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From Sets to Bits in Coq

Arthur Blot, Pierre-Évariste Dagand, and Julia Lawall

Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inria, LIP6 UMR 7606

Abstract. Computer Science abounds in folktales about how — in the
early days of computer programming — bit vectors were ingeniously used
to encode and manipulate finite sets. Algorithms have thus been devel-
oped to minimize memory footprint and maximize efficiency by taking
advantage of microarchitectural features. With the development of auto-
mated and interactive theorem provers, finite sets have also made their
way into the libraries of formalized mathematics. Tailored to ease prov-
ing, these representations are designed for symbolic manipulation rather
than computational efficiency. This paper aims to bridge this gap. In the
Coq proof assistant, we implement a bitset library and prove its correct-
ness with respect to a formalization of finite sets. Our library enables
a seamless interaction of sets for computing — bitsets — and sets for
proving — finite sets.

1 Introduction

Sets form the building block of mathematics, while finite sets are a fundamental
data structure of computer science. In the world of mathematics, finite sets
enjoy appealing mathematical properties, such as a proof-irrelevant equality [17]
and the extensionality principle for functions defined over finite sets. Computer
scientists, on the other hand, have devised efficient algorithms for set operations
based on the representation of finite sets as bit vectors and on bit twiddling [3,
27], exploiting the hardware’s ability to efficiently process machine words.

With interactive theorem provers, sets are reinstituted as mathematical ob-
jects. While there are several finite set libraries in Coq, these implementations
are far removed from those used in efficient code. Recent work on modeling low-
level architectures, such as the ARM [14] or x86 [18] processors, however, have
brought the magical world of bit twiddling within reach of our proof assistants.
We are now able to specify and reason about low-level programs. In this paper,
we shall tackle the implementation of bitsets and their associated operations.

Beyond the goal of certifying low-level programs, our work can contribute
to mechanized reasoning itself. Indeed, our work is deeply rooted in the Curry-
Howard correspondence, which blurs the line between proofs and computations.
As shown by SSReflect, proof-by-reflection [2] is a powerful technique to scale
proofs up. At the heart of this technique lies the fact that computation happens
within the type theory. Last but not least, it is revealing that the finite set library
provided by the Coq standard library originates from the CompCert [19] project,
whose certified compiler crucially relies on such efficient datastructures.



This paper recounts an investigation from the concrete world of bit vectors to
the abstract world of finite sets. It grew from a puzzled look at the first page of
Warren’s Hacker’s Delight [27], where lies the cryptic formula x&(x−1). How do
we translate the English specification given in the book into a formal definition?
How do we prove that this formula meets its specification? Could Coq generate
efficient and trustworthy code from it? And how efficiently could we simulate it
within Coq itself? We aim to answer those questions in the following.

This paper makes the following contributions:
– in Section 3, we establish a bijection between bitsets and sets over finite

types. Following a refinement approach, we show that a significant part of
SSReflect finset library can be refined to operations manipulating bitsets;

– in Section 4, we develop a trustworthy extraction of bitsets down to OCaml’s
machine integers. While we are bound to axiomatize machine integers, we
adopt a methodology based on exhaustive testing to gain greater confidence
in our model;

– in Section 5, we demonstrate our library through two applications. We have
implemented a Bloom filter datastructure, proving the absence of false neg-
atives. We have also implemented and verified the n-queens algorithm [13].

The source code of our development is available at

https://github.com/artart78/coq-bitset

2 Finite Sets and Bit Vectors in Coq

Let us first recall a Coq formalization of finite sets and a formalization of bit vec-
tors. The former provides basic algebraic operations, such as union, intersection,
complement, etc., and more advanced ones, such as cardinality and minimum.
The latter offer extended support for describing bit-level computations, such as
logical and arithmetic operation on memory words.

2.1 A Finite Set Library: finset

To manipulate finite sets in Coq, we rely on the finset library [20], provided
by the Mathematical Components platform [15]. The finset library provides set-
theoretic operators for dealing with sets of elements of a finite type, i.e. sets of
finite cardinality. A finite set being a finite type itself, we also make extensive use
of SSReflect’s fintype library [25]. We recall their key definitions in Table 1.

Remark 1. It is crucial to constrain the underlying type to be finite: a bitset
represents collections thanks to their finite enumeration. Indeed, the bitset en-
codes the fact that, for any given set, every element of this enumeration is either
present or absent. ut

The canonical example of a finite set is the type ’I_n : Type (where n : nat

is an index) of the finite ordinals below n. Intuitively, ’I_n represents the set
{0, · · · , n− 1}. Every finite set of cardinality n is isomorphic to ’I_n.

https://github.com/artart78/coq-bitset


Coq judgment Informal semantics

T : finType card(T ) is finite
T : finType ` {set T} : Type type of finite sets of T-elements
A : {set T} ` #| A | : nat cardinality of the set A

x : A ` x \in A : bool membership test
k : T ` k |: A : {set T} insertion of the element k in A

A :\ k : {set T} removal of the element k from A

P : T → bool ` [set x : T | P] : {set T} subset of T satisfying P

A, B : {set T} ` A :|: B : {set T} union of A and B

A, B : {set T} ` A :&: B : {set T} intersection of A and B

A, B : {set T} ` A :\: B : {set T} difference of A and B

i0 : T ` [arg min_(i < i0 in A) M] : T an i \in A minimizing M

Table 1. Key operations on finite sets [20, 25]

Coqjudgment Informal semantics

n : nat ` BITS n : Type vector of n bits

bs : BITS n, k : nat ` getBit bs k : bool test the kth bit
xs, ys : BITS n ` andB xs ys : BITS n bitwise and
xs, ys : BITS n ` orB xs ys : BITS n bitwise or
xs, ys : BITS n ` xorB xs ys : BITS n bitwise xor

xs : BITS n ` invB xs : BITS n bitwise negation
xs : BITS n, k: nat ` shrBn xs k : BITS n right shift by k bits
xs : BITS n, k: nat ` shlBn xs k : BITS n left shift by k bits

Table 2. coq-bits API (fragment)

Remark 2. We are confident that our development could carry over to different
formalizations of finite sets and finite ordinals such as, e.g., the MSets library [10]
and the Finite sets library [9] provided by the Coq standard library.

2.2 A Bit Vector Library: coq-bits

To model operations on bitsets, we rely on coq-bits [18], a formalization of logi-
cal and arithmetic operations on bits. A bit vector is defined as an SSReflect
tuple [26] of bits, i.e. a list of booleans of fixed (word) size. The key abstractions
offered by this library are listed in Table 2. The library characterizes the inter-
actions between these elementary operations and provides embeddings to and
from Z/2nZ.

3 Sets as Bit Vectors, Bit Vectors as Sets

There is an obvious bijection between a finite set of cardinality n and a bit vector
of size n. Since we can sequentially enumerate each inhabitant of a finite type, we
can uniquely characterize an inhabitant by its rank in this enumeration. Thus,



a finite set can be concisely represented by setting the kth bit to true if and only
if the element of rank k belongs to the set.

In Coq, this bijection is captured by the (extensional) definition

Definition repr {n}(bs: BITS n) E := E = [ set x : ’I_n | getBit bs x ].

where the right-hand side reads a standard set comprehension. We shall therefore
say that a bit vector bs represents a set E if repr bs E holds.

The crux of this definition is to establish a relation between the abstract
notion of finite sets — convenient for mathematical proofs — and the concrete
artefact of bit vectors — enabling efficient computations. This relational presen-
tation establishes a data refinement of finite sets by bitsets [8, 12].

In the following sections, we show that logical operations on finite sets are
reflected by concrete manipulations on bitsets. In each case, we also prove that
the refinement relation is preserved. As a result, an algorithm defined paramet-
rically over the representation of a finite set will be instantiable to finite sets —
for proofs — and bit sets — for computations. We shall illustrate this technique
in Section 5.1.

3.1 Set Membership

Over finite sets, set membership merely requires checking whether an element
belongs to an enumeration of the set’s elements. It is therefore a decidable prop-
erty, provided by the finset operator x : T, A : set T ` x \in A : bool

In terms of bitsets, this can be implemented by shifting the kth bit to the
least significant position and masking the resulting bit vector with 1:

Definition get {n}(bs: BITS n)(k: ’I_n): bool

:= (andB (shrBn bs k) #1) == #1.

We then prove that our refinement of finite sets is respected by get. To do
so, we show that, given a finite set E represented by a bitset bs, testing the
membership of an element k in E is equivalent to getting the kth bit in bs:

Lemma 1 (Representation of membership). For a non-empty finite set E

of cardinality n.+1 represented by a bitset bs, get agrees with the set membership
operation for every element of E, i.e.

Lemma get_repr: forall n (k: ’I_n.+1)(bs: BITS n.+1) E, repr bs E →
get bs k = (k \in E).

3.2 Inserting and Removing Elements

Inserting an element k into a bitset bs amounts to setting the kth bit to 1. For
instance, to set a specific bit, we apply an or-bitmask

Definition insert {n}(bs: BITS n) k: BITS n := orB bs (shlBn #1 k).

Once again, the formal specification and the computational realizer are re-
lated through a representation lemma, e.g.:



Lemma 2 (Representation of insertion).
For a finite set E represented by a bitset bs, set insertion is refined by insert:

Lemma insert_repr: forall n (bs: BITS n) (k: ’I_n) E, repr bs E →
repr (insert bs k) (k |: E).

3.3 Algebra of Sets

The refinement relation holds for the standard algebra of sets. For two finite sets
A, B : set T, we have that
– the complement ~: A is realized by invB (bitwise negation),
– the intersection A :&: B is realized by andB (bitwise and),
– the union A :|: B is realized by orB (bitwise or), and
– the symmetrical difference (A :\: B) :|: (B :\: A) is realized by xorB (bit-

wise xor).
For each of these definitions, we prove the corresponding representation lemmas.

3.4 Cardinality

Computing the cardinality of a bitset requires counting the number of bits set
to 1. To the delighted hacker, this merely amounts to implementing a population
count algorithm [27, Sec. 5-1]. Several efficient implementations of this algorithm
exist: we refer our reader to the above reference for a tour of each of them.

We chose to implement the population count via a lookup table. The gist of
the algorithm is as follows. Let us consider a bitvector bs of size n (e.g., n = 64)
and let k be a divisor of n (e.g., k = 8). We tabulate the number of 1s in all
the bit vectors of size k. The idea is that for a sufficiently small value of k, this
table fits within a single cache line. Therefore, to compute the number of 1s in
bs, we can add the number obtained by looking up the key corresponding to the
segment [k × i, k × (i + 1)− 1] in the table, for i ∈ [0, n/k − 1].

For example, on a 64-bit architecture, one would typically split the bit vector
into segments of 8 bits, pre-computing a lookup table of 256 elements. Because
the table fits in a single cache line, the individual lookups are fast. We have thus
traded space (an impossibly large lookup table covering all 64-bit numbers) for
time (by iterating the lookup 8 times instead of performing it once).

The first step, which happens off-line, thus involves computing a lookup table
mapping any number between 0 and 2k to its number of bits set:

Definition pop_table {n}(k: nat): seq (BITS n).

Looking up the number of bits set in the segment [i×k, i×(k+1)−1] is a matter
of right shifts followed by a suitable and-mask to extract the segment. We obtain
the segment’s population count by a lookup in the pre-computed map:

Definition pop_elem {n}(k: nat)(bs: BITS n)(i: nat): BITS n

:= let x := andB (shrBn bs (i * k)) (decB (shlBn #1 k)) in

nth (zero n) (pop_table k) (toNat x).



Finally, we obtain the total population count by iterating over the i segments of
bit vectors of size k, adding their individual population counts:

Fixpoint popAux {n}(k: nat)(bs: BITS n)(i: nat): BITS n :=

match i with

| 0 => zero n

| i’.+1 => addB (pop_elem k bs i’) (popAux k bs i’)

end.

Definition cardinal {n}(k: nat)(bs: BITS n): BITS n

:= popAux k bs (n %/ k).

As before, the implementation has been shown to refine its specification.

3.5 Minimal Element

Finding the minimal element of a bitset amounts to identifying the least sig-
nificant bit that is set to one. To put it another way, the rank of the minimal
element is the number of trailing zeros [27, Sec. 5-4]. The classical formula for
computing the number of trailing zeros for a bit vector of size n is given by

Definition ntz {n}(k: nat)(bs: BITS n): BITS n

:= subB #n (cardinal k (orB bs (negB bs))).

The intuition is that orB bs (negB bs) has the same number of trailing zeros
as bs while all the bits beyond the minimal element are set. Therefore, the
cardinality of this bit vector is its length minus the number of trailing zeros. We
prove the usual representation lemma.

4 Trustworthy Extraction to OCaml

While bit vectors provide a faithful model of machine words, their actual rep-
resentation in Coq — as lists of booleans — is far removed from reality. To
extract our programs to efficient OCaml code, we must bridge this last gap and
develop an axiomatic presentation of OCaml’s machine integers.

We shall specify the semantics of this axiomatization by means of the coq-bits
primitives. Once again, we rely on a refinement relation, stating that OCaml’s
integers refine coq-bits’s integers (in fact, they are in bijection) and asserting
that each axiomatized operation on OCaml’s integers is a valid refinement of the
corresponding operation in the coq-bits library. In effect, each abstract operation
can be seen as a specification.

However, introducing new logical axioms cannot be taken lightly: one invalid
assumption and the actual behavior of an OCaml operation could significantly
diverge from its Coq specification. Built on such a quicksand, a formal proof is
close to useless. For example, when extracting a Coq model of 8-bits integers
onto OCaml 63-bit integers, it is all too easy to forget to clear the 55 most
significant bits1. An operation overflowing a byte followed by a left shift — such

1 Needless to say, this example is drawn from the authors’ harsh experience.



as shrB (shlB #0 9) 1 — would incorrectly expose the overflow, thus betraying
the encoding. We can however take advantage of the fact that there is only
a finite number of OCaml integers and that our specifications are decidable
properties: we gain a higher level of trust in our model by exhaustively testing
each specification against its OCaml counterpart.

4.1 Axiomatization and Extraction of Int8

Our axiomatization of machine integers merely involves importing the functions
relative to integers defined in the OCaml standard library [23]. The list of ax-
iomatized operations is summarized in Table 3. Concretely, the axioms and their
realizers are defined as follows:

Axiom Int8: Type.

Extract Inlined Constant Int8 => "int".

Axiom lt: Int8 → Int8 → bool.

Extract Inlined Constant lt => "(<)".

To mediate between machine integers and bit vectors, we define two conver-
sion functions

Definition bitsToInt8 : BITS 8 → Int8 := (..).

Definition bitsFromInt8 : Int8 → BITS 8 := (..).

which ought to establish a bijection between Int8 and BITS 8. This fact can-
not be established within Coq: bitsFromInt8 and bitsToInt8 perform various
shifts and tests on machine integers, operations of which Coq has no knowledge
of since they were axiomatized. To Coq, an axiomatized operation is nothing
but a constant, i.e. a computationally inert token.

4.2 Gaining Trust in Extraction

Although our axiomatisation of machine integers is computationally inert, it
can be extracted to OCaml, where it computes. In OCaml, we can therefore
easily run the tests bitsFromInt8 (bitsToInt8 bs) = bs for all 8-bit vector
bs. If this equality is experimentally verified, this provides a strong (meta-level)
indication that bitsToInt8 is cancelled by bitsFromInt8. We thus propose to
gain trust in our model by (exhaustively) testing it [14]. We adopt a systematic
infrastructure, inspired by translation validation [22]. Let us illustrate with the
cancelativity property.

First of all, bit vectors of size 8 being finitely enumerable, we can write a test
— in Coq — checking the cancelativity property for all possible bit vectors:

Definition bitsToInt8K_test: bool :=

[forall bs , bitsFromInt8 (bitsToInt8 bs) == bs ].

After extraction to OCaml, we can inspect the value bitsToInt8K_test: if it
is false, then our specification is definitely incorrect. If it is true, then we may
confidently accept the validation axiom



Axiom bitsToInt8K_valid: bitsToInt8K_test.

that reflects in SSReflect/Coq2 the fact that we observed true in OCaml.
Using this axiom and by the very definition of our test, we can prove the can-
celativity property:

Lemma bitsToInt8K: cancel bitsToInt8 bitsFromInt8.

Proof.

move=> bs; apply/eqP; move: bs.

by apply/forallP: bitsToInt8K_valid.

Qed.

We follow the same methodology for the remaining specifications. For a de-
sired specification Spec, we
1. implement an exhaustive test spec_test checking this property;
2. check that the extracted code returns true;
3. reflect its validity through an axiom spec_valid;
4. prove the desired property Spec from the test and its axiomatized validity.

To establish a bijection between BITS 8 and Int8, we chose to test for in-
jectivity of bitsFromInt8. From injectivity, we easily deduce cancelativity and
bijectivity follows naturally. The injectivity lemma is stated as follows:

Lemma bitsFromInt8_inj: injective bitsFromInt8.

We can reflect the concluding equality in terms of the decidable equality ==

of bit vectors. However, the premise refers to the propositional equality of two
Int8 values. As such, we have no way to turn this statement into a checkable
assertion. Morally, however, we know that the propositional equality over Int8

should be consistent with OCaml’s equality, which we have axiomatized as eq.
This leads us to introduce the following — uncheckable — axiom:

Axiom eqInt8P : Equality.axiom eq.

where eq is an axiom that extracts to OCaml’s structural equality test.
Similarly, we need a device for verifying universal quantifications over bit

vectors. This decision procedure is realized by a simple enumeration routine
(Figure 1) postulated as an axiom in Coq:

Axiom forallInt8 : (Int8 → bool) → bool.

Extract Inlined Constant forallInt8 => "Forall.forall_int8".

The reflection property is once again uncheckable and therefore postulated

Axiom forallInt8P : forall P PP,

viewP P PP →
reflect (forall x, PP x) (forallInt8 (fun x => P x)).

2 Boolean values are transparently lifted to types through the is_true: bool → Prop

predicate that assigns the empty set to false and the unit set otherwise.



exception TestFailure of int ;;

let forall_int wordsize k =

try

for i = 0 to (1 lsl wordsize) - 1 do

if (not (k i)) then

raise (TestFailure i)

done;

true

with (TestFailure i) →
Printf.printf "failed %d\n" i; false

let forall_int8 = forall_int 8

let forall_int16 = forall_int 16

let forall_int32 = forall_int 32

Fig. 1. Realizer for the forallInt8 quantifier

Remark 3 (Trusted proving base).
The axioms eqInt8P and forallInt8P are the only axioms whose validity

is not safeguarded by experimental validation. eqInt8P seems rather innocuous
since it merely asserts that equality over OCaml’s integers is defined precisely
by OCaml’s implementation of equality. An error in forallInt8P would be more
consequential: if, for instance, the bounds min_int and max_int are both mistak-
enly set to 0, then many false properties of machine integers would be presented
as “experimentally true.” As usual with a mathematical definition, it is only by
confronting this definition against expected properties (such as, for example, the
cyclic properties of Int8) that confidence can be gained in its validity. ut

Using these two devices, we can test injectivity of bitsFromInt8 with

Definition bitsFromInt8_inj_test: bool :=

forallInt8 (fun x =>

forallInt8 (fun y =>

(bitsFromInt8 x == bitsFromInt8 y) ==> (eq x y))).

Running this test confirms its validity, which we can then postulate in our model.
Injectivity follows, by a small proof involving the reflection of integer equality
and of quantification over integers. From which we conclude by establishing the
existence of a bijection between Int8 and BITS 8:

Lemma bitsFromInt8_bij: bijective bitsFromInt8.

Remark 4. The execution of the OCaml-extracted test takes 4 seconds for to
cover all 8-bits integers. The equivalent test for 16-bit integers did not complete
after several hours. Using manually optimized (and, therefore, less trustworthy)
OCaml code, we were able to run the tests in 0.23 seconds for 8-bit integers



and in 7 hours 27 for 16-bit integers. Our hand-tuned test routine includes the
following optimizations:

– factorizing the conversion from integers to bitsets across multiple tests;
– avoiding Peano integers by directly manipulating native OCaml integers.

The last point is essential for keeping a quadratic algorithm. Running the test
for 32-bit integers is feasible, but is likely to take years of CPU time. Obviously,
64-bit integers cannot be exhaustively tested.

Despite our best efforts, our extraction remains unverified in a formal sense: it
is trustworthy in as much as it gives consistent results with a particular version of
the OCaml compiler (or interpreter), running on a particular operating system
and a specific machine. To all intents and purposes, we have not provided a
proof of correctness of our extraction: we have merely developed an experimental
process by which to test its validity.

4.3 Refining Bit Vectors to Integers

The bijection naturally leads us to a refinement relation from Coq’s bit vectors
down to OCaml’s machine integers. We thus define

Definition native_repr (i: Int8)(bs: BITS wordsize): bool

:= eq i (bitsToInt8 bs).

that is to say: an integer refines a bit vector if they are in bijection.

Following the refinement methodology, we then show that each operation on
bit vectors is refined by a corresponding operation on machine integers. Let us
consider the case of bitwise negation. We would like to prove that lnot, which
extracts to OCaml’s lnot, is a valid refinement of invB:

Lemma lnot_repr: forall i bs,

native_repr i bs → native_repr (lnot i) (invB bs).

This statement reads as follows: if i is a native integer corresponding to
the bitset bs, then the lnot operator acts exactly the same way as invB on it.
The operator invB — bitwise negation — thus provides a specification for the
operation lnot axiomatized in Coq. To prove this property, we craft a exhaustive
test

Definition lnot_test: bool

:= forallInt8 (fun i =>

native_repr (lnot i) (invB (bitsFromInt8 i))).

that we extract and run in OCaml. The result being true, we feel confident in
asserting its validity to Coq:

Axiom lnot_valid: lnot_test.

The lemma lnot_repr follows from the definition of lnot_test and lnot_valid.
We similarly specified, tested and proved the validity of all remaining opera-
tions (Table 3).



Informal semantics Coq axiom OCaml extraction

Zero zero 0

Successor suc fun x → (x + 1) land 0xff

Arithmetic negation neg fun x → (-x) land 0xff

Addition add fun x y → (x + y) land 0xff

Bitwise negation lnot fun x → (lnot x) land 0xff

Bitwise and land (land)

Bitwise or lor (lor)

Bitwise xor lxor (lxor)

Shift left lsl fun x y → (x lsl y) land 0xff

Shift right lsr (lsr)

Equality eq (=)

Comparison lt (<)

Table 3. Specifications, axioms and the realizers of Int8

4.4 Refining Sets to Machine Integers

In Section 3, we have established a refinement relation between BITS n and finite
sets. In Section 4.1, we have established another refinement relation between
Int8 and BITS 8. By transitivity, we obtain a refinement of finite sets to Int8:

Definition machine_repr (n: Int32)(E: {set ’I_wordsize}): Prop :=

exists bv, native_repr n bv ∧ repr bv E.

The desired representation lemmas then carry over from finite sets to integers,
trickling through bit vectors. For example, one defines the complement and easily
proves its associated representation lemma

Definition compl (bs: Int32): Int32 := lnot bs.

Lemma compl_repr: forall i E,

machine_repr i E → machine_repr (compl i) (~: E).

5 Applications

To illustrate our approach, we now tackle two examples of algorithms that rely
on finite sets for their proof and bitsets for their efficient execution. In Sec-
tion 5.1, we present a certified Bloom filter [4] implementation. In Section 5.2,
we implement an algorithm solving the n-queens problem.

5.1 Bloom Filters

A Bloom filter is an efficient — but approximate — abstraction for monotone
sets. It offers an operation for inserting an element into the set and another for
testing membership. It is approximate in the sense that it is subject to false
positives: an element might be signaled as belonging to a set into which it has
never been inserted. However, it is free of false negatives: if the membership
test fails, then it is indeed the case that the element has never been inserted.
Combined with its small memory footprint, this last property makes this data
structure very useful in practice.



Under the hood, a Bloom filter relies on a collection (Hi) of hashing func-
tions onto ’I_n, for some integer n (usually, the architecture’s word size). Upon
inserting an element p, we compute the i hashes of p and collect them in a single
signature set of cardinality n:

Fixpoint bloomSig_aux (curFilter: T)(H: seq (P → ’I_wordsize))(e: P): T

:= match H with

| [::] => curFilter

| h :: H => bloomSig_aux ((singleton (h e)) \cup curFilter) H e

end.

Definition bloomSig (H: seq (P → ’I_wordsize))(e: P): T

:= bloomSig_aux \emptyset H e.

The kth element of the signature set is thus set if and only if there is hashing
function reducing to this value. To update the Bloom filter, we simply take the
union of this signature set and the previously-computed ones:

Definition bloomAdd (S: T)(H: seq (P → ’I_wordsize))(add_elt: P): T

:= S \cup (bloomSig H add_elt).

To check whether an element belongs to the filter, we once again compute
its signature. If all the signature is a subset of the Bloom filter, then the corre-
sponding element may have been inserted into the set. Otherwise, it definitely
was not:

Definition bloomCheck (S: T)(H: seq (P → ’I_wordsize))(e: P) : bool

:= let sig := bloomSig H e in (sig \cap S) = sig.

The correctness of our implementation is established by

Theorem 1 (Absence of false negatives). Let (Hi) be a collection of hashing
functions. If an element belongs to the Bloom filter, then this element belongs to
any subsequent extension of the Bloom filter. Or, contrapositively:

Lemma bloom_correct: forall T T’ H add check, machine_repr T T’ →
(~ bloomCheck (bloomAdd T H add) H check) →
(~ bloomCheck T H check) ∧ (add <> check).

This ensures that the element is still detected in all subsequent Bloom filters
generated by adding more elements, i.e. it will never be a false negative.

Remark 5. Although insertion (bloomAdd) and membership test (bloomCheck) are
implemented over native integers for efficiency, the correctness argument is more
easily established by reasoning over abstract sets. To bridge this gap, we merely
instantiate our parametric definition to use finite sets (Section 4.4), thus obtain-
ing an abstract specification bloomAdd_finset. Parametricity tells us that the
specification and its implementation verify the refinement relation.

5.2 The n-queens Problem

Our second application is a freshman’s classic. The n-queens problem involves
finding the number of ways to place n queens on a n×n board so that no queen



Fig. 2. Execution time for the n-queens algorithm

threatens another, i.e. belongs to the same row, column or diagonal. To do so,
the algorithm recursively fill the board row-by-row, making sure at each step
to put the queen on a safe column. To enforce this invariant, Richards [24] has
shown that it is sufficient to maintain a (finite) set of occupied columns and of
the left and right diagonals at the given position. Upon moving to the next row,
we update the occupied column and the diagonal sets: the new queen occupies
a new column, while the diagonals are merely shifted by one element.

A particularly eager freshman (or one of Filliâtre’s students [13]) would use
a bitset ld to store the occupied left diagonals (relative to the current line),
a bitset rd to store the occupied right diagonals (relative to the current line),
and a bitset col to store the occupied columns. The set of possible positions is
then concisely described by the set ~: (ld :|: rd :|: col). To decide on the
next position to explore, we may take the minimal element of this set, using ntz

(Section 3.5). The algorithm terminates when the set of columns col is full.

The correctness proof covers about 1300 lines of code, including about 50
lines of intermediairy definitions. Once again, we crucially rely on the equivalence
between machine integers and finite sets (Section 4.4) to streamline the proof.
We provide the performance of the extracted code in Figure 2, comparing it
against a hand-written OCaml implementation and a C implementation. The
hand-coded OCaml executes within 30% of the execution time of a reference C
implementation, as is common for OCaml code. The extracted Coq code is twice
as slow as the OCaml one. We attributes this slow-down to the naivety of our
Coq implementation that encodes mutual recursion through an indexed type.
The resulting extracted code thus repeatedly performs a (needless) boolean test
in a tight loop.



6 Related Work

Our treatment of bitsets is rooted in the data refinement approach [1]. This
approach involves relating a formal specification to a concrete implementation,
refining the model at each step. Refinements have made their way into interactive
theorem provers, such as Isabelle [7, 16] and Coq [11]. Our presentation builds
upon the work of Denes et al. [12] in the Coq proof assistant. In particular, we
follow the authors in using parametricity to abstract over representations and
obtain the representation lemmas for (almost) free [8].

We demonstrated our library by implementing and verifying two algorithms
in Coq. By doing so, we use Coq as a software verification platform. This
approach is reminiscent — although at a much smaller scale — of the CFML [6]
tool. Indeed, CFML provides a verification platform for OCaml programs by
embedding an axiomatic model — the characteristic formula — in Coq and
providing a program logic suitable to higher-order, effectful programs in Coq.
We took the more lightweight (but also more restrictive) approach of writing
programs directly in Coq, relying on extraction to obtain executable OCaml
programs.

Why3 [5] is another platform for deductive program verification. It uses a col-
lection of SMT solvers and interactive theorem provers to prove that programs
meet their specifications. It supports manipulation of and reasoning about bit-
sets. To this end, the SMT solvers are extended with an axiomatic theory of
bitsets. This theory has been shown consistent through a Coq model. When-
ever an SMT solver fails to discharge a proof obligation, the Coq formalization
can be used to, manually and interactively, prove the corresponding statement.
Why3 is thus able to reason about algorithms manipulating bitsets automati-
cally. For example, the n-queens algorithm was proved correct by Filliâtre [13].
Amazingly, most proof obligations (35 out of 41) are discharged automatically
by the SMT solvers, freeing the programmer from the burden of writing for-
mal proofs. The remaining proof obligations were proved in Coq, in as little as
142 lines of tactics in total. Our proof was meant to exercise our library and
was thus developed without automated assistance. As a consequence, it is much
longer (1200 lines of tactics) and admittedly more pedestrian.

7 Conclusion

In this paper, we have developed an effective formalization of bitsets, covering
a significant fragment of SSReflect’s finset library. We summarize the equiv-
alences we have established in Table 4. Through this work, we hope to rejoice
both Hackers and Mathematicians with delights [27]. To account for both — of-
ten divergent — point of views, we have adopted the data refinement approach
advocated by Denes et al. [8]. We leveraged parametricity — a deep meta-
mathematical property — to relate the proof-oriented and the computation-
oriented specializations of our generic programs.

We would like to extend our work beyond a single machine word so as to
support arbitrarily large bitsets. To this end, we would need native support for



persistent (or non-persistent) arrays in Coq. Finally, our bitset library is but a
first step toward building certified domain-specific compilers for programming
low-level systems. In particular, device drivers are typically configured through
intricate combinations of bitsets, e.g. for setting flags or checking the configura-
tion status. We wish for our library to provide a verified connecting rod between
the low-level interaction with the device and its high-level specification [21].
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Informal semantics finset definition bitset definition

Membership:
\in : T → {set T} → bool get: Int8 →

’I_wordsize → bool

Insertion:
|: : T →

insert: Int8 → Int8 → Int8
{set T} → {set T}

Removal:
:\ : T →

remove: Int8 → Int8 → Int8
{set T} → {set T}

Empty set: set0 : {set T} zero: Int8

Full set: setT : {set T} one: Int8

Complement: ~: : {set T} → {set T} compl: Int8 → Int8

Intersection:
:&: : {set T} →

inter: Int8 → Int8 → Int8
{set T} → {set T}

Union:
:|: : {set T} →

union: Int8 → Int8 → Int8
{set T} → {set T}

Sym. difference:
:\: : {set T} →

symdiff: Int8 → Int8 → Int8
{set T} → {set T}

Cardinality: #|_| : {set T} → nat cardinal: Int8 → Int8

Minimal element:
[arg min_(i < _ in _) i]

ntz: Int8 → Int8
: T → {set T} → T

Table 4. Refined operations over finite sets
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