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Abstract We discuss the question of model identifiability within the context of nonlinear mixed
effects models. Although there has been extensive research in the area of fixed effects models, much
less attention has been paid to random effects models. In this context we distinguish between
theoretical identifiability, in which different parameter values lead to non-identical probability
distributions, structural identifiability which concerns the algebraic properties of the structural
model, and practical identifiability, whereby the model may be theoretically identifiable but the
design of the experiment may make parameter estimation difficult and imprecise. We explore a
number of pharmacokinetic models which are known to be non-identifiable at an individual level
but can become identifiable at the population level if a number of specific assumptions on the
probabilistic model hold. Essentially if the probabilistic models are different, even though the
structural models are non-identifiable, then they will lead to different likelihoods. The findings are
supported through simulations.

Keywords Model identifiability · Practical identifiability · Structural identifiability · Parameter
estimation · Mixed effects model · Pharmacokinetics

1 Introduction

A statistical model is said to be identifiable when, given an infinite amount of data, it is possible
to uniquely estimate the true values of the model parameters. The uniqueness property implies
that different values of the model parameters generate different probability distributions of the
observable variables. Conversely if two or more sets of parameters generate identical distributions
of the observed values the model is not identifiable. However it still may be possible to uniquely
identify a subset of parameters: that is, not all the parameters of an unidentifiable model are
unidentifiable. In this case we say that the model is partially identifiable.

It should also be noted that even when the parameters of the model are unidentifiable, the model
itself may perfectly describe the observed variables, in other words perfectly fit the data.
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A distinction is made in the literature between structural identifiability and practical identifiability.
Structural identifiability is related to the structure of the underlying mathematical model. It is
concerned with whether the parameters of a model can be exactly identified from a given experiment
with perfect input-output data [1,5,15,18,21]. Chappell et al. [4] compare methods for analyzing
the global structural identifiability of the parameters of a nonlinear system with a specified input
function. Gargash and Mital [9] study the problem of global and local structural identifiability
for fixed structure compartmental deterministic model of the biological system. Frohlich et al. [7]
investigate the effect of structural non-identifiability on the performance of frequentist methods for
standard uncertainty analysis. They observe that the profile likelihood approach is the only one
that properly identifies structural non-identifiability of parameters. On the other hand practical
identifiability is related to the study design, i.e. the limited amount of information that can be
obtained from a given experiment [11,13,15]. A link exists between practical identifiability and
sensitivity analysis. Brun et al. [3] propose a systematic approach for tackling the parameter
identifiability problem of large models based on local sensitivity analysis.

Model identifiability is closely related to model indistinguishability. The objective of indistinguisha-
bility analysis is to determine if different models are capable to fit the available input-output data
[10,22]. Identifiability and distinguishability of parametric models are important properties when
the parameters to be estimated have a biological meaning or when the model is to be used to
reconstruct physiologically meaningful variables that cannot be measured directly [18].

The question of identifiability of pharmacokinetic (PK) and pharmacokinetic-pharmacodynamics
(PKPD) models has been previously studied. Evans et al. [6] consider the identifiability of a parent-
metabolite pharmacokinetic model for ivabradine and one of its metabolites. Shivva et al. [16] use
a simple one compartment population pharmacokinetic model to show that identifiability of the
variances of the random effects are affected by the parameterisation of the fixed effects. An approach
for assessment of identifiability for fixed and mixed effects PK or PKPD models is proposed in
[15]. Guedj et al. [11] study the identifiability of parameters in a model of HIV dynamics based
on a system of non-linear Ordinary Differential Equations. Garcia et al. [8] discuss different types
of identifiability that occur in physiologically-based pharmacokinetic (PBPK) models and give
reasons why they occur.

Identifiability in mixed effects models has received much less attention. Identifiability of linear
mixed effects models is considered in [19]. In the context of mixed effects models, identifiability
is a fundamental prerequisite for model identification. It concerns uniqueness of the population
parameters estimated from a given set of observations obtained from several individuals of a same
population [2,12,20]. It was the purpose of the current investigation to examine some issues in
identifiability of mixed effects models.

We define the concept of identifiability of mixed effects models in Section 2. Identifiability is usually
defined for continuous data models but this concept can be easily extended to categorical, count or
time to event data models. We show that a model can be identifiable even if it is not structurally
identifiable. Indeed the probability distribution of the individual parameters plays an important
role for characterizing the identifiability property of the model. Furthermore, a distinction is made
between identifiability of the population parameters (the population parameters can be estimated
successfully and unequivocally from the observed data) and identifiability of the individual param-
eters (the individual parameters can be estimated successfully and unequivocally from the observed
data).

Sections 3 and 4 present some specific results taken from the field of pharmacokinetics. We consider
first a situation where different parameterizations of a PK model are algebraically undistinguish-
able. The model is shown to be identifiable as soon as some hypothesis are made on the correlation
structure of the PK parameters. It is usually claimed that the bioavailability F cannot be esti-
mated using only PK measurements obtained from an oral administration: only the ratio F/V
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can be properly estimated. We show that the model is identifiable under some assumptions on the
probabilistic model. Then, both F and V can be simultaneously estimated.

2 Identifiability of mixed effects models

2.1 Preliminary remarks

The definition of identifiability for mixed effects models is not always very precise. As an example,
the definition given in [20] reduces to: “parameters or models are called non-identifiable if two sets
of different parameters lead to the same probability distribution”. This definitions remain quite
ambiguous and needs to be clarified. In particular, we will need to distinguish the identifiability of
the population parameters and the identifiability of the individual parameters.

We need also to make a clear distinction between identifiability, structural identifiability and prac-
tical identifiability, defining what these properties mean in the context of mixed effects models.

The concept of structural identifiability was introduced first in the area of systems and control (see
[1]), where the systems are deterministic and depend on nonrandom parameters. The situation
is quite different in a population approach context where the individual parameters are random
variables. In order to analyse the properties of a statistical model it is necessary to take into account
the algebraic properties of the structural model as well as the properties of the probabilistic model.
In particular, the choice of the parameterization may have a strong impact on the probabilistic
properties of the model. For instance, parameterizations of a PK model using volume V and
clearance Cl, or using volume V and elimination rate constant k, where k = Cl/V , are absolutely
equivalent from a purely algebraic point of view: we can use both interchangeably. That’s not the
case if we put a distribution on these parameters.

Assume, for instance, that V and Cl are independent and log-normally distributed:

log(V ) ∼ N (log(Vpop), ω
2
V )

log(Cl) ∼ N (log(Clpop), ω
2
Cl)

corr (log(V ), log(Cl)) = 0

where corr (log(V ), log(Cl)) is the linear correlation between log(V ) and log(Cl).

Then, we are implicitly assuming that k is also log-normally distributed with a variance ω2
k larger

than the variance of V and that log(k) and log(V ) are negatively correlated. Indeed,

log(k) = log(Cl)− log(V )

Then, since log(Cl) and log(V ) are both normally distributed, log(k) is also normally distributed
and

log(k) ∼ N (log(Clpop/Vpop), ω
2
V + ω2

Cl)

Furthermore, the covariance between log(V ) and log(k) is given by

cov (log(V ), log(k)) = −var (log(V )) = −ω2
V

Then,
corr (log(V ), log(k)) = −ωV /ωk

On the other hand, if we use parameters (V, k) in the model, assuming independent distributions,
then, we implicitly assume that V and Cl are dependent.
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2.2 Structural identifiability

Structural identifiability is related to the structure of the underlying mathematical model, for
example as discussed above, the PK model.

For sake of simplicity, we will only consider models for univariate data, i.e. for a single outcome.

We need some notation. Let N be the number of individuals. Then, for i = 1, 2, . . . , N , let yi =
(yij , 1 ≤ j ≤ ni) be the ni observations for individual i collected at times (tij , 1 ≤ j ≤ ni).

Let us start with a basic model for continuous data:

yij = f(tij ;ψi) + εij

Here, f is the structural model, which is a parametric function of time, ψi is a vector of individual
parameters, and (εij , 1 ≤ j ≤ ni) is a sequence of residual errors. We will assume that εij is a
sequence of random variables with mean 0 and finite variance σ2.

Structural identifiability of the model is directly related to the properties of the structural model
f . We don’t take into account possible differences between individuals.

Without any loss of generality, we will assume that f is defined for t ≥ 0. Let f( · ;ψ) be the
function f defined for a given vector of parameters ψ (we could equivalently use the notation fψ).
Then, we will say that the model is structurally identifiable if there exists a one-to-one mapping
between the parameter ψ and the function f( · ;ψ), i.e.

ψ = ψ′ ⇔ f(t;ψ) = f(t;ψ′) for any t ≥ 0

This definition can be easily extended to any other parametric mixed effects models:

– Continuous data model with non constant residual error model: Assume now that there exists
a parametric function g such that

yij = f(tij ;ψi) + g(tij ;ψi)εij

Here, the structural model is the pair (f, g).

– Time-to-event data model: The structural model is the hazard function h(t;ψ).

– Count data model: Consider for instance a Poisson model,

yij ∼ Poisson(λ(tij , ψi))

The structural model is the Poisson intensity λ(t;ψ)

– Categorical data model: Assume a Bernoulli model for binary data as an example,

P(yij = 1) = 1− P(yij = 0) = π(tij ;ψi)

Here, the structural model is the function π(t;ψ).
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2.3 Practical identifiability

Practical non-identifiability is less clearly defined in the literature compared to structural non-
identifiability.

Practical identifiability not only depends on the model structure, but is also related to the ex-
perimental conditions together with the quality and quantity of the measurements [13]. Then, a
parameter that is structurally identifiable may be practically unidentifiable with a limited amount
and quality of experimental data.

Deriving some relationship between identifiability and confidence interval of parameter estimates
seems natural. Nevertheless, since practical identifiability is a non-asymptotic property, it is not
possible to propose a rigorous definition based on asymptotic confidence intervals.

Raue et al. [14] propose an appealing definition of practical identifiability based on a likelihood-
based confidence region instead of asymptotic confidence intervals. They suggest an approach that
exploits the profile likelihood and enables the detection of both structural and practical non-
identifiabilities.

Unfortunately, such an approach is cumbersome to adopt for (nonlinear) mixed effects models since
it requires the estimation of the population parameters and computation of the likelihood many
times.

Methods that can be used in practice for detecting some identifiability issues remain quite empirical:

– We can for instance run the estimation algorithm with different initial values. Convergence to
different solutions may be suspicious.

– Even if it is an asymptotic criteria, the observed Fisher Information Matrix can also be used.
Indeed, the inverse of this matrix provides an approximation of the variance-covariance matrix
of the estimated parameters. A large condition number of this variance-covariance matrix (i.e.
the ratio of its largest and smallest eigenvalues) reflects a strong correlation structure between
estimates and may indicate some identifiability issue.

2.4 Identifiability of the population parameters

Identifiability of the population parameters θ is related to the properties of the statistical model
of the observations y = (yi, 1 ≤ i ≤ N):

p(y; θ) =
N∏
i=1

p(yi; θ) (1)

=

N∏
i=1

∫
p(yi, ψi; θ) dψi (2)

We are here in a “classical” situation where the statistical model is identifiable if the mapping
between θ and the probability distribution p(y; θ) is one-to-one (we use indiscriminately p(y; θ) for
the probability distribution function (pdf) and for the distribution of y).

By definition, the Maximum Likelihood (ML) estimate of θ maximizes p(y; θ). If the model is
identifiable, then, the ML estimate converges to the true value of θ when N increases, under very
general regularity conditions [12]. That means that it is possible to estimate θ as precisely as
required as soon as the size N is large enough. On the other hand, if the model is not identifiable,
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then, maximizing p(y; θ) with respect to θ will not lead to a unique solution. We can find, for
instance, θ̂(1) and θ̂(2) such that, for any vector of population parameters θ,

p(y; θ) ≤ p(y; θ̂(1)) = p(y; θ̂(2))

A number of particular cases have been reported. For instance, Wang et al. [19] study the identi-
fiability of the covariance parameters in a linear mixed effects model. They focus on those models
that are not over-parameterized and derive conditions of identifiability and study commonly used
covariance structures. In an unpublished work, Nuñez and Concordet consider the identifiability
problem in a nonlinear mixed effects model for continuous data, assuming a nonparametric distri-
bution for the individual parameters. They provide several explicit conditions on f which ensure
the identifiability of the model.

Since p(y; θ) =
∫
p(y, ψ; θ), identifiability of the complete model p(y, ψ; θ) is a necessary condition

to ensure the identifiability of the observed model p(y; θ). Unfortunately, it is not a sufficient
condition.

For example consider the linear model

yij = (ai + bi)tij + εij (3)

where ai and bi are normally distributed with unknown means m1 and m2. Here, the vector
of population parameters θ includes m1 and m2. The model p(y; θ) is unidentifiable since the
population parameters m1 and m2 cannot be estimated from a sequence of observations (yij): only
the sum m1+m2 can be estimated since ai+bi is normally distributed with mean m1+m2. On the
other hand, the joint model p(yi, ai, bi; θ) is identifiable since m1 and m2 can be estimated using
sequences (ai, 1 ≤ i ≤ N) and (bi, 1 ≤ i ≤ N).

Analyzing the structural identifiability of the model is important and useful, but it is not sufficient
for concluding if the model is identifiable or not. For instance, a statistical model may be identifiable
even if it is not structurally identifiable. Indeed, when data coming from various individuals is
available, and under some hypothesis, we can take advantage of the probability distribution of
the individual parameters to estimate the population parameters. It is then the combination of
algebraic relationships and probabilistic relationships that make the model identifiable.

Consider again the linear model (3). The structural model f(t; ai, bi) = (ai+ bi)t is not identifiable
since only ai+bi can be estimated. We have seen in the previous example that the statistical model
of the observations is not identifiable when ai and bi are both normally distributed. Surprisingly,
the model becomes identifiable in most cases when ai and bi are not both normally distributed.

Assume for instance that ai and bi have exponential distributions with parameters λ1 and λ2.
Then, assuming that λ1 6= λ2, the sum ai + bi is a random variable with pdf

p(z;λ1, λ2) =
λ1λ2
λ1 − λ2

(
e−λ2z − e−λ1z

)
There is a one-to-one mapping between (λ1, λ2) and this pdf: the model is identifiable. Identifia-
bililty of the model remains a theoretical property: in practice, accurate estimation of λ1 and λ2
will require a huge amount of data.

2.5 Identifiability of the individual parameters

We can see the problem of estimating the individual parameters (ψi) as an inverse problem: we
aim to recover these unobserved vectors of parameters using the observations (yi).
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Structural unidentifiability means that the problem is ill posed: we can find different vectors ψi
and ψ′i that produce the same structural predictions:

ψi 6= ψ′i and f(t;ψi) = f(t;ψ′i) for any t ≥ 0

And then,

p(yi|ψi) = p(yi|ψ′i)

Each individual conditional model p(yi|ψi) is therefore unidentifiable, but in a mixed effects model,
we usually don’t estimate each individual parameter ψi by maximizing this conditional distribution
p(yi|ψi). Indeed, each individual parameter ψi is a random vector with distribution p(ψi; θ). Then,
for a given vector of population parameter θ (given or previously estimated), we rather consider
the posterior distribution

p(ψi|yi; θ) =
p(yi|ψi)p(ψi; θ)

p(yi; θ)

Thus, ψi is identifiable as soon as p(ψi; θ) 6= p(ψ′i; θ).

In other words, the population distribution of the individual parameters plays the role of a prior
distribution that now makes the problem well posed.

Example 1: Consider a bi-exponential model:

f(t;Ai, Bi, αi, βi) = Aie
−αi t +Bie

−βi t

This structural model is locally identifiable but globally unidentifiable since (Ai, αi) and (Bi, βi)
are interchangeable. The model becomes identifiable if we introduce some information about αi and
βi, assuming for instance that P(αi > βi) > 0.5. The use of this prior leads to select the solution
where αi > βi and discard the other solution where αi < βi.

Example 2: Consider again model (3) where εij ∼i.i.d.(0, σ
2).

This structural model f(t; ai, bi) = (ai + bi)t is clearly locally unidentifiable since only the sum
ai + bi can be estimated maximizing the conditional pdf of yi. Let ci = ai + bi and define ĉi as

ĉi = Argmax
ci

p(yi|ci)

= Argmin
ci

∑
j

(yij − citij)2

Thus, âi + b̂i = ĉi =
∑
j yijtij/

∑
j t

2
ij , but it is impossible to decompose this sum and compute âi

and b̂i without any additional information.

Assume for instance that (
ai
bi

)
∼ N

((
m1

m2

)
, Ω

)
Let Ti be the ni × 2 matrix

Ti =

(
ti,1 ti,2 . . . ti,ni

ti,1 ti,2 . . . ti,ni

)′
The posterior distribution of ai and bi is now a well defined normal distribution:(

ai
bi

)
|yi ∼ N

((
µi,1
µi,2

)
, Γi

)
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where

Γi =

(
T ′iTi
σ2

+Ω−1
)−1

and (
µi,1
µi,2

)
= Γi

(
T ′iyi
σ2

+Ω−1
(
m1

m2

))
The maximum a posteriori (MAP) estimates of ai and bi are, respectively, µi,1 and µi,2. They are
well defined and unique: the individual parameters of the model are now identifiable.

Remark: introduction of a Gaussian prior information for estimating the parameters of a linear
ill-posed problem is equivalent to introduce a Tikhonov regularization term [17].

3 Illustration: the flip-flop phenomenon

In this example, the structural model is not identifiable without some physiological constraint (we
can find two different sets of PK parameters that produce identical PK profiles). Nevertheless,
identifiability is ensured under some assumptions on the probabilistic model.

For a sake of simplicity, we will consider a single individual and omit the subscript i in the notation.

3.1 The structural PK model

Consider a basic PK model for a single oral administration at time 0,

f(t; ka, V, k) =
Dka

V (ka − k)
(
e−k t − e−ka t

)
. (4)

It is easy to see that, for any t ≥ 0,

f(t; ka, V, k) = f(t; k′a, V
′, k′)

where k′a = k , k′ = ka and V ′ = (k/ka)V .

Without any assumptions on the parameter values, the two solutions are indistinguishable. Some
assumptions on the parameter space may make the model identifiable (e.g. ka > k).

3.2 The probabilistic model

Without any assumption on the parameter space the structural model is not identifiable but the
probabilistic model may be identifiable under some assumptions.

If we assume log-normal distributions for (ka, V, k), then (k′a, V
′, k′) are also log-normally dis-

tributed since log(V ′) = log(V ) + log(k)− log(ka).

Furthermore, if we assume that log(ka), log(V ) and log(k) are uncorrelated, then log(V ′) and
log(k′a) are implicitly correlated, as well as log(V ′) and log(k′).
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Thus, the two following models are distinguishable:

M1 : corr (ka, V ) = corr (ka, k) = corr (k, V ) = 0

M2 : corr (k′a, V
′) = corr (k′a, k

′) = corr (k′, V ′) = 0

In other words, if we assume that the variance-covariance matrix Ω of (log(ka), log(V ), log(k))
is diagonal, then the model is identifiable since we cannot have simultaneously both Ω and Ω′

diagonal, where Ω′ is the variance-covariance matrix of (log(k′a), log(V ′), log(k′)).

On the other hand, if we don’t make any assumption on Ω, then the model is not identifiable: we
can find two sets of fixed parameters (kapop, Vpop, kpop) and (ka′pop, V

′
pop, k

′
pop) and two covariance

matrices Ω and Ω′ such that

p(y, ψ; kapop, Vpop, kpop, Ω) = p(y, ψ; ka′pop, V
′
pop, k

′
pop, Ω

′)

where y = (yj , 1 ≤ j ≤ n) is a vector of observed concentrations and ψ = (ka, V, k) is the vector of
individual PK parameters.

3.3 Statistical implications

Assume now that we have some PK data and we want to use the PK model defined in (4) to
fit this data. Then, it is expected to obtain different values of the likelihood under M1 and M2

since the two probabilistic models are different (we cannot have simultaneously corr (k, V ) = 0 and
corr (k′, V ) = 0).

Simulation:

Data with N = 100 subjects and n = 12 measurements per subject were simulated with the
following parameter values: ka,pop = 1, Vpop = 10, kpop = 0.1, ωka = 0.25, ωV = 0.3, ωk = 0.15.

We can then try to estimate the population parameters of the model, using any software tool
such as Monolix or NONMEM. According to the initial value, the SAEM algorithm [12] in
Monolix converges to two solutions: (k̂(1)a , V̂ (1), k̂(1)) = (1, 10.4, 0.099) and (k̂

(2)
a , V̂ (2), k̂(2)) =

(0.097, 0.99, 1.04). The estimated log-likelihood for these two solutions are, respectively, −1126
and −1145. We see that, in this example, the first solution, which is the “right” solution (i.e. close
to the “true” values used for the simulation), correspond to the global maximum of the likelihood,
while the other one correspond to a local maximum.

In other words, the model is identifiable if we assume a diagonal matrix Ω, and maximizing the
likelihood allows to select the “right” solution.

Here, it is not the values of the population PK parameters that allows one to select a model, but
the (strong) hypothesis that we make concerning the covariance structure of the random effects.
Indeed, if we simulate uncorrelated PK parameters using the other parameterization, then, the
likelihood criteria will select this solution.

On the other hand, if we don’t make any assumption about the covariance matrix, i.e. if we
estimate a full variance-covariance matrix, then the model is not identifiable and the likelihood
criteria cannot select a model. Indeed, the log-likelihood still exhibits two maxima, (1, 10.4, 0.1)
and (0.098, 1, 1.03), but with very close values: −1125.7 and −1126.2, respectively.

Remark 1: As expected, even if independent random effects were simulated using the first param-
eterization, estimated variance-covariance matrix associated to the second solution is not diagonal:
estimated correlations between log(k′a) and log(V ′) and between log(k′) and log(V ′) are, respec-
tively, 0.41 and −0.62.
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Remark 2: Similar results are obtained with NONMEM and FOCE: k̂(1)a = 1.01, V̂ (1) = 10.4,
k̂(1) = 0.099 using the first set of initial estimates and k̂(2)a = 0.098, V̂ (2) = 0.995, k̂(2) = 1.04 using
the second one. We have simulated rich data in this example. Then, up to the exchangeability issue
between ka and k, the individual PK parameters can be estimated accurately from the individual
PK data. FOCE works very well here because this algorithm is precisely based on the estimation
of the individual parameters.

4 Illustration: Identifiability of the bioavailability

We show with this example that, even if the structural model only allows the identification of the
ratio V/F , the probabilistic model, under some assumptions, makes the model identifiable and
allows the estimation of both V and F .

We will consider again a single individual and omit the subscript i in the notation.

4.1 The model and its properties

– The PK model is a one compartment model for oral administration with parameters (F, ka, V, k)
where F is the bioavailability, i.e. the fraction of administered dose which is absorbed. Let
f(t;F, ka, V, k) be the predicted concentration given by this model at time t:

f(t;F, ka, V, k) =
DF ka

V (ka − k)
(
e−k t − e−ka t

)
(5)

– The residual error model is an exponential model, i.e. observed concentrations are log-normally
distributed:

log(yj) = log(f(tj ;F, ka, V, k)) + εj

– ka, V and k are log-normally distributed while F has a logit-normal distribution:

logit(F ) ∼ N (logit(Fpop), ω
2
F )

where logit(x) = log(x/(1− x)) for 0 < x < 1.

First of all, it is easy to see that the structural model is not identifiable. Indeed, let (F, ka, V, k)
and (F ′, k′a, V

′, k′) be two set of individual parameters such that k′a = ka, k′ = k, V ′/F ′ = V/F ,
then f(t;F, ka, V, k) = f(t;F ′, k′a, V

′, k′) for any t > 0. The structural model is therefore partially
identifiable since only ka, k and R = V/F are identifiable.

Even if the structural model is not identifiable, the model itself is identifiable. We will use a “two
step procedure” to demonstrate that we can derive a consistent estimator for all the population
parameters of the model. Here, consistency means that this estimator converges to the true values
of the population parameters when both the number of individuals and the number of observations
per individual tend to infinity.

1. The structural model is partially identifiable. Then, for each individual i = 1, 2, . . . , N , the set
of identifiable individual parameters kai , ki and Ri = Vi/Fi can be perfectly recovered when
the number of measurements ni for individual i tends to infinity, by maximizing the conditional
distribution p(yi|kai , ki, Ri).
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2. The ratio R = V/F is a random variable defined as the ratio of a logit-normal and a log-
normal variable. This distribution depends on parameters Fpop, Vpop, ωF and ωV and there
exists a one-to-one mapping between these four parameters and the distribution of R. Thus,
the maximum likelihood estimator of these four parameters, derived from a N -sample R1, R2,
. . .RN of R, is consistent: it converges to the true values of these parameters when the number
of individual N tends to infinity. ML estimators of ka,pop and ωka (resp. kpop and ωk) obtained
from ka1 , . . . , kaN (resp. k1, . . . , kN ) are also consistent.

Remark 1: The model is not identifiable if both V and F are log-normally distributed. Indeed,
the log-ratio log(R) is normally distributed:

log(R) ∼ N (log(Vpop)− log(Fpop), ω
2
V + ω2

F )

and there exists an infinity of possible decompositions leading to the same probability distribution.

Remark 2: This interesting result remains an asymptotical result. In practice, it means that we
can expect to estimate all the population parameters of the model with a desired precision, if
we have enough data for that. When the number of individuals and measurements is finite, the
properties of the ML estimator cannot be derived analytically. A Monte-Carlo study can be used
to evaluate these properties for a given design.

4.2 Simulation study

We simulate PK data from this model for N = 5000 individuals. A single dose D = 100 is
administrated at time 0 and n = 23 measurements are collected at times 0.5, 1, 3, 5, . . . , 21, 23.

The standard deviation of the residual errors (εij) is σ = 0.1.

Values of the population PK parameters are ka,pop = 1, Vpop = 10, kpop = 0.1, ωka = 0.25,
ωV = 0.3 and ωk = 0.15. We will consider two logit distributions for F .

Model A: logit(F ) ∼ N (logit(0.9), 1)

The pdf of F is displayed in Figure 1. We see that this distribution is very different from a log-
normal distribution. We can then expect to be able to estimate the population parameters.

We used the SAEM algorithm implemented in Monolix for computing the ML estimate of the
population parameters and their standard errors. Table 1 shows that population parameters are
indeed very well estimated in this example.

Even if the population parameters are “almost” perfectly estimated, the individual parameters can-
not be estimated very precisely. Figure 2 compares the simulated individual parameters, considered
here as the “true” values, with the Maximum a Posteriori (MAP) estimates, i.e. the modes of the
conditional distributions p(Vi|yi, θ̂) and p(Fi|yi, θ̂) for i = 1, 2, . . . , N . On the other hand, the ratio
Fi/Vi is estimated very accurately.

In this example, the likelihood has a maximum which is very well defined and SAEM converges
easily even with poor initial guesses. Figure 3 displays the convergence of 5 runs of SAEM obtained
with different initial values. Thus, thanks to the design (i.e. a very large number of subjects and
a large number of measurement per subject) and thanks to the probability distribution of the
individual parameters, the model can be considered as "practically identifiable".

Estimations obtained with NONMEM FOCE are F̂ = 0.764, k̂a = 1.00, V̂ = 8.88, k̂ = 0.100. We
can see that FOCE introduces some bias in the estimation of F and V . Indeed, it is not possible to
estimate correctly the individual parameters since the model is not structurally identifiable. Then,



12 Marc Lavielle, Leon Aarons

any method based on the estimation of the individual parameters cannot work as well as maximum
likelihood estimation.

Model B: logit(F ) ∼ N (logit(0.4), 0.22)

Things will change with this distribution for F . Indeed, we can see Figure 4 that this distribution
is now very close to a log-normal one. Even if the model remains identifiable in theory, we cannot
expect anymore a good estimation of the population parameters.

Table 2 displays the results obtained with a single run of SAEM. We see that population parameters
Fpop and Vpop are poorly estimated with this run. The ratio Fpop/Vpop remains very well estimated
(0.401 instead of 0.4) as well as the total variance ω2

F + ω2
V (0.139 instead of 0.13). We also notice

a clear degradation of the results obtained with FOCE (F̂pop = 0.830, V̂pop = 20.8, ω̂F = 0.56,
ω̂V = 0.3).

This poor estimation of the population parameters leads to a misspecified population distribution
and a bias in the estimation of the individual parameters. Figure 5 shows that the Vi and the Fi
are underestimated. Nevertheless, ratios Ri = Vi/Fi are correctly estimated.

In this example and because of the lack of identifiability of some parameters, the likelihood does
not exhibit a unique isolated maximum. Figure 6 shows that the convergence of SAEM strongly
depends on the initial value. The very high correlation (0.9989) between the estimates of Fpop and
Vpop confirms that we should not rely on the estimated values of these parameters.

When such lack of practical identifiability is revealed, a solution with this example consists in fixing
either Fpop or Vpop. A less radical solution may consist in introducing a prior information on Fpop

or Vpop. If we introduce, for instance, a logit-normal distribution for Fpop, with mean logit(0.4)
and standard deviation 0.2, then the population parameters are correctly estimated (F̂pop = 0.41,
V̂pop = 10.1) as well as the individual parameters.

We should notice that removing the inter-individual variability of Fi is not a solution since that
makes the model non identifiable. Indeed, if Fi = Fpop, then Vi/Fi follows a log-normal distribution
with mean log(Vpop/Fpop) (in the log domain) and standard deviation ωF . Then, only the ratio
Vpop/Fpop is identifiable in this model.

5 Conclusions

We have shown that models that are non-identifiable at an individual level may become identifiable
at the population level under conditions in which the probabilistic models differ between alternate
models. This requires strong assumptions about the probabilistic models which may be difficult
to validate in practice. Similarly, even if the models are identifiable at the individual level it may
prove difficult to estimate the parameters of the model unless supported by good experimental
design. From a pharmacokinetic point of view it means that the differences between individuals
can break the non-identifiability seen at the population level and this may allow better mechanistic
understanding of the interindividual differences in pharmacokinetics.

We have mainly considered here the most theoretical aspects of the identifiability of a model. For
the numerical examples, we have been using an EM-like algorithm, assuming that the maximum
likelihood estimate of the population parameters could be computed. Our first partial results
suggest that linearization methods (FO, FOCE) are more sensitive to a lack of identifiability than
maximum likelihood methods with no approximation on the model. A detailed discussion around
the impact of of the estimation method - and its implementation in a software tool - on the results
is beyond the scope of this paper. Such discussion as well as practical suggestions on how to proceed
when the model shows signs of un-identifiability clearly deserve to be the subject of further work.
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parameter true value initial value estimation relative s.e. (%)
Fpop 0.9 0.4 0.909 0.8
ka,pop 1 0.5 1.006 0.4
Vpop 10 5 10.188 0.9
kpop 0.1 0.3 0.100 0.2
ωF 1 3 1.007 7.0
ωka 0.25 1 0.249 1.3
ωV 0.30 1 0.306 1.4
ωk 0.15 1 0.148 1.1
σ 0.10 1 0.100 0.3

Table 1 Model A: ML estimates of the population parameters.

parameter true value initial value estimation relative s.e. (%)
Fpop 0.4 0.2 0.245 9.9
ka,pop 1 2 0.999 0.40
Vpop 10 5 6.11 9.8
kpop 0.1 0.05 0.10 0.2
ωF 0.2 1 0.289 24.0
ωka 0.25 1 0.249 1.3
ωV 0.30 1 0.236 20.5
ωk 0.15 1 0.148 1.1
σ 0.10 1 0.01 0.3

Table 2 Model B: ML estimates of the population parameters.
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Fig. 1 Model A: pdf of the logit-normal distribution with parameters (logit(0.9), 1).

Fig. 2 Model A: estimated values versus true values of log(Vi), logit(Fi) and Ri = Vi/Fi.

Fig. 3 Model A: convergence of 5 runs of SAEM obtained with different initial values.
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Fig. 4 Model B: pdf of the logit-normal distribution with parameters (logit(0.4), 0.22).

Fig. 5 Model B: estimated values versus true values of log(Vi), logit(Fi) and Ri = Vi/Fi.

Fig. 6 Model B: convergence of 5 runs of SAEM obtained with different initial values.


