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To prove the conjecture, we consider for any even natural number 2n > 4, with n > 2, the …nite sequence of natural numbers S m (n) = (s i (n)) i2f1;2;:::;mg de…ned by: s i (n) = 2n p i , where p i is the ith prime number in the …nite strictly ordered sequence of primes

where m = (2n) denotes the number of primes p such that p < 2n. Using two stages of proof: the proof by contradiction and mathematical induction, we prove that, for any natural number n > 2, there exists at least one prime number s r (n) = 2n p r belonging to the sequence S m (n), which con…rms the result 2n = s r (n) + p r where p r is the r th prime number of the sequence P m . This result con…rms the validity of Goldbach's statement which expresses that: every even integer 2n 4, with n 2, is the sum of two primes.

1 A brief history and some results on the conjecture

Historically, from the reference [START_REF] Ribenboim | The little Book of Big Primes[END_REF], the conjecture dating from 1742 in a letter addressed to Euler from Goldbach expresses the following fact:

Any natural number n > 5 is the sum of three primes.

The mathematician Euler replied that this fact is equivalent to the following statement:

Every even integer 2n 4 is the sum of two primes.

Since then, three major approaches of attack to this famous conjecture emerged : "asymptotic study", "almost primes study" and …nally "basis".

The …rst result, obtained in the asymptotic case is due to Hardy and Littlewood in 1923 under the consideration of Riemann hypothesis. In 1937, Vingradov showed the same result without using this assumption.

Theorem 1 (asymptotic theorem). There exists a natural number n 0 such that every odd number n n 0 is the sum of three primes.

A natural number n = The approach via almost-primes consists in showing that there exist h; k 1 such that every su¢ ciently large even integer is in the set P h + P k of sums of integers of P h and P k . The …rst result in this line of study was obtained by Brun in 1919 by showing that: every su¢ ciently large even number is in P 9 + P 9 . In 1950, Selberg further improved the result by showing that every su¢ ciently large even integers is in P 2 + P 3 . The best result in this direction is due to Chen (announcement of results in 1966, proofs in detail in 1973 and 1978) proving that:

Every su¢ ciently large even integer may be written as 2n = p + m, where p is a prime and m 2 P 2

The result of this paper

To prove the conjecture, we consider for any even natural number 2n > 4, with n > 2, the …nite sequence of natural numbers S m (n) = (s i (n)) i2f1;2;:::;mg de…ned by: s i (n) = 2n p i where p i is the ith prime number in the …nite strictly ordered sequence of primes P m := p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p m where m = (2n) denotes the number of primes p such that p < 2n. Using two stages of proof: the proof by contradiction (or reductio ad absurdum) including the inductive proof or mathematical induction, we prove that: for any natural number n > 2, there exists at least one prime number s r (n) = 2n p r belonging to the sequence S m (n), which con…rms the result 2n = s r (n) + p r where p r is the r th prime number of the sequence P m . It is noted here that a solution of the equation 2n = p + q exists only if p is a prime number and also q = 2n p is a prime number and both p and q belong to the …nite sequence of primes P m . We give also an asymptotic estimation to con…rm the obtained result for a large natural number n.

Preliminary and theoretical elements essential to the paper

The set of natural numbers N := 1; 2; :::; n; :::, is well-ordered using the usual ordering relation denoted by , where any subset of N contains a least element (this fact is an axiom called the least integer principle). Another way to see the well-ordering of N is that any natural number n can be reached in …nite counting steps by ascent (adding 1) or descent (subtracting 1) from any other natural number m; there isn't an in…nite descent on natural numbers. This signi…cant characteristic property of the set of naturals numbers N is the key of almost results of properties of natural numbers.The concept of wellordering is of fundamental importance in view of the mathematical induction to proving, in two steps only, the validity of a property H (n) depending on natural number n. For the natural numbers a; b, we say a divides b, if there is a natural number q such that b = aq. In this case, we also say that b is divisible by a, or that a is divisor of b, or that a is a factor of b, or that b is a multiple of a. If a is not a divisor of b, then we write a -b. A natural number p > 1 is called prime if it is not divisible by any natural number other than 1 and p. Another way of saying this is that a natural number p > 1 is a prime if it cannot be written as the product p = t 1 t 2 of two smaller natural numbers t 1 ; t 2 not equal to 1. A natural number b > 1 that is not a prime is called composite. The number 1 is considered neither prime nor composite because the factors of 1 are redundant 1 = 1 1 = 1 1 ::::: 1. We shall denote by p 1 = 2 < p 2 = 3 < p 3 = 5 < p 4 = 7 < ::: < p i < :::

the in…nite increasing sequence of primes, where p i is the ith prime in this sequence. Euclid's theorem ensures that there are in…nitely many primes, without knowing their pattern and indication of how to determine the ith prime number. There is no regularity in the distribution of these primes on the chain (N; ); in certain situation they are twins, i.e., there exists a positive integer k such p k+1 = p k + 2, like p 2 = 3 and p 3 = 5, p 5 = 11 and p 6 = 13 (it is not known today whether there are in…nitely many twin primes), while at the same time, for any integer k 2, the sequence of successive k 1 natural numbers k!+2; k!+3; k!+4; :::; k!+k, are all composite, for the simple reason that, any term k! + t, for 2 t k; is divisible by t.

The fundamental theorem of arithmetics shows that any natural number n > 1 can be written as the product of primes uniquely up the order. For a natural number n 2, we denote by (n) the number of primes p n, ( (n) is called also the prime counting function, for example (4) = 2,

(5) = 3,...etc.). The fundamental theorem of primes (Tcheybeche¤ gave an empirical estimation around 1850, Hadamard and de Vallée-Poussin theoretical proof at the end of 19 th century) shows that, for any large natural number n, we have (n) n ln n and then p n n ln n where ln denotes the natural logarithm of base e = 2; 71:::. Finally, Bertrand's postulate (1845) provides that between any natural number n 2 and its double 2n there exists at least one prime. Equivalently, this may be stated as (2n)

(n) 1, for n 2, or also in compact form: p n+1 < p n for n 1. The following result from [START_REF] Bach | Algorithmic number theory, vol I: E¢ cient algorithms[END_REF] is useful for this paper to estimate some obtained results for a large natural number n : The prime sums of the …rst n primes, denoted P (n), is asymptotically equal to 1 2 n 2 ln n, i.e.,

P (n) = n P i=1 p i 1 
2 n 2 ln n. Finally, the proof by contradiction and the inductive proof can be stated as follows. Proving by so called proof by contradiction or reduction to absurdum, the validity of the property H, consists in assuming that the hypothesis H is false, which is then logically equivalent to (not H) is true and derived from this, by rules of logic, a false statement or contradiction c of the form c = (nonR) ^R, this result con…rms that the hypothesis H is not false, i.e., non(non H) is true, we deduce then that H must be true(the absurdity or non sense or contradiction follows by the assumption that H is false). The mathematical induction is just pattern of the direct proof based on the well-ordering of the set of natural numbers N. Proving the statement H (n) depending on the natural number n, consists to verify in the …rst step, the validity of the statement H for certain element n 0 2 N, this step is called the base case of induction. And in the second step, assuming the validity of the statement H (n) for n 2 N, (called the inductive hypothesis), then prove directly the truth of H (n + 1) (this is the inductive case), we can conclude then, based on the well-ordering of N, the truth of the statement H (n) for all n n 0 .

3 The construction and analysis of the sequence S m (n)

Prior to constructing and analysing the sequence S m (n), we begin by these simple lemmas in view of their usefulness for the rest of the paper.

Lemma 2 If the odd integer t > 1 is not prime, then it can be factorised only in the form t = t 1 t 2 where t 1 , t 2 are proper factors 6 = 1, and each factor t 1 and t 2 , it is also an odd natural number greater or equal to the number 3.

Proof. By de…nition of prime, if the integer t > 1 is not prime, then it is composite. Let t = t 1 t 2 be any possible factorization of t with t 1 , t 2 are the proper factors 6 = 1. If one of these factors (or both) is an even integer then the product t 1 t 2 = t will be also an even integer, but the number t is odd.

Then each of the factors t 1 and t 2 must be odd and then greater or equal to the number 3. Let m 1 be natural number, we denote by I m = f1; 2; :::; mg the …nite m-sequence of consecutive natural numbers from 1 to m. In this paper, the word m-sequence designates any sequence of m natural numbers. 

> i > 2, a 1 = b 1 , a 2 = b 2 ;...,a i = b i . For i + 1, if a i+1 < b i+1
, then there exists no b j for j i + 1 such that a i+1 = b j and there exists no b j for j i because

a i+1 > a i = b i > a i 1 = b i 1 > ::: > a 1 = b 1 , a contradiction. The same argument holds if b i+1 < a i+1 , then it is necessary that we have a i+1 = b i+1 . Consequently, for each i 2 I m : a i = b i .
Note that the condition "a i = b j " for some i; j 2 I m ", in the lemma 4 above, is necessary and su¢ cient condition. It is necessary because we can exhibit two increasing m sequences a = (a 1 < a 2 ::

: < a m ), b = (b 1 < b 2 < ::: < b m ) with m P i=1 a i = m P i=1 b i but a i 6 = b i for all i 2 I m , for example, a = (2 < 10) and b = (4 < 8).
Let n 2 be a natural number, we consider the …nite strictly increasing sequence of prime numbers p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p i ::: < p m where m = (2n) denotes the number of primes p < 2n. Let P m = (p i ) i2Im denote this …nite successive primes strictly less than 2n. The Bertrand postulat asserts that at least the prime p m is between n and its double 2n. For any natural number n > 2, we consider the …nite sequence S m (n) = (s i (n)) i2Im of natural numbers de…ned by: s i (n) = 2n p i where p i is the ith prime of P m . Then we have: 

s 1 (n) = 2n 2, s 2 (n) = 2n 3, s 3 (n) = 2n 5, . . . s i (n) = 2n p i , . . . s m (n) = 2n p m .
(n) = (s i (n)) i2Im de…ned by s i (n) = 2n p i , with 1 i m, is strictly decreasing from s 1 (n) = 2n 2 = max (S m (n)) to s m (n) = 2n p m = min (S m (n))
1, and each element s i (n) of this sequence is an odd natural number except the …rst term s 1 (n) = 2n 2 that is evidently an even number. The last term s m (n) is equal to 1 only in the case when p m = 2n 1.

Proof. Let n > 2 be a natural number with m = (2n). Since the …nite sequence of primes p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p i < ::: < p m is strictly increasing, and each term s i (n) is de…ned by 2n p i , the sequence S m (n) is strictly decreasing from s 1 (n) to s m (n). In fact, we have p i+1 > p i for 1 i m 1 and then s i (n) = 2n p i > s i+1 (n) = 2n p i+1 . this shows that we have:

s 1 (n) = 2n p 1 = 2n 2 > s 2 (n) = 2n p 2 = 2n 3 > s 3 (n) = 2n p 3 = 2n 5 > :::s i (n) = 2n p i > s i+1 (n) = 2n p i+1 > ::::: > s m (n) = 2n p m 1.
Since for all i, with 2 i m, the prime p i is odd, then also the term s i (n) = 2n p i is odd. The …rst term s 1 (n) = 2n 2 is the unique even number in the sequence S m (n). The last term s m (n) = 2n p m = min (S m (n)) can be equal to the number 1 if and only if p m = 2n 1. In fact, if p m = 2n 1 then s m (n) = 2n p m = 2n (2n 1) = 1. In the reverse case, we have 8p 2 P m , p < 2n and then 2n p > 0 () 2n p 1 and we have 2n p = 1 only in the case when p = 2n 1 = p m . In example 5, we have this situation, as 

(n) = (s i (n)) i2Im de…ned by s i (n) = 2n p i , with 1 i m, contains at least one prime s r 2 P m \ S m (n).
Proof. For any natural number n > 2, let S m (n) = (s i (n)) i2Im be the …nite sequence of natural numbers as de…ned in section 3 above. The proof is by contradiction, and so we begin by assuming that the following hypothesis H (n) is true for some natural number n > 2.

The hypothesis H (n):

"There exists a natural number n > 2, such that each term s i (n) 2 S m (n), for any i 2 I m , it is not a prime number". This is equivalent to: "there exists a natural number n > 2, such that: each term s i (n) 2 S m (n), for any i 2 I m , is a composite number or equal to the natural number 1".

Symbolically the hypothsis H (n) can be written as "9 (n > 2) 2 N; 8 i 2 f1; 2; 3; :::mg: the term s i (n) is not a prime number" But, the unique term s i (n) of S m (n), which can be equal to the number 1 is, the last term s m (n) = 2n p m in the case when p m = 2n 1 (see Lemma 6). The last term s m (n) = 2n p m is the unique term of the sequence S m (n), which is neither prime nor a composite number in the case when p m = 2n 1, i.e., in the case when s m (n) = 1.

To contradict or reject the hypothesis H (n) for all n > 2, (in symbolic terms this contradiction is written: 8 (n > 2)2 N; 9i 2 f1; 2; 3; :::mg such that s i (n) is a prime number), we compute the sum of the terms of the sequence S m (n) in two di¤erent ways: In the …rst way, we compute the sum m P i=1 s i (n) without any hypothesis, which represents the sum of the e¤ective values of the terms. In the second way, we compute the sum m P i=1 s i (n), where each term s i (n) 6 = 1 of S m (n) is supposed to be a composite natural number, under the hypothesis H (n), for all n > 2.

In the …rst way:

Sumrel (n) = m X i=1 s i (n) = m X i=1 (2n p i )
Where, Sumrel (n) represents the sum of the terms s i (n) without the hypothesis H (n), which it is the sum of e¤ective values of the terms for n > 2.

In the second way:

Sumhyp (n) = m X i=1 s i (n)
Where, Sumhyp (n) represents the sum of the terms under the hypothesis H (n), for n > 2, with each term s i (n) > 1 it is to be assumed a composite number for all i 2 I m or i 2 I m 1 in the case when s m (n) = 2n p m = 1. In the …rst way, we have: This positive integer value represents, for n > 2, the e¤ective value of sum of all the terms of the sequence S m (n) with m = (2n). Evidently m and then Sumrel (n) are depending on the natural number n > 2, when n run over N. In the second way, from the lemma 6, all the terms of sequence S m (n) are odd numbers except the …rst s 1 (n) = (2n 2). Since, under the hypothesis H (n), each term s i (n) 6 = 1 it is supposed to be a composite number, we consider then the possible factorization of each term s i (n) as the following form:

Sumrel (n) = m P i=1 s i (n) = m P i=1 (2n p i ) = = ( 2n 
s i (n) = (under H(n)) p 0 i (n) q i (n)
such that p 0 i (n) is the least prime number dividing s i (n), the existence of this prime factor it is assured by the fundamental theorem of arithmetic or it su¢ ces to see the Lemma 3, and q i (n) is the other proper factor. According to Lemmas 2 and 6, the factors p 0 i (n), q i (n) are odd 3, for all i 2 f2; :::; mg in the case when p m 6 = 2n 1, and for all i 2 f2; :::; m 1g in the case when p m = 2n 1 (because in this case, we have s m = 2n p m = 2n (2n 1) = 1). The term s 1 (n) = 2n 2 = 2(n 1) is the only natural even number of the sequence S m (n), and it is evidently a composite number. Since s i (n) = 2n p i > 2n p i+1 = s i+1 (n), we have also

p 0 i (n) q i (n) > p 0 i+1 (n) q i+1 (n)
for all i 2 f2; :::; m 1g if the above factorisation exists.

Two cases are to be considered for Sumhyp

(n) = m P i=1 s i (n),
depending on whether p m 6 = 2n 1 (in this case s m (n) = 2n p m 3 it is also a composite number) or, p m = 2n 1 (in this case s m (n) = 2n p m = 1 it is neither prime nor a composite number).

1 st case : if p m 6 = 2n 1, then each term s i (n) is to a composite number, in view of H (n), and we have:

Sumhyp (n) = m P i=1 s i (n) = s 1 (n) + m P i=2 s i (n) = (2n 2) + m P i=2 p 0 i (n) q i (n).
2 nd case : if p m = 2n 1, we have s m (n) = 2n p m = 2n (2n 1) = 1, thus we have:

Sumhyp (n) = m P i=1 s i (n) = s 1 (n) + m 1 P i=2 s i (n) + s m (n) = (2n 2) + m 1 P i=2 p 0 i (n) q i (n) + 1.
Since any term s i (n) is between the numbers 1 and 2n 2, we then have :

T prim (n) = n p 0 2 (n) ; p 0 3 (n) ; :::p 0 m (n) o P m
In the same case, for the proper factors q i (n), we must have:

T f act (n) = fq 2 (n) ; q 3 (n) :::; q m (n)g with 3 q i (n) < 2n 2, 8i 2 
f2; 3; :::; mg (according to the hyp. H (n) and Lemmas 2 and 6).

Our objective is to prove that, under the hypothesis H (n), we will have for any natural number n > 2 :

Sumhyp (n) > Sumrel (n)
in the cases 1 and 2 cited above. The inequality Sumhyp (n) > Sumrel (n) can be written Symbollicaly in cases 1 and 2 as the following forms:

1 st case : (2n 2) + m X i=2 p 0 i (n) q i (n) > 2nm m X i=1 p i 2 nd case : (2n 2) + m 1 X i=2 p 0 i (n) q i (n) + 1 > 2nm m X i=1 p i
Note that, the …rst even term s 1 (n) = 2n p 1 = 2n 2 = 2 (n 1) is written separately in the sum of Sumhyp (n), because the objective of this method is to show that there is at least one odd prime number in the sequence S m (n) for all m = (2n) with n > 2.

It is noted here that the set of all (m 1) sequences S (n) = (s i (n)) i2f;2;3;:::mg of (m 1) terms with s i (n) = p 0 i (n) q i (n) as de…ned above, can be ordered using usual ordering on N extended to the cross-product of (m 1) copies of N. This ordering is de…ned by: For S (n) = (s i (n)) i2f;2;3;:::mg , S 0 (n) = (s 0 i (n)) i2f;2;3;:::mg , we note by

S (n) S 0 (n) if s i (n)
s 0 i (n) for all i 2 f; 2; 3; :::mg. Evidently, the ordering is re ‡exive, transtive and for the antisymmetry we have: if

S (n) S 0 (n) and S 0 (n) S (n) then s i (n) = p 0 i (n) q i (n) = s 0 i (n) = p 00 i (n) q 0 i (n) and we have p 0 i (n) = p 00 i (n) and q i (n) = q 0 i (n) because p 0 i (n), p 00 i (n) are the smallest primes divisor of the same natural number s i (n) = s 0 i (n)
which is an unic prime, and then also we must have q i (n) = q 0 i (n). It is noted here that the ordering relation is compatible with the operation + of natural numbers, and if S 0 (n) S (n) then P S 0 (n) P S (n). The least strictly increasing (m 1)-sequence T 3m = (t i ) i2Im of composite odd natural numbers.

To show that the inequalties in 1 st case and 2 nd case are always satis…ed for any natural number n > 2, we exhibit an explicite strictly increasing sequence of m natural numbers T 3m = (t i ) i2f1;2;3;:::mg de…ned by: t 1 = 2n 2 and each term t i = t i1 t i2 is a composite odd natural number for 2 i m with t i1 , t i2 are greater or equal to the number 3. This sequence must possess the property that is the least increasing sequence of m odd composite natural numbers and having the smallest sum compared with any other …nite sequence S m (n) = (s i (n)) i2f1;2;3;:::mg of m terms with s i (n) = p 0 i (n) q i (n) as de…ned above. In others words, the …nite sequence T 3m = (t i ) i2f1;2;3;:::mg satis…es the hypothesis H (n) and the condition:

(2n 2) + m P i=2 t i (2n 2) + m P i=2 p 0 i (n) q i (n) in the 1 st case, or (2n 2) + m 1 P i=2 t i + 1 (2n 2) + m 1 P i=2 p 0 i (n) q i (n) + 1 in the 2 nd case
for any other sequence S m (n) = (s i (n)) i2Im as de…ned above and satis…es the hypothesis H (n). The sequence T 3m = (t i ) i2Im can be de…ned by: t 1 = 2n 2, t i = t i1 t i2 = 3 (2 (i 1) + 1) with t i1 = 3 and t i2 = 2 (i 1) + 1 for any i 2 fm; :::; 2g.

The last term t m is equal to 3 3 or 1 depending on respectively to the cases 1 st case or 2 nd case.

In fact, since for any i 2 f2; :::; mg we have p 0 i (n) 2 fp 2 ; p 3 ; :::; p m g it su¢ ces to take: t i1 = 3 = min fp 2 = 3; p 3 = 5; :::; p m g, and to have

t i = 3 t i2 < 3 t (i+1)2 = t i+1 , t i2 < t (i+1)2
, for all 2 i m 1, with t i2 , t (i+1)2 the smallest odd natural numbers greater or equal to the number 3, it su¢ ces to take for the second's terms t i2 the …rst (m 1) consecutive odd natural numbers : t 22 = 3 < t 32 = 5 < t 42 = 7 < t 52 = 9 < :::: < t m2 = (2 (m 1) + 1), i.e., the sequence T 3m is de…ned by : t 1 = 2n 2, and for m i 2 we have : t 2 = 3 3 < t 3 = 3 5 < t 4 = 3 7 < t 5 = 3 9:::: < t m = 3 (2 (m 1) + 1). note that, for the simplicity only, we have written the sequence T 3m in increasing order from i 2. For example for n = 3 we have m = (6) = jfp 1 ; p 2 ; p 3 gj = 3 and then the sequence T 33 = (t i ) i2I 3 is (6 2 = 4; 3 3; 3 5). The sequence T 3m as de…ned above satis…es the hypothesis H (n) in the sense that any term of the sequence is a composite odd natural number greater than or equal to the number 3, except the …rst, that is a composite even number.

To con…rm that we have:

Sumhyp (n) m P i=1 t i for any n 3.
We recall …rst that we have:

s i (n) = 2n p i > 2n p i+1 = s i+1 (n), and then: s i (n) = p 0 i (n) q i (n) > p 0 i+1 (n) q i+1 (n) = s i+1 (n)
for all i 2 f2; :::; m 1g under the hypothesis H (n) where p 0 i (n) and q i (n) are odd natural numbers 3. We have:

Sumhyp (n) = (2n 2) + m P i=2 p 0 i (n) q i (n) (2n 2) + m P i=2 3 q i (n) (2n 2) + m P i=2 3 (2 (i 1) + 1) = m P i=1 t i .
In fact, since for all 2 i m, p 0 i (n) 2 fp 2 ; p 3 ; :::; p m g, we have: p 0 i (n) t i1 = 3 = min fp 2 = 3; p 3 = 5; :::; p m g and since 3 q i (n) > 3 q i+1 (n) for all i 2 f2; 3; :::m 1g, then q i (n) > q i+1 (n) 3 for all i 2 f2; 3; :::m 1g, i.e.,

q 2 (n) > q 3 (n) ::: > q m 1 (n) > q m (n) 3
where each q i (n) 3, is an odd term, and consequently

m P i=2 3 q i (n) m P i=2
3 t i2 because t i2 belongs to the …rst (m 1) consecutive odd natural numbers: 3 < 5 < 7 < 9 < 11:::: < (2 (m 1) + 1), which are the smallest, on the sum of terms, among any other (m 1) increasing sequence of odd natural numbers greater than or equal to the number 3. Thus, the sequence T 3m possesses the property that is the smallest, in sum of terms, among any other increasing m-sequence T m = (t i ) i2f1;2;3;:::mg , of composite odd natural numbers greater than or equal to the number 3, except the …rst term is even de…ned by t 1 = 2n 2 and not concerned with the growth or the increasing with the other terms, i.e, the sequence T m is increasing sequence for i belonging to (m 1) i 2. Note that also there is an in…nite chain of increasing (m 1) sequences of odd composite natural numbers T pm = (p t j2 ) j2f2;:::;mg where p is an odd prime number and t j2 is taken from the …rst (m 1) consecutive odd natural numbers 3, i.e., t j2 2 f3; 5; 7; 9; 11; ::::; (2 (m 1) + 1)g. We have for example for p 3 = 5 : T 5m = f5 3 < 5 5 < :::: < 5 (2 (m 1) + 1)g with P T 5m = 5 m P i=2 t i2 , and for p 4 = 7 :

T 7m = f7 3 < 7 5 < ::: < 7 (2 (m 1) + 1)g with P T 7m = 7 m P i=2 t i2 and so on forever. Evidently we have T 3m < T 5m < T 7m < :::; in the sens that P T 3m < P T 5m < P T 7m . Note that if we consider the set of increasing (m 1) sequences of the form (kt j2 ) j2f2;:::;mg with k 2 N : k 3 < k 5 < ::: < k (2 (m 1) + 1), the smallest is T 1m = f3 < 5 < :::: < (2 (m 1) + 1)g, and the second is T 2m = f2 3 < 2 5 < :::: < 2 (2 (m 1) + 1)g. In this case we have: T 1m < T 2m < T 3m < T 4m < T 5m < T 6m < T 7m < :::. We compute in …rst the sum m P i=1 t i (n) in the cases 1 st case and 2 nd case.

In the 1 rt case, i.e., when t m 6 = 1, we have: In the second case 2 nd case , i.e, in the case when t m = 1 , we have: 

m P i=1 t i = t 1 + m P i=2 t i = ( 2n 
m P i=1 t i (n) = t 1 (n) + m 1 P i=2 t i + t m = (2n 2) + 3
(n) = (s i (n)) i2Im as s i (n) = (under H(n)) p 0 i (n) q i (n), with the factors p 0 i (n), q i (n) are odd natural
Recall that we have two cases to consider at step n + 1.

-If the prime p m+1 6 = 2n + 1, in this case p m+1 > 2n + 2 and consequently we have (2n) = (2n + 2) = m, this shows that we are in the 1 st case with s m (n + 1) = 2 (n + 1) p m 3 because p m < 2n, and consequently the sequence S at the step n + 1 will have also m terms, -If the prime p m+1 = 2n + 1, in this case (2n + 2) = m + 1, this shows that there are m + 1 terms with s m+1 (n + 1) = 1. We start with the second case for simplicity: At the step n + 1, in the 2 nd case, On the one hand, we have:

Sumrel (n + 1) = m+1 P i=1 s i (n + 1) = m P i=1 (2 (n + 1) p i ) + s m+1 (n + 1) = m P i=1 ((2n p i ) + 2) + 1 = m P i=1 (2n p i ) + 2m + 1 = Sumrel (n) + 2m + 1.
On the other hand, 

Sumrel (n + 1) = Sumrel (n) + 2m + 1 < m+1 P i=1 t i (n + 1) = m P i=1 t i (n) + (6m 3).
We conclude that the condition is satis…ed at step n + 1.

For the 1 st case, if the prime p m+1 6 = 2n + 1, then p m+1 > 2n + 2, and consequently, (2n) = (2n + 2) = m.

On the one hand, we have:

Sumrel (n + 1) = m P i=1 (2 (n + 1) p i ) = m P i=1 ((2n p i ) + 2) = m P i=1 (2n p i ) + 2m = Sumrel (n) + 2m.
On the other hand, If the case (a) is true we have done, i.e., the case is satis…ed. For the case (b), suppose that we have The left side of any above equation is an odd natural number and its right side is an even number and then the impossibility, follows for example the last equation we have : 2 (n + 1) 3 = 2 (2 (m 1) + 1) () 2n + 2 3 = 4m 4 + 2 () 2n = 4m 1 () 2m = n + 1 2 which is impossible in N. Then the only case which remain is

m P i=1 t i (n + 1) = m P i=1 t i (n + 1) = (2 (n + 1) 2) + 3 (m + 1) (m 1) = (2n + 2 2) + 3 (m + 1) (m 1) = (( 2n 
Sumrel (n + 1) = m P i=1 t i (n + 1) () m P i=1 (2 (n + 1) p i ) = m P i=1 t i (n + 1) = (2(n + 1) 2) + m P i=2 3 (2 (i 1) + 1) () m P i=2 (2 (n + 1) p i ) = m P i=2 3 
Sumrel (n + 1) = m P i=1 (2 (n + 1) p i ) = (2 (n + 1) 2) + m P i=2 (2 (n + 1) p i ) < (2 (n + 1) 2) + P T 2m () m P i=2 (2 (n + 1) p i ) < P T 2m = m P i=2 2 t i2 = m P i=2 2 (2 (i 1)+1) = 2 (m + 1) (m 1).
Then we have:

m X i=2 (2 (n + 1) p i ) < 2 (m + 1) (m 1) 20 
Consequently, in the case when p m+1 6 = 2n + 1, we have In conclusion, in any cases we have : Sumrel (n) < p 0 i (n) q i (n), with p 0 i (n), q i (n) are greater or equal to the number 3 under H (n) cannot exists in the set of natural numbers N, and then the refutation of the hypothesis H (n) for any n 3. Consequently, for each n 3, there exists at least one r 2 f2; 3; :::; mg such that the odd term s r (n) = p 0 r (n) q r (n) have inevitably the factor q r (n) < 3 (because the least prime factor p 0 r (n) exists and it is greater or equal to the number 3 since s r (n) is an odd term), and since also the factor q r (n) cannot be even with the same reason, then necessarily the factor q r (n) must be equal to the natural number 1. Then, we must have: s r (n) = p 2 + 1 2 n 2 ln n = 8n 2 (ln 2n) 2 + 1 2 n 2 ln n = f (n). We have:

f (n) h(n) = 8n 2
(ln 2n) .

We have:

lim n!1 f (n) h(n)
= 1 and this result con…rm that we have also h (n) f (n) for a large n 2 N.

  i (where each p i is a prime) is called a kalmost prime when r P i=1 e i = k; the set of k-almost primes is denoted by P k .

Lemma 3

 3 Any natural number b 6 = 1 admits a prime divisor. If b is not prime, then there exists a prime p divisor of b such that p 2 b.Proof. By the de…nition of prime number, if the natural number b 6 = 1 admits only the number b as proper divisor, then b is a prime number. If b is not prime, then it can be factored as b = pq such that: 1 < p < b and 1 < q < b with p is the smallest, under the usual ordering , proper factor of the number b. Since p is the smallest proper factor of b then p must be a prime otherwise, it is not then the least factor of b. As p is the least factor of b then, p q. Multiplying both sides by p, we obtain: pp = p 2 pq = b.

Lemma 4

 4 Let m 1 be a natural number. Let a = (a 1 < a 2 ::: < a m ), b = (b 1 < b 2 < ::: < b m ) be two strictly an increasing m-sequences of natural numbers such that for each i 2 I m there exists j 2 I m such that a i = b j . Then we have for each i 2 I m : a i = b i . Proof. By induction on i 2 I m . For i = 1, if a 1 < b 1 then a 1 < b 1 < b 2 ::: < b m , and we have a 1 = 2 b = (b i ) i2Im , a contradiction. For the same reason, if b 1 < a 1 , we obtain b 1 = 2 a = (b i ) i2Im and then it necessary that a 1 = b 1 . Suppose that we have for some i with m

Example 5 Lemma 6

 56 For n = 10, the …nite sequence of primes less than 20 is p 1 = 2 < p 2 = 3 < p 3 = 5 < p 4 = 7 < p 5 = 11 < p 6 = 13 < p 7 = 17 < p 8 = 19. Consequently (20) = 8 and then the sequence S 8 (n) = S 8 (10) = (s i (10)) i2f1;2;:::;8g is: s 1 (10) = 20 2 = 18, s 2 (10) = 20 3 = 17, s 3 (10) = 20 5 = 15, s 4 (10) = 20 7 = 13, s 5 (10) = 20 11 = 9, s 6 (10) = 20 13 = 7, s 7 (10) = 20 17 = 3, s 8 (10) = 20 19 = 1. For the natural number n > 2 with m = (2n), the …nite sequence of natural numbers S m

p 8 =Theorem 7

 87 19 then s 8 (10) = 20 19 = 1. 4 Existence of prime in the sequence S m (n) = (s i (n)) i2I m , for any natural number n > 2 with m = (2n) For any natural number n > 2 with m = (2n), the …nite sequence of natural numbers S m

  2) + (2n 3) + ::: + (2n p i ) + ::: + (2n p m ) = (2n + 2n + ::: + 2n) (2 + 3 + ::: + p i + ::: + p m )

1 . 3 .

 13 ) + 3 (3 + 5 + :::+ (2(m 2) + 1)) + 1 = (2n 2) + 3 (2(m 2)+4)(mOur objective is to show that with this least …nite sequence T 3m = (t i ) i2Im , we will have Sumrel (n) = 2nm n), for any natural number n And since T 3m is the least sequence satisfying the hypothesis H (n), we con…rm that the factorisation of each term of S m

3 .

 3 Since we have Sumrel (n) < m P i=1 t i (n) at step n, and we have 2m+1 < 6m 3 for m 2, then

  n + 1) p i ) can not exceed twice the sum of the …rst (m 1) consecutive odd numbers i.e., n + 1) p i ) < 2 (m + 1) (m 1).

  n). Since we have isolated the …rst term s 1 (n) and the last term s m (n) (in the case when s m (n) = 1), from our comparison, the above result con…rms that the factorisation of each term of S m (n) = (s i (n)) i2Im as s i (n) =(under H(n))

rExample 8 Example 9 1 2 n 2

 8912 (n) 2 fp 2 = 3; p 3 = 5; :::; p m g P m . Thus, we obtain for each n > 2, an odd prime number s r (n) claimed by the theorem. For n = 5, the …nite sequence of primes less than 10 is p 1 = 2 < p 2 = 3 < p 3 = 5 < p 4 = 7, consequently m = (10) = 4. The sequence S 4 (5) = (s i (5)) i2f1;2;:::;4g is: s 1 (5) = 10 2 = 8, s 2 (5) = 10 3 = 7, s 3 (5) = 10 5 = 5 and s 4 (5) = 10 7 = 3. We have 4 P i=2 s i (5) = 7 + 5 + 3 = 15 and we have 2 (m + 1) (m 1) = 2 (4 + 1) (5 1) = 5 3 = 30. For n = 14, the …nite sequence of primes less than 28 is: p 1 = 2 < p 2 = 3 < p 3 = 5 < p 4 = 7 < p 5 = 11 < p 6 = 13 < p 7 = 17 < p 8 = 19 and , p 9 = 23, consequently m = (28) = 9. The sequence S 9 (14) = (s i (14)) i2f1;2;:::;9g is: s 1 (14) = 28 2 = 26; s 2 (14) = 28 3 = 25, s 3 (14) = 28 5 = 23; s 4 (14) = 28 7 = 21; s 5 (14) = 28 11 = 17; s 6 (14) = 28 13 = 15; s 7 (14) = 28 17 = 11; s 8 (14) = 28 19 = 9; and To con…rm for a large n the result obtained in the theorem 7, we use only the following asymptotic result: (n) ln n. The result obtained in the theorem 7, states that we have: m P i=2 (2n p i ) < 2 (m + 1) (m 1) () number n 2 N, 2n (m 1) (2n) 2n ln 2n = 4n 2 ln 2n = h (n), and 2 (m + 1) (m 1) +

  2 + 1 2 n 2 ln n

	ln 2n 4n 2	= 8n 2 ln 2n 4n 2 (ln 2n) 2 +	1 2 n 2 ln n ln 2n 4n 2	=	2 ln 2n + ln 2n 2 8
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numbers 3 for all i 2 f2; :::; mg under H (n),cannot exist and then the refutation of H (n) for all n 3.

Since the quantities Sumrel (n) and m P i=1 t i are natural numbers depending on the natural variable n, we can then proceed by induction for n 3 to verify that Sumrel (n)

Veri…cation for the integer n = 3. On the one hand, we have 2n = 6 and then: m = (2n) = (6) = jfp 1 ; p 2 ; p 3 gj = jf2; 3; 5gj = 3 with On the other hand, since p 4 = 2 n 1 = 2 4 1 = 7, then the 2 nd case which will be used to compute

But we have:

with the condition that for each i 2 f2; 3; :::mg there exists j 2 f2; 3; :::mg such that: 2 (n + 1) p i = 3 (2 (j 1) + 1) (note that this condition is prescribed by the hypothesis H (n)).

Using the Lemma 4, we must have that the i-th element of the …rst sequence equal to the i-th element of the second sequence for any i 2 f2; :::; mg, then: Then 3 is a divisor of 2 (n + 1) p i for i 2 f2; 3; :::; mg. Taking, for example, the last two equations, we have:

Consequently, the second case (b) is impossible.

For the case (c):

we compare Sumrel (n + 1) with the second element of the hierarchy P T 3m < P T 5m < P T 7m , i.e., with P T 5m . On the one hand, Sumrel (n + 1) = Sumrel (n) + 2m, on the other hand, Proof. If n = 2 then, 4 = 2 + 2. If n > 2, we consider the …nite sequence of primes P m := (p 1 = 2 < p 2 = 3 < :::: < p m ) with m = (2n) and let S m (n) = (s i (n)) i2Im be the …nite sequence of natural numbers de…ned by s i (n) = 2n p i , where p i is i th prime of P m . From Theorem 7 there exists at least one prime number s r (n) 2 S m (n). As we have s r (n) = 2n p r with p r is the r-th prime number of sequence P m , we have s = s r (n) = 2n p r and consequently 2n = p r + s. It follows that Goldbach's conjecture is e¤ectively a theorem of number theory.

As consequence of this results, given an even natural number 2n 4 with n 2, to …nd the pair of primes numbers (p; s) such that 2n = p+s, it su¢ ces that the algorithm runs through the …nite sequence S m (n) = (s i (n)) i2Im , which contains, at least one solution claimed.

Corollary 11 Let n 2 be a natural number and let be: p 1 = 2 < p 2 = 3 < p 3 = 5 < ::: < p i ::: < p m the …nite sequence primes such that m = (2n). We have: gcd (2n p 1 ; 2n p 2 ; :::; 2n p m ) = 1.

Proof. From Lemma 6, we have 2n p m = 1 or 2n p m 3. If 2n p m = 1, evidently we have gcd (2n p 1 ; 2n p 2 ; :::; 2n p m ) = 1. If 2n p m 3, we have from the theorem 7, m P i=2 (2n p i ) < 2 m P i=2 t i2 , this result shows that there is not any common divisor of (2n p 1 ; 2n p 2 ; :::; 2n p m ) greater than or equal to the number 2 and consequently: gcd (2n p 1 ; 2n p 2 ; :::; 2n p m ) = 1.

Asymptotic estimation.

Recall that the notation f (x) h (x) for positive real-valued continuous functions f (x), h (x), means that lim x!1 f (x) h(x) = 1, and in this case f (x), h (x) are said to be asymptotically equal as x tends to in…nity.