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Abstract 11 

Compression therapy with stockings or bandage is the most common treatment for 12 

venous or lymphatic disorders.  13 

The objective of this study was to investigate the influence of bandage mechanical 14 

properties, application technique and subject morphology on the interface pressure, 15 

which is the key of this treatment. 16 

Bandage stretch and interface pressure measurements (between the bandage and the leg) 17 

were performed on 30 healthy subjects (15 men and 15 women) at two different heights 18 

on the lower leg and in two positions (supine and standing). Two bandages were applied 19 

with two application techniques by a single operator.  20 

 The statistical analysis of the results revealed: no significant difference in pressure 21 

between men and women, except for the pressure variation between supine and standing 22 

position; a very strong correlation between pressure and bandage mechanical properties 23 

(p<0.00001) and between pressure and bandage overlapping (p<0.00001); a significant 24 

pressure increase from supine to standing positions (p<0.0001). Also, it showed that 25 

pressure tended to decrease when leg circumference increased.  26 

Overall, pressure applied by elastic compression bandages varies with subject 27 

morphology, bandage mechanical properties and application technique. A better 28 

knowledge of the impact of these parameters on the applied pressure may lead to a more 29 

effective treatment. 30 

 31 

Keywords: compression bandage, pressure measurements, pressure variation, bandage 32 

application technique, bandage mechanical properties, subject morphology, venous and 33 

lymphatic disorders 34 



1 Introduction  35 

Compression bandage is a common treatment for venous or lymphatic pathologies such 36 

as venous ulcers or lymphedema. In such diseases, bandages are preferred in the first 37 

step of the treatment by compression, instead of stockings. Indeed, during the first days 38 

of the treatment, the patients’ leg shape changes a lot and the same compression 39 

bandage can be applied on the leg with different geometries, whereas a new stocking 40 

size would be needed to accommodate these changes. Once the leg shape is stable, the 41 

treatment by compression is usually performed with socks or stockings. Bandages are 42 

also used when the patient’s pathology prevents the use of any other treatment (for 43 

example after a knee arthroplasty). Moreover, it is easier for a caregiver to apply 44 

bandages than stockings on patients’ legs, especially with patients with impaired 45 

mobility. Consequently, compression bandage and stockings are complementary. 46 

The bandage, tight on the limb, applies a pressure on the external surface of the limb 47 

which is then transmitted to the internal tissues and to the veins 
1,2

. Numerous studies 48 

have proven the effect of compression therapy on venous and lymphatic system 
3–5

, 49 

whether compression is performed with bandage or stockings 
6
.  50 

The efficacy of the treatment mainly depends on the level of pressure which is applied 51 

on the limb 
7,8

. This level of pressure depends on several parameters such as:  52 

- The bandage mechanical properties 53 

- The bandage components (padding layer, cohesive bandage, …) 54 

- The bandage stretch 55 

- The local curvature of the limb on which the bandage is applied 56 

- The application technique (spiral or figure of eight) 57 

- Other parameters such as friction between the different layers, mechanical 58 

properties of the limb soft tissues, … 59 



Better understanding how these parameters impact the level of applied pressure would 60 

lead to an improved treatment with compression bandage. 61 

A well-known theoretical relationship between the tension, T, of the bandage (force 62 

needed to stretch the bandage, which is given by the bandage mechanical properties and 63 

the applied stretch), the local curvature, rc, of the limb and the locally applied pressure, 64 

P, is given by the Laplace’s Law:  65 

𝑃 = 𝑇/𝑟𝑐 

However, it has been shown that this law is not sufficient to explain the pressure 66 

distribution over a limb 
9,10

, hence the need for an experimental investigation of the 67 

pressure applied by compression bandage on the lower leg.   68 

Several measurements of the pressure applied by bandages were carried out, with 69 

various types of bandages, at different measurement points and on a wide range of 70 

subjects in different body positions 
11–13

. In order to standardize the way to perform 71 

pressure measurements, recommendations have been published to proceed to interface 72 

pressure measurements 
8
. Measurement points have been identified on the lower leg 

8
 73 

such as (Figure 1): 74 

- Measurement point B1: corresponding to the height where the Achilles’ tendon 75 

turns into the gastrocnemius muscle.  76 

- Measurement point C: corresponding to the height where the calf circumference 77 

is the largest. 78 

The pressure sensors used for the measurements should meet some requirements: for 79 

example to be thin and flexible 
8
. Different types of sensors exist but some have proven 80 

to be more reliable than others 
14

 (Kikuhime
®
 and Picopress

®
 for example).  81 

Most of the measurement campaigns which were performed on men and women did not 82 

take the gender difference into account
13,15

. However the leg morphology has an 83 



influence on the applied pressure. Indeed, the leg morphology varies from a subject to 84 

another and maybe even more especially from a female subject to a male subject
16

. 85 

Other groups investigated the impact of the application technique on the interface 86 

pressure 
17

 and they also measured the stretch of the applied bandage. However, as the 87 

aim of this previous study was to compare the pressure applied by different application 88 

techniques, it was carried out for a single bandage type. Other studies were focused on 89 

the influence of bandage mechanical properties and position (supine, standing, sitting) 90 

on the interface pressure 
12,18–20

, but as far as we know, none of them measured the 91 

stretch of the applied bandage, though it is one of the main parameters which controls 92 

the interface pressure. 93 

This shows the need of performing other pressure measurements in order to 94 

simultaneously evaluate the influence of all following parameters on the interface 95 

pressure: bandage mechanical properties, application technique, subjects’ gender and 96 

morphology and position (supine or standing). 97 

Within this context, the objective of the present study is to perform a complete 98 

campaign including bandage stretch and pressure measurements in order to test the 99 

following hypotheses:  100 

- The applied pressure is proportional to the bandage elastic modulus (or the force 101 

needed to stretch the bandage) 102 

- The applied pressure is proportional to the bandage overlapping  (50% or 66% 103 

overlapping means that respectively 2 or 3 bandage layers cover the leg) 104 

- The interface pressure significantly decreases when the subjects’ leg 105 

circumference increases. 106 

Moreover, these measurements result to a quantitative evaluation of the pressure 107 

differences among female and male subjects and of the pressure increase between the 108 



supine and the standing position. 109 

2 Methods 110 

Briefly, stretch and pressure measurements were performed on healthy male and female 111 

subjects in order to estimate the gender influence. Subjects were chosen in order to have 112 

a wide range of morphologies. Two different elastic bandages, with different 113 

mechanical properties, were applied on the subject’s leg with two application 114 

techniques with the aim of evaluating the influence of mechanical properties, 115 

application technique and position (supine or standing) on the interface pressure.  116 

2.1 Bandages 117 

Two commercially available elastic bandages, which differ in their mechanical 118 

properties, were applied on the subjects’ leg by the same experienced operator: the 119 

Biflex
®
 16 (B16) and the Biflex

®
 17 (B17) (Thuasne, Levallois-Perret, France) which is 120 

stiffer (Table 1). Bandage elastic modulus (K), in N/mm, is defined as follows:  121 

𝐾 =
𝐹𝑜𝑟𝑐𝑒 𝑡𝑜 𝑠𝑡𝑟𝑒𝑡𝑐ℎ 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑎𝑔𝑒

𝑏𝑎𝑛𝑑𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ ∗  (𝐿 − 𝐿0)/𝐿0
 

where 𝐿 is the length of the stretched bandage and 𝐿0 its initial length (Figure 2). Both 122 

bandages were 10 cm wide. They were applied on the leg with a target stretch of 1.3, in 123 

accordance with the manufacturer’s recommendations and visual calibration marker 124 

(Figure 2). This visual calibration marker is a rectangle which turns into a square when 125 

the bandage stretch is equal to 1.3. It gives a visual indication to the bandager that the 126 

stretch is in accordance with the manufacturer’s recommendations. The stretch is 127 

defined as the ratio between the length of the stretched bandage and its initial length 128 

(𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝐿/𝐿0).  Bandage can be applied in the form of a spiral with a 50% or a 66% 129 

overlap, which means that at each turn, the bandage layer on top covers the bandage 130 



layer below respectively by 50% or 66% (Figure 2 and Figure 3). For a 50% or 66 % 131 

overlapping technique, the leg is covered by respectively 2 or 3 bandage layers. The 132 

value of the overlap is usually prescribed by medical doctors. Lines were drawn on the 133 

bandage to help the bandager to apply the bandage with the correct overlap: one at 50% 134 

and one at 33% of the bandage width, for respectively a 50% and a 66% overlapping 135 

technique (Figure 2). 136 

2.2 Pressure sensors 137 

The interface pressure was measured with pneumatic pressure sensors Picopress
®

 138 

(MicroLab Elettronica, Ponte S. Nicolo, Italy). This pressure sensor is a convenient 139 

device which was used in several previous pressure measurements studies 
11,21,22

.  140 

As a preliminary study, the accuracy, the linearity and the hysteresis of the sensors were 141 

tested. To achieve this, the sensor was placed at the bottom of a water column. First, the 142 

column was filled with water and a measure was taken every 10 mmHg (13.6 cmH2O) 143 

from 0 to 147 mmHg (199.9 cmH2O). Then the column was emptied and a measure was 144 

taken every 10 mmHg. This allowed characterizing the hysteresis of the sensor, which is 145 

given by the following equation:  146 

 𝐸ℎ =  mean
𝑥𝑖

(
|𝑦+(𝑥𝑖) − 𝑦−(𝑥𝑖)|

𝑥𝑖
∗ 100) 

where, 𝑦+(𝑥𝑖) and 𝑦−(𝑥𝑖) are the measured pressure value for a theoretical applied 147 

pressure equal to 𝑥𝑖, respectively during the loading and the unloading phases. The 148 

second test consisted in applying 20 different pressure values, which were randomly 149 

determined and allowed characterizing the sensor linearity. The coefficient of 150 

determination R² was used as the indicator of the linear dependence between the 151 

theoretical and the measured pressure. The closer to 1 the coefficient R² was, the more 152 

linear the sensor was.  153 



These tests were performed for the Picopress
® 

device and the two sensors which were 154 

used in the study (respectively at measurement points B1 and C). 155 

The tests showed that R² was almost equal to 1 for both sensors (R² = 0.9999) and that 156 

the hysteresis was slightly higher for the sensor located at measurement point B1 (1.0%) 157 

than for the other sensor located at measurement point C (0.0%).  158 

The tests performed on the sensors showed that these sensors were very reliable and, 159 

hence, suitable for the present work, which was in accordance with the tests conducted 160 

by Partsch et al. 
14

.  161 

2.3 Experimental protocol 162 

Subject selection  163 

Pressure measurements were carried out on 30 healthy subjects, 15 women and 15 men, 164 

following informed consent (Table 2). This protocol was approved by the local ethics 165 

committee. 166 

The subjects’ selection was made with regards to their circumference at measurement 167 

point B1 (Figure 1) in order to be equally distributed in 3 groups of circumference at B1 168 

height. 169 

For this, a list of 205 women and one of 147 men were built and alphabetically ordered. 170 

Six groups (three for women and three for men) were created, depending on the 171 

subjects’ circumference at measurement point B1:  172 

- Circumference ≤ 29 cm 173 

- Circumference > 29 cm & < 32 cm 174 

- Circumference ≥ 32 cm.  175 

Then 5 subjects were randomly selected in each group. The only criteria for subject 176 

selection were their gender and their circumference at point B1. 177 



Once the subjects were chosen, the order in which they would take part in the study was 178 

randomly determined.  179 

Pressure measurements 180 

Two sensors were positioned on the medial side of the right leg at heights 181 

corresponding to the measurement points B1 and C (Figure 3). Measurement point B1 182 

was chosen following the recommendations of a consensus paper on interface pressure 183 

measurements 
8
 and measurement point C was chosen because it corresponds to a part 184 

of the calf which is mainly composed of soft tissues.  All bandages were applied by the 185 

same trained operator. Four types of bandages were applied in the form of a spiral 186 

(Figure 3):  187 

- B16 with a 50% overlap (B16 – 2 layers) 188 

- B16 with a 66% overlap (B16 – 3 layers) 189 

- B17 with a 50% overlap (B17 – 2 layers) 190 

- B17 with a 66% overlap (B17 – 3 layers). 191 

The order in which the bandages were applied was randomly determined for each 192 

subject.  193 

The bandage was applied in the supine position, after a rest time of 5 to 10 minutes 194 

(time needed to set the sensors on the subject leg). Immediately after the bandage 195 

application, the stretch of the bandage around the measurement points B1 and C was 196 

measured thanks to a mark printed on the bandage every 100 mm (Figure 2). The 197 

distance between three consecutive marks (initially equal to 200 mm) was measured 198 

using a measuring tape once the bandage had been applied on the leg, around the 199 

locations of measurement points B1 and C, providing the stretch of the bandage (for 200 

example, if the distance was equal to 252 mm, the stretch of the bandage at this location 201 

was 252 / 200 = 1.26). 202 



After bandage application, the subject waited for two minutes in the supine position 203 

with the foot slightly raised in order to prevent any contact between the calf and the 204 

examination bed. After this time, three successive measurements were acquired. The 205 

mean value of the three measurements was considered as the pressure value.  206 

Then the subject was asked to stand up and waited for 2 minutes before the measures 207 

were taken again.  208 

2.4 Statistical analysis  209 

For all results, the values are given with their 95% confidence interval and all 210 

histograms represent the mean value and the 95% confidence interval.  211 

Parametric tests (analysis of variance (ANOVA)) were used to evaluate all difference 212 

between two samples (whose size n≥30), except to analyse the effect of circumference 213 

on the pressure (the samples were too small: n<30).  214 

For the small samples (n<30), the Kruskal–Wallis one-way analysis of variance was 215 

used and then the individual effects were tested with a Mann-Withney U test (𝛼 =216 

0.05

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
). 217 

To evaluate the linear correlation between two samples, the coefficient of determination 218 

R² was computed, which equals the square of the Pearson correlation coefficient 219 

between the experimental data and the values from the linear regression. The variable t, 220 

which is approximately distributed as a Student’s distribution with n-2 degrees of 221 

freedom for a zero correlation, was used to test the significance of the coefficient of 222 

determination R² : 𝑡 = √𝑅2 ∗
𝑛−2

1−𝑅2 . 223 

The coefficient of determination was used to characterize the linear correlation between 224 

the following parameters:  225 

- the pressure applied by a B16 and the one applied by a B17 226 



- the pressure applied by 2 layers and the one applied by 3 layers 227 

- the pressure at measurement point B1 and the one at point C 228 

- the pressure in the supine position and the one in the standing position.  229 

Difference was considered as significant if p < 0.05. 230 

3 Results 231 

3.1 Bandage Stretch 232 

Considering all bandages together, mean stretch was equal to 1.30 ± 0.007, in 233 

accordance with the manufacturer’s recommendations (Figure 4 - a). However, the 234 

results demonstrated that, irrespective of bandage type (B16 or B17), stretch at point B1 235 

was significantly lower (p<0.0001) than at point C. Mean stretch at point B1 was lower 236 

than recommended (1.27 ± 0.009). Conversely, at point C, mean stretch was higher 237 

than recommended (1.33 ± 0.008).  238 

Also, B17 was applied with a significantly lower stretch than B16 (p<0.03), 239 

respectively 1.29 ± 0.009 and 1.31 ± 0.01. 240 

No significant difference in stretch was observed at point C between bandage applied 241 

with 50% and 66% overlapping. Conversely, at point B1, bandages applied with 66% 242 

overlapping exhibit higher stretch compared to bandages applied with 50% overlapping 243 

(p<0.002), respectively 1.29 ± 0.012 and 1.26 ± 0.012. 244 

3.2 Pressure values for the different bandages 245 

Considering all bandage types, body positions and measurement points, interface 246 

pressure increased significantly (p<0.0001) with bandage overlapping. Interface 247 

pressure applied by bandage with 66% overlap were higher than pressure applied by 248 

bandage with 50% overlap (Figure 4 - b). Similarly, interface pressure increased 249 



significantly (p<0.0001) with bandage elastic modulus: pressures applied by B17 were 250 

higher than pressures applied by B16 with the same application technique. 251 

There was no significant difference (p>0.05) between interface pressure measured with 252 

B16 applied with 3 layers and B17 applied with 2 layers. 253 

3.3 Gender influence 254 

There was no overall significant difference between male and female in terms of 255 

pressure values and pressure gradient (p > 0.05). 256 

However, pressure variations between supine and standing positions were significantly 257 

different between male and female (p<0.01). These variations were higher for males 258 

irrespective of bandage type and measurement point but the difference between sex 259 

remained low: the pressure variations between the two positions were +11% for women 260 

and +14% for men. 261 

3.4 Influence of bandage mechanical properties 262 

The correlations between the pressures exerted by the B16 and the B17 were significant 263 

at all measurements points, in all positions and for both application techniques 264 

(p<0.0001) (Figure 5 - a). The pressure exerted by the B17 was about 1.5 times as high 265 

as the pressure exerted by the B16 whereas the ratio of elastic moduli was 1. 266 

95.Influence of application technique  267 

The correlation between the pressures exerted by any bandage applied with 66% 268 

overlap and the same bandage applied with 50% overlap was significant at all 269 

measurement points and in all positions (p<0.01) (Figure 5 - b). 270 



3.5 Influence of measurement point (degressivity) 271 

The results demonstrated that, irrespective of bandage type, application method and 272 

body position, the elastic bandages followed the principle of pressure gradient along the 273 

length of the limb (Figure 5 – c). The measured pressures decreased significantly 274 

(p<0.0001) from point B1 to point C, which means that bandages are degressive 275 

(decreasing pressure from the ankle to the knee). Pressures measured at point B1 were 276 

about 7% higher than pressures measured at point C. 277 

3.6 Influence of position  278 

The interface pressure increased significantly (p<0.0001) from the supine position to the 279 

standing position, at point B1 and at point C, irrespective of bandage type and 280 

application method (Figure 5 - d). On average, interface pressures in standing position 281 

were 12% higher than in supine position. 282 

3.7 Pressure and circumference 283 

Irrespectively of bandage type, application method and body position, interface 284 

pressures tended to decrease when circumference at measurement point B1 increased 285 

(Figure 6). Differences were always significant (p<0.05) between circumferences at B1 286 

below 29 cm and over 32 cm. 287 

4 Discussion  288 

The main strength of the study is to provide a unified investigation of the influence of 289 

several parameters on the applied pressure. It quantifies the influence of parameters 290 

which were usually not taken into account. Among the most significant results, it was 291 

shown with our measurements that the bandage stretch is the key to a better control of 292 

the treatment. This data should be provided and considered in every future study on 293 



compression bandages. It was also shown that the relationship between applied pressure 294 

and elastic modulus of the bandage is not linear, which disputes once again Laplace’s 295 

law in the context of compression bandages. 296 

The objective of the present study was to perform a complete campaign of stretch and 297 

interface pressure measurements carried on 30 subjects in order to test the following 298 

hypotheses:  299 

- Hypothesis 1: the applied pressure is proportional to the bandage elastic 300 

modulus  301 

- Hypothesis 2: the applied pressure is proportional to the bandage overlapping   302 

- Hypothesis 3: the interface pressure significantly decreases when the subjects’ 303 

leg circumference increases. 304 

All bandages were applied by the same trained operator and the stretch of the applied 305 

bandage was close to the manufacturer’s recommendations. It was noticed, however, 306 

that the actual stretch was not constant over the leg and was influenced by the bandage 307 

mechanical properties. It was shown that the interface pressure proportionally increased 308 

with the elastic modulus (Hypothesis 1) and the overlapping (Hypothesis 2) of the 309 

bandage and that it tended to decrease when the leg circumference increased 310 

(Hypothesis 3). Moreover, no significant difference was observed between men and 311 

women except for the pressure increase between the supine and standing position, 312 

which was larger for men. These results lead to a more detailed analysis of the 313 

quantified respective influence of the different parameters on the interface pressure, 314 

hence an improved understanding of the treatment. The following discussion is 315 

structured around three topics: the bandage itself, the subject and its position.  316 

 317 



Even though the bandage stretch greatly impacts the level of interface pressure, it was 318 

noticed in previous studies 
23,24

 that the bandage tension varied a lot with the bandager, 319 

even for experienced bandager. However each bandager seemed to be constant and 320 

repeatable in applying bandages 
25,26

. In this study, all bandages were applied by one 321 

trained bandager. This is why the observed trends only reflect one bandager’s 322 

application technique and cannot be generalized straightaway.  323 

Nevertheless, the maximum, minimum and mean stretches (respectively 1.45, 1.18 and 324 

1.30)  measured in the present study were in the vicinity of the target value of 1.3. This 325 

showed that the calibration marker (a rectangle which turns into a square when the 326 

stretch is equal to 1.3 (Figure 2) was effective in having a bandage stretch close to 1.3 327 

27
. However, the stretch was not constant over the leg, with larger stretch at point C than 328 

at point B1, suggesting an influence of the leg’s diameter on the bandager application 329 

technique. Moreover, the stretch was larger for the B16 than for the B17, which could 330 

be explained by the fact that the B16 was less stiff, so was easier to stretch, thus 331 

providing a different feedback to the operator. Measuring the stretch has shown that its 332 

control during bandage application can still be improved. 333 

 334 

The results revealed a very strong correlation between the pressure and the bandage 335 

mechanical properties (p<0.00001). The ratio between the pressure exerted by the B17 336 

and that exerted by the B16 was about 1.5. This result raised an important question. 337 

Indeed, the ratio between the forces necessary for a 1.3 stretch was equal to 1.95 (force 338 

for the B16 = 0.069 N.mm
-1

; force for the B17 = 0.0135 N.mm
-1

), which should induce 339 

a ratio of 1.95 in pressure according to Laplace’s Law as the pressure is supposed to be 340 

directly proportional to the force needed to stretch the bandage. Even though the 341 

measured stretch was lower for the B17 than for the B16, the relative difference in the 342 



stretch (1.3 ± 0.9 % of the stretch) is not sufficient to explain the difference between 343 

the experimental ratio (1.48, p<0.00001) and the expected ratio (1.95), as this ratio is 344 

equal to 1.93 considering the slight difference in stretch. It is hypothesized that this 345 

difference is due to friction between the bandages and/or the application gesture. 346 

However, these are complex phenomena and need to be further investigated.  347 

This study highlighted a strong correlation between the interface pressure and the 348 

bandage overlapping (p<0.00001). The impact of the application technique on the 349 

pressure seemed to be in accordance with what was expected. Indeed, the ratio between 350 

the pressure applied by a 3-layer bandage and the one applied by a 2-layer bandage 351 

should be equal to 3/2 = 1.5. The experimental ratio was about 1.5 (p<0.00001), which 352 

is in accordance with the theory. 353 

 354 

The second group of parameters which impacts the interface pressure is directly related 355 

to the subjects: their gender and morphology. In this study, pressure measurements were 356 

performed on both men and women subjects and the only significant difference between 357 

these two populations was for the pressure increase between the supine and the standing 358 

position. However the results were not treated separately for men and for women 359 

because it has been considered that the difference (3% of the pressure values) was small 360 

enough to merge the results. Nonetheless, it may be hypothesized that this small 361 

difference is due to the difference in musculature between men and women, which leads 362 

to a difference in the geometry variation between the supine and the standing position.  363 

 364 

Considering both populations altogether, it was showed that the pressure tended to 365 

decrease when the leg circumference increased, which is in general agreement with the 366 

Laplace’s law, as the pressure is supposed to be inversely proportional to the radius of 367 



curvature. Also, the circumference at point C was larger than the circumference at point 368 

B1, hence the fact that the bandage was degressive (the pressure at point B1 is higher 369 

than the pressure at point C). However, in the Laplace’s law, only the local radius of 370 

curvature has an influence of the pressure. A larger circumference is only the sign of a 371 

global radius estimate but it does not consider local radius values. In that sense, our 372 

results showed that the level of pressure can vary significantly from a subject to another 373 

and that it depends on their leg geometry.  374 

 375 

Eventually, the impact of the subject position was investigated: the pressure increased 376 

when moving from the supine to the standing position. Due to gravity, the leg geometry 377 

changes from the supine to the standing position (Figure 7). The bandage is applied in 378 

the supine position. After bandage application, when the subject stands up, the leg 379 

circumference tends to increase 
28

, which leads to an increase in the bandage stretch and 380 

induces a pressure increase. This change in geometry from the supine to standing 381 

positions may be a consequence of the muscle group tendency to fall down (because of 382 

gravity) and of the increase of hydrostatic blood pressure. The observed pressure 383 

difference can be used to characterize the stiffness of the bandage as described in the 384 

literature 
29

. In this study, for which elastic bandages were used, the pressure increase is 385 

equal to 6.10 ± 0.54 𝑚𝑚𝐻𝑔. This is in accordance with the previous classification 386 

given by Partsch et al.
30

, where elastic bandages should display an increase below 10 387 

mmHg. 388 

Limitations 389 

The subjects in this study were all healthy subjects whose mean age was lower than the 390 

mean age of pathologic patients using compression bandage. An interesting perspective 391 

will be to carry out the same measurements on pathologic subjects. Moreover, the 392 



pressure measurements were performed almost right after the bandage application, 393 

therefore neglecting the behavior of compression bandage over time (slipping of the 394 

bandage, pressure loss, …). Also, all measurements were static measurements. 395 

All the tests that have been performed on the sensors were performed on a flat surface 396 

whereas they were used on a curved surface. This type of sensor was already tested on 397 

curved surface and showed some imprecisions: they tend to slightly overestimate 398 

pressure values 
31

. However, the largest radius of curvature used in this study was 55 399 

mm whereas the approximated radius of curvature of the limbs in this study went from 400 

40 to 70 mm (for measurement points B1 and C). The influence of curvature on the 401 

pressure measured by Picopress, in the range of limb curvature, should be further 402 

investigated.  403 

Moreover, an on-going work aims to study the modification in the radius of curvature 404 

due to the sensor. Indeed, even though its thickness is very small, its 2 mL volume may 405 

induce a local variation in the radius of curvature, which may affect the local value of 406 

interface pressure. 407 

All bandages were applied by the same person in order to prevent large variations in the 408 

bandage application. However, it would have been interesting to evaluate the variation 409 

in the application between different bandagers. 410 

5 Conclusion  411 

This study aimed at an objective evaluation of the influence of bandage mechanical 412 

properties, application technique and subject morphology on the interface pressure 413 

applied on the lower leg by elastic compression bandages and the influence of these 414 

parameters on the stretch actually applied by the bandager. It has revealed a very strong 415 

correlation between the applied pressure and the bandage mechanical properties but also 416 

between the pressure and the application technique. In a previous study 
29

, H. Partsch 417 



has raised the question of the control of the application technique and our study 418 

corroborates this claim. A better control of the stretch and the application technique will 419 

lead to a better control of the pressure applied by compression bandages. This study also 420 

shows the limit of the Laplace’s law in explaining the level of interface pressure and 421 

raises some questions about parameters which have not been taken into account yet, 422 

such as the friction between the bandage layers. An interesting future direction will 423 

address dynamic measurements of the pressure applied by a single compression 424 

bandage or the superimposition of 2 compression bandages. These measurements could 425 

be performed on pathologic subjects.  426 
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