.

The black area represents the values above the third quartile,
i.e., last 25% of the 30 scores. In that, if a bar is completely
light gray, it means that most of the mutants killed by the test
cases are the same on both sets, while the presence of darker
colors on the graph indicates that there are mutants that are
missed by the test cases.

The plots on the left part of Figure 1 represent the scores

TABLE IV
NUMBER AND PROPORTION OF CLASSES FOR WHICH THERE IS

STATISTICAL SIGNIFICANCE BETWEEN THE COMMON AND
COMPREHENSIVE MUTANT SETS.

Subject #Classes (proportion)

joda-time 130 (62%)
jfreechart 64 (22%)
jaxen 43 (28%)
commons-lang 63 (32%)
commons-collections 26 (11%)

when considering all the mutants while the plots on the right
side depict the results when considering the disjoint mutants.
On the left side of the figure, i.e., when all the mutants
are considered, we can see that in most of the cases the
scores are close to 1, which means that there are only a few
mutants missed by the test cases. This is especially the case
for jfreechart and commons-collections. For the other projects,
there is a larger proportion of classes with lower scores,
indicating that there are more mutants of the comprehensive
sets missed by the test cases. Considering now the right part
of Figure 1 that concerns the disjoint mutants, we can see
that the proportion of missed mutants is even more important,
in particular for joda-time where mutants are missed in more
than half of the classes.

To conclude, there is a significant difference between the
common mutants and the comprehensive ones. This shows
that the test cases miss many killable mutants from the
comprehensive set. The difference is even more significant
when considering disjoint mutants.

B. RQ2 - Easiness

Here, we evaluate whether mutants are difficult to kill or
not. The easiness of killing a mutant is the percentage of the
test cases that kill this mutant. Thus, if all the test cases kill a
given mutant, the easiness is 1. By contrast, an easiness close
to 0 means that the mutant is very difficult to kill, since only
few test cases are able to identify it.

Figure 2 shows the easiness, median values, of the common
mutants against the comprehensive ones for each class. A
greater surface indicates that the corresponding mutants are
easier to kill. The plots on the left part consider all the
mutants while the right side are for the disjoint mutants.
From these results, we can observe that the comprehensive
mutants (represented by the gray bars) are harder to kill. For
all the mutants, the difference in terms of easiness compared
to the common mutants range from 2-5% for the 50% of
the commons-lang program classes. In the case of jaxen, the
easiness difference is 12% in almost the 60% of the program
classes. With respect to the disjoint mutants, the difference
goes beyond 20% for approximately 75% of the jaxen classes.

To summarize, the comprehensive mutants are harder to kill
than the common ones when considering either all the mutants
or the disjoint ones only. It means that the comprehensive set
introduces faults which are more difficult to expose.

C. RQ3 - Scalability

To evaluate the cost of using the comprehensive mutants,
we measure the execution time of both the common and
comprehensive sets. Table V records the number of mutants,
killable mutants, execution time in seconds and execution time
per mutant in seconds for both sets of mutants.

Considering the time in seconds, the comprehensive mutants
require more time than the common ones. This is natural since
the number of mutants is also much higher. The highest execu-
tion time is for jaxen with 31,077 seconds, i.e., approximately
8 hours and a half. Focusing on the time per mutants, the
execution times between the two sets become rather similar,
except for jaxen where the execution time is approximately 10
times longer.

Overall, the comprehensive set of mutants has an overhead
in terms of execution time, but this is not unbearable.

VI. RELATED WORK

The following sections present studies with respect to mu-
tation testing (VI-A), mutant reduction techniques (VI-B) and
the accuracy of mutation score (VI-C).

A. Mutation Analysis

Mutation analysis was initially introduced as a test method
helping the generation of test cases [32]. However, in recent
years it has been proven to be quite powerful and capable of
supporting various software engineering tasks [5]. In particular
mutants have been used to guide test generation [22], [33],
test oracle generation [33], to assist the debugging activities
[18], [34], to evaluate fault detection ability [4] and to support
regression testing activities like test selection and prioritization
[16], [35]. The method has also been applied to models [36],
software product lines [37] and combination strategies [38].

One of the main issues of the method is equivalent mutants
[39], [40]. Despite the efforts from the community, e.g., [8],
and recent advances [41], [26], [42], the problem remains open
[26]. Similar situation arises when considering mutation-based
test generation [22], [33].

Mutation has become popular [8] thanks to its ability to
represent real faults [4]. Also, many modern mutation tools
are integrated with build systems and development tools,
thus making their application easy [10]. However, such tools
usually support mutants that are more restrictive than the
popular set, and hence, overestimate or underestimate the
employed measures, as shown by the present paper. Previous
research suggested that the comprehensive mutant set has the
ability to prod-subsume and to reveal more faults than most
of the other white-box testing criteria [5], [7].

B. Mutant Reduction

From the early days of mutation testing, it was evident
that mutants were far too numerous to be used in practice.
Therefore, researchers have tried to identify subsets of them
that are representative. The first reduction was made towards
the coupling effect hypothesis, which states that tests revealing
simple mutants can also reveal complex ones [32], [43].

TABLE V
EXECUTION TIME IN SECONDS FOR THE COMMON AND COMPREHENSIVE MUTANTS (RQ3 - SCALABILITY).

Common set Comprehensive set
Subjects Mutants Killable Time Time/Mutant Mutants Killable Time / Overhead Time/Mutant

joda-time 2.8.1 35,297 25,224 1,138 0.032 99,343 63,578 3,531 / 210% 0.035
jfreechart 1.0.19 81,960 22,289 2,398 0.029 256,370 49,069 6,589 / 175% 0.026
jaxen 1.1.6 14,334 7,014 1,221 0.085 34,960 12,823 31,077 / 2,445% 0.889
commons-lang 3 3.4 34,502 27,443 2,803 0.081 100,553 74,550 8,023 / 186% 0.080
commons-collections 4 4.0 24,308 8,449 570 0.023 49,354 16,126 1,230 / 116% 0.002

A straight way to reduce the number of mutants is to
randomly sample them [44]. Although, sampling can provide
a range of trade-offs, Papadakis and Malevris [44] provided
evidence that mutant sampling ratios of 10% to 60% have a
loss on fault detection from 26% to 6%, respectively. Similar
results have been shown in the study of Wong et al. [45].

Other mutant reduction strategies fall in the category of
selective mutation [9]. Selective mutation tries to reduce the
arbitrariness of random sampling by using only specific types
of mutants.

C. Duplicated, Trivial and Redundant Mutants
The presence of redundant mutants has long been recog-

nized, i.e., since 1993 [46], but only recently, received atten-
tion. The studies of Tai [21], [46] were focused on reducing
the application cost of fault-based testing strategies. This was
based on constraints that restrict the mutants introduced by
the relational and logical operators so that they only consider
non-redundant ones. Thus, their suggestion was to restrict the
mutant instances of the relational and logical operators to the
minimum possible number. In a later study, Kaminski et al.
[47], [48] came to a similar conclusion about the relational
operator. Thus, they suggested that mutation testing tools
should reduce the number of redundant mutants by restricting
the mutant instances of the relational operator.

Papadakis and Malevris [49] suggested using minimized
constraint mutant instances to efficiently generate mutation-
based test cases. Thus, when aiming at generating test cases
there is no point in aiming at non-redundant mutants. On the
same lines, Just et al. [30], demonstrated that by constraining
the relational and logical operators, it is possible to reduce
some of the redundancy between the mutants.

All the approaches discussed so far were based on an
analysis at the predicate level, specifically designed for “weak”
mutation. Thus, when applied to strong mutation, the analysis
may not hold. This can be due to the following two reasons; a)
constructs like loops and recursion can make a statement to be
exercised multiple times, and b) these approaches assume that
when the identified mutants are killed the redundant ones are
also killed. However, it is likely that the identified mutants
are equivalent while the non-redundant ones are not, thus,
resulting in degradation in the effectiveness of the method.
These issues motivated the use of disjoint mutants that do not
suffer from these problems.

The first study suggesting the use of non-redundant mutants
when comparing testing techniques is that of Kintis et al.

[25]. As discussed in Section II-C, Kintis et al. introduced
the notion of disjoint mutants and demonstrated that the
majority of mutants produced by the MuJava mutation testing
tool is redundant. In the same lines, Amman et al. [24]
defined algorithms for generating a minimum set of mutants
based on the notion of dynamic subsumption. Their results
confirmed the findings of Kintis et al. by demonstrating that
the majority of mutants used by the MuJava and Proteum
mutation testing tools are redundant. Later, Kurtz et al. [50]
used static analysis techniques, such as symbolic execution to
identify the minimum set of mutants.

Recently Papadakis et al. [26] used compilers to eliminate
duplicated mutants, a special form of mutant redundancy.
Duplicated mutants are those that are mutually equivalent but
differ from the original program. In the study of Papadakis et
al. [26] it is reported that 21% of all mutants is duplicated and
can be removed by using compiler optimization techniques.

All the approaches discussed in this section either identified
the problem of trivial/redundant mutants or used some form
of redundancy elimination. However, none of them studied
the differences of the commonly used operators from those
suggested by the literature. Additionally, none of them uses
disjoint mutants on real-world programs.

VII. CONCLUSIONS

This paper investigates the extent to which mutants used by
popular mutation testing tools like PIT conform to mutation
testing standards. Our study revealed a large divergence in the
effectiveness of the popular mutants from the comprehensive
ones. Comprehensive mutants are not only harder to kill but
also score considerably higher than the common ones in most
of the examined cases. Additionally, we report results by
considering both concepts of disjoint and mutant easiness.
Thus, we point out the importance of the problems introduced
by both trivial and redundant mutants to be considered in
future evaluations.

REFERENCES

[1] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997.
[Online]. Available: http://doi.acm.org/10.1145/267580.267590

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is Mutation an Appro-
priate Tool for Testing Experiments?” in ICSE, 2005, pp. 402 – 411.

[4] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.

http://doi.acm.org/10.1145/267580.267590

[5] J. Offutt, “A mutation carol: Past, present and future,” Information &
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[6] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs Mutation Testing:
an Experimental Comparison of Effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, September 1997.

[7] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An Experimental
Evaluation of Data Flow and Mutation Testing,” Software Pract. Exper.,
vol. 26, no. 2, pp. 165–176, 1996.

[8] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649 –678, sept.-oct. 2011.

[9] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
Experimental Determination of Sufficient Mutant Operators,” ACM T.
Softw. Eng. Meth., vol. 5, no. 2, pp. 99–118, April 1996.

[10] M. Delahaye and L. du Bousquet, “Selecting a software engineering
tool: lessons learnt from mutation analysis,” Softw., Pract. Exper.,
vol. 45, no. 7, pp. 875–891, 2015. [Online]. Available: http:
//dx.doi.org/10.1002/spe.2312

[11] H. Coles, “PIT.” [Online]. Available: http://pitest.org/
[12] A. S. Namin and S. Kakarla, “The use of mutation in testing experiments

and its sensitivity to external threats,” in Proceedings of the 20th
International Symposium on Software Testing and Analysis, ISSTA
2011, Toronto, ON, Canada, July 17-21, 2011, 2011, pp. 342–352.
[Online]. Available: http://doi.acm.org/10.1145/2001420.2001461

[13] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with test
suite effectiveness,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, 2015, pp. 214–224. [Online].
Available: http://doi.acm.org/10.1145/2786805.2786858

[14] G. Denaro, A. Margara, M. Pezzè, and M. Vivanti, “Dynamic data flow
testing of object oriented systems,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, 2015, pp. 947–958. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.104

[15] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, 2014, pp. 435–445. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568271

[16] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov,
“Balancing trade-offs in test-suite reduction,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, 2014, pp. 246–256. [Online]. Available: http:
//doi.acm.org/10.1145/2635868.2635921

[17] P. Amman, “Transforming mutation testing from the technology
of the future into the technology of the present.” [Online].
Available: https://sites.google.com/site/mutationworkshop2015/program/
MutationKeynote.pdf?attredirects=0&d=1

[18] M. Papadakis and Y. L. Traon, “Metallaxis-fl: mutation-based fault
localization,” Softw. Test., Verif. Reliab., vol. 25, no. 5-7, pp. 605–628,
2015. [Online]. Available: http://dx.doi.org/10.1002/stvr.1509

[19] T. A. Budd and D. Angluin, “Two Notions of Correctness and Their
Relation to Testing,” Acta Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[20] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E.
Delamaro, “Unit and integration testing strategies for C programs using
mutation,” Softw. Test., Verif. Reliab., vol. 11, no. 3, pp. 249–268,
2001. [Online]. Available: http://dx.doi.org/10.1002/stvr.242

[21] K.-C. Tai, “Theory of Fault-based Predicate Testing for Computer
Programs,” IEEE Transactions on Software Engineering, vol. 22, no. 8,
pp. 552–562, August 1996.

[22] M. Papadakis and N. Malevris, “Automatic mutation test case
generation via dynamic symbolic execution,” in IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE 2010, San Jose,
CA, USA, 1-4 November 2010, 2010, pp. 121–130. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2010.38

[23] Y. Jia and M. Harman, “Higher Order Mutation Testing,” Journal of
Information and Software Technology, vol. 51, no. 10, pp. 1379–1393,
October 2009.

[24] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Seventh IEEE International Conference
on Software Testing, Verification and Validation, ICST 2014, March 31
2014-April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 21–30. [Online].
Available: http://dx.doi.org/10.1109/ICST.2014.13

[25] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing
alternatives: A collateral experiment,” in APSEC, 2010, pp. 300–309.

[26] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial
compiler equivalence: A large scale empirical study of a simple,
fast and effective equivalent mutant detection technique,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 936–946.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2015.103

[27] A. J. Offutt and J. H. Hayes, “A semantic model of program
faults,” in ISSTA, 1996, pp. 195–200. [Online]. Available: http:
//doi.acm.org/10.1145/229000.226317

[28] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for
java,” in Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2009, Amsterdam,
The Netherlands, August 24-28, 2009, 2009, pp. 297–298. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595750

[29] “Javancss - a source measurement suite for java.” [Online]. Available:
http://www.kclee.de/clemens/java/javancss/

[30] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant
mutants affect the effectiveness and efficiency of mutation analysis?” in
Fifth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012,
2012, pp. 720–725. [Online]. Available: http://dx.doi.org/10.1109/ICST.
2012.162

[31] “The R project for statistical computing.” [Online]. Available:
https://www.r-project.org/

[32] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: Help for the practicing programmer,” Computer,
vol. 11, no. 4, pp. 34–41, Apr. 1978. [Online]. Available: http:
//dx.doi.org/10.1109/C-M.1978.218136

[33] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Trans. Software Eng., vol. 38, no. 2, pp. 278–292,
2012. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
TSE.2011.93

[34] M. Nica, S. Nica, and F. Wotawa, “On the use of mutations and testing
for debugging,” Softw., Pract. Exper., vol. 43, no. 9, pp. 1121–1142,
2013. [Online]. Available: http://dx.doi.org/10.1002/spe.1142

[35] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression mutation
testing,” in International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, 2012, pp. 331–
341. [Online]. Available: http://doi.acm.org/10.1145/2338965.2336793

[36] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn,
R. Schlick, and B. V. Schmidt, “Model-based mutation testing of an
industrial measurement device,” in Tests and Proofs - 8th International
Conference, TAP 2014, Held as Part of STAF 2014, York, UK,
July 24-25, 2014. Proceedings, 2014, pp. 1–19. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-09099-3 1

[37] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Assessing software product line testing via model-based mutation: An
application to similarity testing,” in Sixth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp.
188–197. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2013.30

[38] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling program
inputs with mutation analysis: Going beyond combinatorial interaction
testing,” in Seventh IEEE International Conference on Software Testing,
Verification and Validation, ICST 2014, March 31 2014-April 4,
2014, Cleveland, Ohio, USA, 2014, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2014.11

[39] R. M. Hierons, M. Harman, and S. Danicic, “Using program
slicing to assist in the detection of equivalent mutants,” Softw.
Test., Verif. Reliab., vol. 9, no. 4, pp. 233–262, 1999. [Online].
Available: http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4〈233::
AID-STVR191〉3.0.CO;2-3

[40] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala, “Overcoming
the equivalent mutant problem: A systematic literature review and
a comparative experiment of second order mutation,” IEEE Trans.
Software Eng., vol. 40, no. 1, pp. 23–42, 2014. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.44

[41] M. Kintis, M. Papadakis, and N. Malevris, “Employing second-order
mutation for isolating first-order equivalent mutants,” Softw. Test., Verif.
Reliab., vol. 25, no. 5-7, pp. 508–535, 2015. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1529

http://dx.doi.org/10.1002/spe.2312
http://dx.doi.org/10.1002/spe.2312
http://pitest.org/
http://doi.acm.org/10.1145/2001420.2001461
http://doi.acm.org/10.1145/2786805.2786858
http://dx.doi.org/10.1109/ICSE.2015.104
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2635868.2635921
http://doi.acm.org/10.1145/2635868.2635921
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf?attredirects=0&d=1
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf?attredirects=0&d=1
http://dx.doi.org/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.242
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1109/ICSE.2015.103
http://doi.acm.org/10.1145/229000.226317
http://doi.acm.org/10.1145/229000.226317
http://doi.acm.org/10.1145/1595696.1595750
http://www.kclee.de/clemens/java/javancss/
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1109/ICST.2012.162
https://www.r-project.org/
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.93
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.93
http://dx.doi.org/10.1002/spe.1142
http://doi.acm.org/10.1145/2338965.2336793
http://dx.doi.org/10.1007/978-3-319-09099-3_1
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICST.2014.11
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1002/stvr.1529

[42] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis,
Y. L. Traon, and J. Marion, “Sound and quasi-complete detection of
infeasible test requirements,” in 8th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015, 2015, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2015.7102607

[43] A. J. Offutt, “The Coupling Effect: Fact or Fiction,” ACM SIGSOFT
Software Engineering Notes, vol. 14, no. 8, pp. 131–140, December
1989.

[44] M. Papadakis and N. Malevris, “An empirical evaluation of the first
and second order mutation testing strategies,” in Third International
Conference on Software Testing, Verification and Validation, ICST
2010, Paris, France, April 7-9, 2010, Workshops Proceedings, 2010, pp.
90–99. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2010.50

[45] W. E. Wong and A. P. Mathur, “Reducing the Cost of Mutation Testing:
An Empirical Study,” J. Syst. Software, vol. 31, no. 3, pp. 185–196,
December 1995.

[46] K. Tai, “Predicate-based test generation for computer programs,”
in Proceedings of the 15th International Conference on Software

Engineering, Baltimore, Maryland, USA, May 17-21, 1993., 1993,
pp. 267–276. [Online]. Available: http://portal.acm.org/citation.cfm?id=
257572.257631

[47] G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-based testing,”
Journal of Systems and Software, vol. 86, no. 8, pp. 2002–2012, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2012.08.024

[48] ——, “Better predicate testing,” in Proceedings of the 6th International
Workshop on Automation of Software Test, AST 2011, Waikiki,
Honolulu, HI, USA, May 23-24, 2011, 2011, pp. 57–63. [Online].
Available: http://doi.acm.org/10.1145/1982595.1982608

[49] M. Papadakis and N. Malevris, “Mutation based test case generation
via a path selection strategy,” Information & Software Technology,
vol. 54, no. 9, pp. 915–932, 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.infsof.2012.02.004

[50] B. Kurtz, P. Ammann, and J. Offutt, “Static analysis of mutant
subsumption,” in Eighth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015 Workshops, Graz,
Austria, April 13-17, 2015, 2015, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2015.7107454

http://dx.doi.org/10.1109/ICST.2015.7102607
http://dx.doi.org/10.1109/ICSTW.2010.50
http://portal.acm.org/citation.cfm?id=257572.257631
http://portal.acm.org/citation.cfm?id=257572.257631
http://dx.doi.org/10.1016/j.jss.2012.08.024
http://doi.acm.org/10.1145/1982595.1982608
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1109/ICSTW.2015.7107454

	Introduction
	Terminology & Background
	Mutation Testing
	Mutant Selection
	Disjoint Mutants

	Motivation
	Experimental Study
	Definition of the Experiment and Research Questions
	Subject Programs
	Experimental Environment
	Employed Tools
	Employed Mutants
	Analysis Procedure for Answering the Research Questions

	Results & Answers to the Research Questions
	RQ1 - Effectiveness
	RQ2 - Easiness
	RQ3 - Scalability

	Related Work
	Mutation Analysis
	Mutant Reduction
	Duplicated, Trivial and Redundant Mutants

	Conclusions
	References

