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We consider the kinetics of first contact between two monomers of the same macromolecule.
Relying on a fractal description of the macromolecule, we develop an analytical method to compute
the Mean First Contact Time (MFCT) for various molecular sizes. In our theoretical description, the
non-Markovian feature of monomer motion, arising from the interactions with the other monomers,
is captured by accounting for the non-equilibrium conformations of the macromolecule at the very
instant of first contact. This analysis reveals a simple scaling relation for the MFCT between
two monomers, which involves only their equilibrium distance and the spectral dimension of the
macromolecule, independently of its microscopic details. Our theoretical predictions are in excellent
agreement with numerical stochastic simulations.

PACS numbers: 82.35.Lr,05.40.-a,36.20.Ey,82.20.Uv

Introduction. Intramolecular reactions are ubiquitous
in nature. Examples are provided by the formation
of RNA hairpins [1] or DNA loops [2], the folding of
polypeptides [3], as well as the appearance of cycles in
synthetic polymers [4]. It is generally known that the
structure of a macromolecule has a strong influence on
the dynamics of its monomers [5, 6], and that this com-
plex intramolecular dynamics implies nontrivial reaction
kinetics [7] in the diffusion limited regime. Until now,
most of the theoretical work devoted to the reaction
times in macromolecules has been limited mainly to lin-
ear chains [7–16]. However, there are numerous exam-
ples of macromolecules which differ from linear polymer
chains [17, 18]; their dynamic and static properties often
suggest a fractal character [6, 18, 19]. In particular, the
dynamics of fractal macromolecules is characterized by
dynamical exponents that are different from those of lin-
ear chains [6, 19–21], leading presumably to distinct first
contact kinetics that cannot be deduced from existing
works on linear chains. It is important to note the sig-
nificance of fractals: They provide typical models, e.g.,
for hyperbranched polymers [6], proteins [21, 22], sol-gel
branched clusters [23], and colloidal aggregates [24].

The aim of this Letter is to propose a theoretical de-
scription of the mean first contact time (MFCT) between
two monomers in a fractal macromolecule, described as a
network of beads connected by springs. The cornerstone
feature of such fractal models is the anomalous vibra-
tional dynamics of the network [6, 20, 21]. It originates
from the non-Debye density of states which is character-
ized through the so-called spectral dimension ds [25] (also
known as ”fracton” dimension [26]). In this Letter, we
go beyond existing studies that focused on the specific
case of linear chains only [7–16], and show on general
grounds that ds (rather than the microscopic properties
of the macromolecule) is the key parameter that controls
intramolecular reaction kinetics. Indeed, the spectral di-
mension ds will be shown to leave its fingerprint in the

(a)

(b) (c)

FIG. 1. (color online) Structure of fractal macromolecules
investigated in this Letter: (a) Vicsek fractal, here of func-
tionality (i.e. number of nearest-neighbors of the branching
sites) f = 4 (VF4), (b) dual Sierpiński gasket (DSG), (c)
T−fractal (TF). The reactive monomers for which we com-
pute the MFCT are represented by red squares. These ex-
tended conformations show only the topology of the struc-
tures.

scaling behavior of MFCTs with the equilibrium distance
between monomers, as will be confirmed by explicit com-
putations on examples of fractal structures (see Fig. 1).

It is important to stress that in the case of macro-
molecules, the interactions between monomers lead to
an effective non-Markovian motion, which is the hall-
mark of monomer dynamics [27]. In this Letter, we take
into account such non-Markovian features and describe
the contact kinetics for fractal structures. We show ex-
plicitly that the non-Markovian effects increase with the
complexity and the degree of branching of the macro-
molecules.

Model. The macromolecular structures are represented
by N beads located at positions ri(t) in a 3-dimensional
space and connected by springs of stiffness K. The

http://arxiv.org/abs/1510.07576v1
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free-draining dynamics of the structure is given by the
Langevin equations [5, 6]:

ζ
∂

∂t
ri(t) +K

N
∑

j=1

Aijrj(t) = Fi(t), (1)

where A = (Akj) is the connectivity (Laplacian) matrix
that describes the topology of the structure. The off-
diagonal elements Aij are equal to −1 if beads i and j are
connected, and 0 otherwise. For each bead i, the diagonal
element Aii is equal to the number of bonds emanating
from it. Also Eq. (A3) includes friction forces −ζ∂tri
and stochastic forces Fi(t) obeying white noise statistics
with amplitude 〈Fiα(t)Fjβ(t′)〉 = 2kBTζδ(t − t′)δijδαβ ,
where kBT represents the thermal energy and α, β are
spatial coordinates x, y, z. It is natural to introduce the
monomeric relaxation time τ0 = ζ/K, and the charac-
teristic microscopic length l = (3kBT/K)1/2 (in the case
of structures without loops l2 is the mean-squared bond
length).
Here we consider the contact kinetics between two

given monomers denoted ”reactive monomers”, whose in-
dexes are called q1 and q2 (see Fig. 1). We introduce the
vector R(t) that joins them:

R(t) ≡ rq1(t)− rq2(t) ≡
N
∑

i=1

hiri(t), (2)

where h is a N−dimensional vector defined by this equa-
tion, which has only 2 non-zero elements in positions q1
and q2. It is convenient to decompose the Gaussian vec-
tor R(t) as a sum of independent modes,

R(t) =
∑

λ

bλaλ(t), (3)

where λ represents all the distinct nonvanishing eigenval-
ues of A, b2λ is the norm of the orthogonal projection of
the vector h [defined in Eq. (A1)] on the eigensubspace
associated to λ [28]. The aλ(t) evolve independently of
each other with the correlation function:

〈aλ,α(t)aλ′,β(t
′)〉 = l2δα,βδλ,λ′e−λ|t−t

′|/τ0/(3λ). (4)

In this picture of independent modes, the normalized
temporal autocorrelation function of the Cartesian com-
ponents (Rx(t), Ry(t), Rz(t)) of vector R(t) follows from
Eqs. (3-4):

φ(t) ≡ 〈Rα(t)Rα(0)〉
〈Rα(0)2〉

=

(

∑

λ

b2λ
λ
e−λt/τ0

)

/

∑

λ

b2λ
λ
. (5)

Since R(t) is a Gaussian stochastic process, it is entirely
characterized by the function φ(t). We also introduce
n = 〈[R(t)/l]2〉 =

∑

λ b
2
λ/λ, which for macromolecules

devoid of loops can be shown to be simply the number of
bonds connecting the reactive monomers.
Theories of first contact times. We now sketch briefly

the method we use for the calculation of the MFCT,
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FIG. 2. (color online) TNM (Eq. (8)) and TWF (Eq. (C1))
for Vicsek fractals of functionality f = 4 as a function of the
capture radius a. The lines represent the results of Eq.(9).

defined as the average time needed for the reactive
monomers to be separated by a distance smaller than a
(called the capture radius), starting from an initial equi-
librium configuration in which the reactive monomers
are not in contact. We introduce the joint probabil-
ity density f({a}, t) that contact is made for the first
time at time t and that, at this first passage event, the
macromolecule has a configuration described by the set
of modes {a} = (a1, a2...). Let us partition the trajecto-
ries that lead to a configuration {a} (in which the contact
condition is satisfied) into two steps, the first step con-
sisting in reaching the target for the first time at t′, and
the second step consisting in reaching the final configura-
tion {a} in a time t− t′. The mathematical formulation
that corresponds to this decomposition of events is

p({a}, t) =
∫ t

0

dt′
∫

d{a′}f({a′}, t′)p({a}, t− t′|{a′}),
(6)

where p({a}, t|{a′}) is the probability of {a} at t start-
ing from {a′} at t = 0 while p({a}, t) is the probability
of {a} at t starting from the initial conditions. Although
Eq. (6) is exact, it is in general very difficult to solve.
A classical approximation, introduced by Wilemski and
Fixman (WF) [8], assumes that f({a}, t) is proportional
to the equilibrium distribution of configurations that sat-
isfy the constraint that a contact is formed. Introducing
this approximation into Eq. (6), integrating over all con-
figurations and taking the long time limit lead to the
estimate TWF of the mean first contact time [15]

TWF =

∫ ∞

0

dt

{

e−a
2φ(t)2/[2ψ(t)]

[1− φ(t)2]3/2
− Z(a/ψ(t)1/2)

Z(a
√
3/l

√
n)

}

, (7)

where ψ(t) = nl2[1 − φ(t)2]/3 is the mean-square dis-

placement of Rx(t) and Z(y) =
∫∞

y
dx x2e−x

2/2. While

this approximation takes into account some aspects of
the complex dynamics of the macromolecule through the
correlation function φ, it neglects non-Markovian (NM)
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effects which can be quantitatively important. These
NM effects can be described by considering the distribu-
tion of configuration at the first contact event π({a}) =
∫∞

0
dtf({a}, t). The analytic expression for π({a}) is un-

known; following the case of linear polymers [12], we as-
sume that it is well approximated by a Gaussian distri-
bution, which is therefore characterized by its first and
second moments. Its first moments, denoted mλ, are the
average mode amplitudes aλ at the first contact instant
t∗ (in the direction of the vector R(t∗)), while the second
moments can be approximated by their equilibrium val-
ues. Then, a precise estimate of the MFCT is obtained
by integrating (6) over all contact configurations, leading
to

TNM =

∫ ∞

0

dt

{

e−Rπ(t)
2/[2ψ(t)]

[1− φ(t)2]3/2
− Z(a/ψ(t)1/2)

Z(a
√
3/l

√
n)

}

. (8)

The difference between this expression and Eq. (C1)
lies in the presence of the reactive trajectory Rπ(t), de-
fined as the average of R at a time t after the first
contact t∗ in the direction of R(t∗), and thus reads
Rπ(t) =

∑

λ bλmλe
−λt/τ0 . The involvedmλ are obtained

from a set of self-consistent equations, see the Supple-
mental Material [28] for details.
Cyclization for small capture radius. In the limit of

a→ 0 (while keeping a fixed number of monomers), only
the dynamics at small time scales matters, where ψ(t) ≃
4D0t with the local diffusion constant D0 = kBT/ζ.
Also, at short times, we can write Rπ(t) ≃ Rπ(0) = a.
Introducing these approximations into Eqs. (C1,8), we
deduce that both the WF and the NM theories predict a
MFCT which reads

T ≃ τ0 π
1/2n3/2l/(2

√
6 a) (for a→ 0). (9)

Thus, in this regime the MFCT is independent of the par-
ticular polymeric structure, and has the same expression
as in the case of linear chains [12, 15]. The convergence of
both Eqs. (C1,8) to the scaling form (9) for small capture
radius is demonstrated in Fig. 2.
Scaling for large n. When the size of the structure

grows, Eq. (9) is not valid anymore and the MFCT re-
flects then the complex monomer dynamics, which be-
comes subdiffusive, 〈[rq(t)− rq(0)]

2〉 ∼ tγ , with γ a sub-
diffusive exponent related to the spectral dimension ds
of the structure, γ = 1− ds/2 for ds < 2 [20, 25, 26, 29].
We first present a simple qualitative argument to derive
the behavior of the MFCT as a function of n, which we
explicitly check for the WF theory and validate next for
the NM theory by a numerical analysis of the analytical
results of Eq. (8).
For a Markovian subdiffusive walker whose subdiffu-

sive exponent is γ, the time needed to find a point-like
target in a confining volume of size L starting at a ran-
dom position is proportional to L2/γ [30]. Given that in
our case the typical length scale is L ∼ √

n, the scaling
argument

T ∼ τ0 n
1/γ (10)
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FIG. 3. (color online) (a) NM and (b) WF MFCT for dif-

ferent fractal structures as a function of n1/γ . The param-
eter γ is obtained from the known values [20, 32, 33] of
the spectral dimension ds: for Vicsek fractals of function-
ality f , γ = ln(3)/ ln(3f + 3), for dual Sierpiński gasket
γ = ln(5/3)/ ln(5), and for T-fractal γ = ln(2)/ ln(6). The
capture radius is a = l. (c) NM MFCT for the dual Sierpiński
gasket for different values of a.

follows. We do not expect a strong dependence on the
capture radius since the dynamics of a monomer is com-
pact (or recurrent) [7, 30]. In fact, the scaling (10) can
be derived in the WF approximation by noting that for
extremal monomers (i.e. monomers whose relative dis-
tance is maximal), the time τ0 n

1/γ is also of the order
of the maximal relaxation time τN [26, 31], such that the
correlation function scales as φ(t) = τNΦ(t/τN ). Once
this equality is reported into Eq. (C1) one obtains that
T ∼ τN , which is the expected behavior (10), see the Sup-
plemental Material [28] for details. Strikingly, the MFCT
is found to depend on the polymer structure through ds
only (and not on its microscopic details). In particular,
this shows that the MFCT of highly branched structures
(γ → 0) differs significantly from that of linear chains
(γ = 1/2).

Now, checking the scaling (10) requires the actual com-
putation of the correlation function φ(t), which itself in-
volves the diagonalization of A. However, a naive di-
agonalization of this matrix (as usually done for linear
chains, where the analytic diagonalization is possible)
does not allow to deal with structures large enough. This
difficulty can be overcome by exploiting the highly sym-
metric nature of the fractal macromolecules we are con-
sidering. First, we remark that the actual number of
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a/l structure 1/γ TWF TNM Tsimu

1 DSG 3.15 3.85 2.38 2.41± 0.02
TF 2.58 13.31 9.48 9.53± 0.07
VF3 2.26 166.8 111.5 113.6 ± 0.9
VF4 2.46 224.9 135.1 137.4 ± 1.4

2.5 VF3 2.26 87.81 37.52 37.47 ± 0.35
VF4 2.46 128.3 47.1 45.3± 0.5

TABLE I. MFCT for the structures of Fig. 1 computed with
the WF (TWF) and NM (TNM) theories [with Eqs. (C1,8)],
compared to the results Tsimu of the stochastic simulations of
(A3). 1/γ indicates numerical values of the scaling exponent
in (10) (in the case of linear chains it is equal to 2 [8, 9, 12]).
All structures are of generation g = 3. The times are units of
τ0.

variables needed to be taken into account is the number
of distinct eigenvalues, which is much lower than the total
number of beads N . Then, one can set up a decimation
procedure inspired by that used to find iterative formu-
las for the eigenvalues [20, 34]. Adapting this decimation
approach to the iterative computation of the coefficients
b2λ amounts to solving a linear algebra problem, as de-
scribed in the Supplemental Material [28]. In practice,
by using the WF and NM formalisms we were able to
calculate the MFCT for macromolecules containing as
many as 800, 000 beads, which would not have been pos-
sible through direct diagonalization.

Based on the iterative computation of b2λ, we test the
scaling behavior (Fig. 3) for different fractal structures
(represented in Fig. 1) and therefore for several values of
the subdiffusive exponent γ (or ds). As can be seen on
Fig. 3, for all these structures, the scaling T ∼ n1/γ is
in good agreement with the predictions of both the NM
theory and the WF theory. This confirms that the spec-
tral dimension ds of the structure plays a fundamental
role for MFCT. In particular, the functionality f , which
determines γ, plays a crucial role and yields scaling be-
haviors that can differ significantly from those of linear
chains. However, the presence of many loops in the dual
Sierpiński gasket does not modify the scaling behavior of
the MFCT: In Fig. 3(c) we show the results of the cor-
responding MFCT TNM for 3 different values of a. We
observe that all curves scale in the same way for large n,
independently of the capture radius, fact consistent with
Eq. (10).

Comparison with numerical simulations. We checked
the validity of our theoretical predictions by performing
Brownian dynamics simulations of Eq. (A3), using the al-
gorithm of Ref. [35] with fixed time steps. The results are
presented in Table I for different fractal structures and
capture radia a. We observe that the WF theory system-
atically overestimates the MFCT, whereas the NM the-
ory describes the simulation data almost quantitatively,
thereby validating the accuracy of our analysis.

Average conformations at first contact. Inspecting
Fig. 3 reveals that the WF theory overestimates the

0 9 18 27
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π

f = 2 (linear chain)
f = 3
f = 4
f = 6
WF theory, any f

0 9 18 27
i

-1

0

1
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 z

i >
π

FIG. 4. (color online) Average spatial position 〈zi〉π of the
monomers (numbered through i = 1 . . . n) connecting reac-
tants at the instant cyclization in the direction of the re-
action, for Vicsek fractals of different functionalities f with
generation g = 3, as predicted by the NM (symbols) and WF
theories (solid line). Inset: same quantity determined from
simulations, with the same color code.

MFCT by a numerical factor which grows when γ de-
creases. This fact is also clearly seen in Table I, and
confirmed by the numerical simulations. This means
that, with decreasing subdiffusive exponent γ, the macro-
molecular conformations at the instant of first contact
differ more and more from equilibrium ones. To illustrate
this fact, we present on Fig. 4 the average spatial posi-
tions of the monomers in Vicsek fractals at the instant of
first contact 〈zi〉π ≡ 〈ri(t∗) · û(t∗)〉, where t∗ represents
the first contact instant, û(t∗) = R(t∗)/|R(t∗)| gives the
direction between the reactive monomers at t∗ and i are
the indices of the beads that lie between the reactive
monomers (on the chain). In the equilibrium WF theory,
all monomers between the reactants (on the chain) are on
average also between the reactants in space at the instant
of first contact, irrespectively of the functionality of the
macromolecule. The NM theory, in turn, predicts that
those monomers which are close to the reactants are in
average outside the capture radius at t∗ (Fig. 4, symbols).
Moreover, this effect is more pronounced for Vicsek frac-
tals of higher functionalities, meaning that NM effects
increase with the degree of hyperbranching of the macro-
molecule. As shown in the inset of Fig. 4, the simulations
confirm these conclusions, although the value of 〈zi〉π is
slightly overestimated in the NM theory.

Conclusion. Summarizing, we have studied the ki-
netics of first contact between two monomers belonging
to the same fractal macromolecule. We identified two
regimes: (i) for very small capture radius, the MFCT be-
comes independent of the macromolecular structure and
originates essentially from the microscopic diffusive mo-
tion of the monomers, whereas (ii) for larger capture ra-
dius, the MFCT scales as a power-law with the mean-
square distance n between the monomers, with an expo-
nent related to the spectral dimension ds and indepen-
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dent of microscopic details. We confirmed this scaling
law for a wide variety of structures (with and without
loops). The non-Markovian effects are included by calcu-
lating the average equilibrium conformation of the whole
macromolecule at the instant of first contact, and are
found to be more important when the degree of hyper-
branching of the structures increases. Finally, it would
be interesting to explore how the MFCT varies with the
location of the reactants in the structure or to generalize
the theory to include the effect of hydrodynamic interac-
tions, which typically would lead to new scalings [31].
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Supplementary information

Appendix A: Determination of the autocorrelation
functions

Here we present general expressions for the determi-
nation of the temporal autocorrelation function of the
vector R(t) connecting the reactive monomers q1 and q2,
defined as

R(t) ≡ rq1(t)− rq2(t) ≡
N
∑

i=1

hiri(t). (A1)

where h = (hi) is the N -components vector

hi = δi,q1 − δi,q2 . (A2)

We recall that the positions {ri(t)} of the N beads in
the macromolecule obey the Langevin equation [Eq.(1)
in the main text]:

ζ
∂

∂t
ri(t) +K

N
∑

j=1

Aijrj(t) = Fi(t), (A3)

where A is the connectivity matrix that describes the
topology of the structure. The off-diagonal elements Aij
are equal to −1 if beads i and j are connected, and to
0 otherwise. For each bead i, the diagonal element Aii
is equal to the number of bonds emanating from it. Fi-
nally, in Eq. (A3), the stochastic forces Fi(t) follow the
statistics

〈Fiα(t)Fjβ(t′)〉 = 2 kBT ζ δ(t− t′)δijδαβ, (A4)

where kBT represents the thermal energy and α, β are
the spatial coordinates x, y, z. It is natural to introduce
the microscopic time scale τ0 = ζ/K.
We introduce the eigenvectors of the matrix A and de-

note by u
(λ,q)
i the ith coordinate of the qth eigenvector

associated with the eigenvalue λ 6= 0. If λ has degeneracy
pλ, then q is bounded by 1 ≤ q ≤ pλ. Since the matrix A

is symmetric and real, we can assume that these eigenvec-
tors are orthogonal and normalized. It is then standard
to decompose the motion of each bead in the structure
in a sum of eigenmode amplitudes,

ri(t) =
∑

λ

pλ
∑

q=1

uλ,qi ãλ,q(t). (A5)

Inserting (A5) into (A3) and taking into account the fact

that the vectors uλ,qi are orthogonal, we obtain that all
the eigenmode amplitudes evolve independently of each
other, with the correlation function

〈ãλ,q,α(t)ãλ′,q′,β(t
′)〉 = kBT

λK
δα,βδq,q′δλ,λ′ e−λ|t−t

′|/τ0 .

(A6)

Let us introduce now, for each eigenvalue λ, the positive
coefficient bλ and the stochastic variable aλ(t) defined as

b2λ =

pλ
∑

q=1

(

N
∑

i=1

hiu
(λ,q)
i

)2

, (A7)

aλ(t) =
1

bλ

pλ
∑

q=1

N
∑

i=1

hiu
(λ,q)
i ãλ,q(t). (A8)

Comparing (A8) and (A6), it is clear that the autocorre-
lation function of the stochastic variables aλ is

〈aλ,α(t)aλ′,β(t
′)〉 = kBT

Kλ
δα,βδλ,λ′e−λ|t−t

′|/τ0 , (A9)

which is exactly Eq. (4) of the main text. Furthermore,
it follows from (A1,A5,A7) that

R(t) =
∑

λ

pλ
∑

q=1

N
∑

i=1

hiu
(λ,q)
i ãλ,q(t) =

∑

λ

bλaλ(t) (A10)

which is Eq. (3) of the main text. Finally, we note that
(A7) can be written as

b2λ =

pλ
∑

q=1

(h|u(λ,q))2 = (h|P̂λ|h), (A11)

where we have considered h and u(λ,q) asN−components
vectors, and where the projection operator P̂λ is

P̂λ =

pλ
∑

q=1

|u(λ,q))(u(λ,q)|. (A12)
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Thus, b2λ is the norm of the orthogonal projection of the
N−component vector h on the eigensubspace associated
to λ, as claimed in the main text.
For the practical calculation of b2λ, it is useful to con-

sider a basis of vectors {|w(λ,q′))} which span the orthog-
onal complimentary eigensubspace associated to λ (i.e.

(w(λ,q′)|u(λ,q)) = 0). The N − pλ vectors {|w(λ,q′))} are
not necessarily orthogonal, but they are linearly indepen-
dent.
Introducing the (N − pλ) × N matrix Wλ ≡

(|w(λ,(pλ+1))), . . . , |w(λ,N)))T and its transpose WT
λ we

can construct the complementary projection operator
Q̂λ ≡ Î − P̂λ (see, e.g., Ref. [36]),

Q̂λ = WT
λ (WλW

T
λ )

−1Wλ. (A13)

Hence, based on Eq.(A13), Eq. (A11) transforms to

b2λ = (h|Î − Q̂λ|h)
= 2− (h|WT

λ (WλW
T
λ )

−1Wλ|h), (A14)

where we have used (h|h) = 2, see Eq. (A1).

Appendix B: Derivation of the equations of the
non-Markovian (NM) theory

Here we briefly describe the main steps that lead to
the equations of the NM theory.
Subtracting the stationary probability distribution

ps({a}) from Eq. (6) in the main text, and integrating
the result between t = 0 and t = ∞, one obtains

T ps({a}) =
∫ ∞

0

dt

∫

d{a′}π({a′})[p({a}, t|{a′})− p({a}, t)], (B1)

with the unknown quantities are the MFCT (T ) and the
(normalized) probability distribution π({a}) of the con-
figurations at the instant of first contact. The proba-
bilities p({a}, t|{a′}), p({a}, t) and ps({a}) are Gaussian
and admit analytical expressions. Consider now a unit
vector û and let πû be the distribution of modes at the
first contact time t∗ with the constraint R(t∗) = aû. In
other words, πû({a}) ≡ C π(a)δ(

∑

λ aλbλ − aû), with C
a normalization constant.
In the NM theory, one assumes that πû is a multi-

variate Gaussian, with mean vector mλû, while the co-
variance matrix is approximated by that of the equilib-
rium configurations satisfying the constraint R = aû.
Then, the {mλ} are found by solving a set of equations
that make the theory self-consistent. These equations are
found by multiplying Eq. (B1) by aλδ(

∑

λ′ bλ′aλ′−r∗) for
fixed λ and r∗ (satisfying |r∗| < a) and integrating over
all configurations. Such calculations involve the evalua-
tion of a number of Gaussian integrals, as well as averages
over angular directions û, and are done carefully in the
appendix C of Ref. [15]. The main difference between

the calculations of Ref. [15] and ours is the fact that,
here, the sums are carried out over the distinct values of
the eigenvalues λ instead of over all the indexes i. The
resulting equation is

∫ ∞

0

dt

ψ5/2

{[

µπ,0λ Rπ
3

+
bλφ(φ − e−

λt
τ0 )

λ

]

e−
R2
π

2ψ

− bλφ(φ− e
− λt
τ0 )

Z0(a, nl2/3)λ

[

Z0(a, ψ)−
G0(a, ψ)

3ψ

]

}

= 0, (B2)

where

µπ,0λ = mλe
− λt
τ0 − Rπbλ(1 − φ e

− λt
τ0 )

λψ
(B3)

and

Z0(a, h) =

∫ ∞

a

dx x2e−
x2

2h , (B4)

G0(a, h) =

∫ ∞

a

dx x4e−
x2

2h . (B5)

By integration by parts, one obtains Z0(a, h) −
G0(a, h)/(3h) = −(a3/3)e−a

2/(2h) so that Eq. (B2) can
be written in the compact form

∫ ∞

0

dt

{[

mλe
−λt
τ0 − Rπbλ(1− φ e

− λt
τ0 )

λψ

]

Rπe
−R2

π/2ψ

3 ψ5/2

+
bλφ(φ − e

− λt
τ0 )

λψ5/2

[

e−
R2
π

2ψ − (a3/3)e−a
2/2ψ

∫∞

a
drr2e−

3r2

2nl2

]}

= 0.

(B6)

There are as many equations in Eq. (B6) as the number
of distinct nonvanishing eigenvalues λ, so that the values
of mλ can be determined numerically, enabling the eval-
uation of the NM contact time with Eq. (8) of the main
text. Given that for many fractal structures the eigen-
value spectra contain a lot of degenerate eigenvalues, this
method allows to treat very large fractal structures, as
shown in the main text.

Appendix C: MFCT scaling for large fractal
structures

Let us consider Eq. (7) of the main text,

T =

∫ ∞

0

dt

{

e−a
2φ(t)2/[2ψ(t)]

[1− φ(t)2]3/2
− Z(a/ψ(t)1/2)

Z(a
√
3/l

√
n)
,

}

, (C1)

where Z(y) =
∫∞

y
dx x2e−x

2/2, in the case of large n. In

our case the reactive monomers are at extremities such
that n1/2 ∼ Rg/l (Rg is the gyration radius of the whole
structure). Thus, the largest time scale is given by the
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largest relaxation time of the whole structure τN . For
this it is known [29, 31] that

τN ∼ τ0(Rg/l)
4/(2−ds). (C2)

With γ = 1− ds/2 and with n1/2 ∼ Rg/l we get

τN ∼ τ0n
1/γ . (C3)

If the monomers are separated (in physical space) by
n1/2 ∼ Rg/l, we can reasonably assume that

φ(t) = Φ(t/τN ), (C4)

where Φ is a dimensionless function independent on N ,
with Φ(τ) ≃ 1 at short times, and exponentially decaying
for τ ≫ 1. Now, using that the function Z(y) involved

in Eq. (C1) goes for small y as Z(y) ≃
√

π/2− y3/3, for
a target of size a which is much smaller than the typical
distance n between the reactants, Eq. (C1) reads

T =

∫ ∞

0

dt

{

1

[1− φ2]3/2
− 1

}

. (C5)

Changing of variables in (C5) according to Eq. (C4), we
obtain

T = τN

∫ ∞

0

dτ

{

1

[1− Φ2]3/2
− 1

}

∼ τN ∼ τ0n
1/γ (C6)

Note that the above integral converges because Φ(τ) de-
cays exponentially at large times, and behaves as 1− τγ

for small times, with γ < 2/3.
Now, the expression for MFCT in non-Markovian case

has a similar structure as Eq. (C1). The difference be-
ing in the first term, where a2φ(t)2 in the exponent is
replaced through a square of the reactive conformation
Rπ(t) =

∑

λ bλmλe
−λt/τ0 . Given that the analytic struc-

ture of the mλ involved is unknown (mλ are obtained
from a set of self-consistent Eq. (B6)), we cannot copy
steps of WF and hence numerical evaluations are needed.
For this the iterative procedures described below are of
much help.

Appendix D: Calculation of the coefficients bλ by
decimation of Vicsek fractals

In this subsection we show for Vicsek fractals how to
construct the matrices Wλ involved in Eq. (A14). We
adapt a decimation procedure that was already used in
Ref. [20] for the computation of the eigenvalues of the
dynamical matrix. The topology of a Vicsek fractal is
shown on Fig. 5, where we have used two symbols for the
beads: circles and squares. It is clear that removing all
the circles from the structure, one obtains another Vicsek
fractal but of a lower generation, formed by squares in
Fig. 5. Equivalently, one can say that the structure at
the current generation is formed by the beads that were

g = 1

g = 3

FIG. 5. Vicsek fractal (VF) of functionality f = 4 and gen-
eration g = 3. The reactive beads are colored in red. The
picture shows only the topology of the structure, particular
VF conformations may come up in vastly different geometric
forms.

already part of the previous generation (the squares in
Fig. 5, their indices are denoted by greek letters, say µ)
and by ”new” beads (the circles on Fig. 5, their indices
are denoted by latin letters, say by k).
Now, consider an eigenvector Φ(g) = (φ1, ..., φN ) of

the dynamical matrix of a Vicsek fractal of generation g
which is associated to the eigenvalue λ(g). It is shown
in Ref. [20] that, if λ(g) 6= {0, 1, f + 1}, then necessarily
the vector Φ(g−1) = {φµ} is itself an eigenvector of a
Vicsek fractal of the former generation (g − 1), where
µ represents the ensemble of indices of the beads present
at the former generation. The eigenvalue λ(g−1) to which
{φµ} is associated is then

λ(g−1) = λ(g)(λ(g) − 3)(λ(g) − f − 1). (D1)

If the values of {φµ} are known for the sites present at
generation g− 1, the values of φk for the ”new” sites, are

deduced from the equations
∑N

i=1(Aki−λ(g)δki)Φ
(g)
i = 0

for all the new sites k. Hence, if one knows the matrix

W
(g−1)

λ(g−1) , then the matrix Wλ(g) at next generation is

W
(g)

λ(g) =

(

W
(g−1)

λ(g−1) 0

Lines of A(g) − λ(g)I for the ”new” sites k

)

.

(D2)

This relation allows the iterative construction of the ma-
trices Wλ. Actually, since (D1) is a cubic equation, an
eigenvalue at generation g − 1 will generate three eigen-
values at generation g and the 3 associated matrices Wλ.
The procedure needs to be initialized by expliciting the

matrix W
(g)
1 associated to the eigenvalue λ = 1 at gen-

eration g. An eigenvector Φ = (φ1, ..., φN ) is associated
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FIG. 6. Coefficients b2λ for a Vicsek fractal of generation
g = 4 and functionality f = 4. The reactive beads are at
the extremities of the structure, as depicted on Fig. 5. The
red crosses represent the results of a brute-force calculation
(Eq. (A7)) while the blue circles are obtained with a decima-
tion procedure (Eq. (A14)).

to the eigenvalue λ = 1 if and only if (A− I)Φ = 0. This
leads to the equations for all the beads µ of functionality
f :

φµ = 0,
∑

i∈ NN of µ

φi = 0, (D3)

where NN means nearest-neighbors. Also, for each pair
of sites of functionality 2, we obtain the (f + 1)g−1 − 1
equations

φi − φj = 0. (D4)

The equations (D3,D4) are linearly independent and de-
termine the eigensubspace related to λ = 1. We can

rewrite these equations under the matrix form W
(g)
1 Φ =

0, leading to the ready identification of the matrix W
(g)
1 .

We note, that we did not consider the eigenvalues that
are generated iteratively from the eigenvalue λ = f + 1,
which are non-degenerate. These eigenvalues are as-
sociated [20, 37] to eigenvectors {Φ} that all satisfy
φq1 = φq2 , where q1 and q2 are the indices of the re-
active beads (the red beads on Fig. 5), located at the
extremities of the structure in this work. Hence, based
on Eqs. (A2, A7) we see that the coefficients b2λ vanish for
these non-degenerate eigenvalues, which do not need to
be considered anymore. We also note that the eigenvalue
λ = 0, associated to the motion of center-of-mass, has no
relevance in our problem concerned with intramolecular
reactions.

Finally, the knowledge of all the matrices Wλ (which
are very sparse) allows one to compute the coefficients b2λ
based on Eq. (A14). We checked our iterative procedure
by comparing our results to the direct computation issued
from brute force diagonalization and the use of Eq. (A7)
(see Fig. 6)

Appendix E: Calculation of the coefficients bλ for the
dual Sierpiński gaskets by a decimation procedure.

We now describe the decimation procedure for the dual
Sierpinski gasket. We represented a part of such fractals
on Fig. 7a. As seen on this figure, the structure contains
small triangles, and if one replaces each triangle by a
new site, one obtains another dual Sierpinski gasket, at
former generation (Fig. 7b). This remark is at the basis
of the decimation procedure.

1

2 3
�

4

5 6

7

8 9� �

1’

2’ 3’

4’ 7’

5’ 6’ 8’ 9’

1’’

2’’ 3’’

4’’ 7’’

5’’ 6’’ 8’’ 9’’

��

�� �� ��� ���

���

�

� �

��

�� ��

�’’

��� ���

(a) (b)

FIG. 7. (a) Topology of one part of a dual Sierpinski gasket.
(b) decimated dual Sierpinski gasket.

Let us consider an eigenvector Φ = (φ1, φ2, ...) of
the dynamical matrix A associated to the eigenvalue λ,
which therefore satisfies

N
∑

j=1

Aijφj = λφi. (E1)

Let us consider another vector Ψ = (ψα, ψβ, ...) (whose
indices are the sites in the decimated structure), defined
such as the coordinate ψα′ is the sum of the values of φi′
for the sites i′ in the triangle around α′, and of the sites
that are neighbors to these sites. For example, for the
site α′, we write (see the labeling on Fig.7a)

ψα′ = φ1′ + φ2′ + φ3′ + φ4′ + φ7′ + φ5, (E2)

For the sites at the boundary of the structure (i.e. of
functionality 2), we modify the definition of ψ by setting

ψα = 2φ1 + φ2 + φ3 + φ4 + φ7. (E3)

The relations (E1) (written for the sites 1′, 2′, ..., 9′) and
(E3,E2) (written for α, β, γ) can be inverted to derive

φi′ =
∑

µ={α,β,γ}

Ci,µψµ′ , (E4)

where C is a 9× 3 matrix, of elements

C1α = C5β = C9γ = L[−7− λ(λ− 6)], (E5)

C1β = C1γ = C5α = C5γ = C9α = C9β = L, (E6)

C2α = C3α = C4β = C6β = C7γ = C8γ

= L(−4 + λ), (E7)

C7α = C3γ = C6γ = C4α = C2β = C8β = −L. (E8)
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All other elements of C are zero, and here L is the con-
stant

L = [(λ− 5)(λ− 3)(λ− 2)]−1. (E9)

Similarly, considering the 9 beads (1,2,...9) near the up-
per boundary of the structure, we obtain

φi =
∑

µ={α,β,γ}

Ci,µψµ, (E10)

where the matrix C is the same as in (E4). Thus, we have
obtained an inverse relation for the coordinates φi as a
function of the vector defined on the decimated structure
ψα, which holds as soon as λ 6= {2, 3, 5} (otherwise L is
infinite in (E9)). Furthermore, we obtain the relations

[3− (5− λ)λ]ψα′ = ψβ′ + ψγ′ + ψβ (E11)

and similar relations hold for ψβ , ψγ , while for the site at
the boundary,

[2− (5 − λ)λ]ψα = ψβ + ψγ . (E12)

Equations (E11,E12) mean that Ψ is an eigenvector of
the decimated structure, with the eigenvalue

λ̃ = (5− λ)λ. (E13)

Equation (E13) is an iterative relation between the eigen-

values at one generation (λ̃) and the eigenvalues at larger
generation (λ), and is already known [32, 38]. Thus, an
eigenvector Φ associated to an eigenvalue λ 6= {2, 3, 5}
can be expressed as a product CλΨ, where Cλ is the
matrix defined in (E5-E8), and Ψ is an eigenvector of the
decimated structure (at generation g − 1) associated to
the eigenvalue λ(g−1) = (5− λ)λ. Let us iterate the pro-
cedure and consider s decimation steps, until one reaches
an eigenvalue λ(g−s) = {3, 5}: then an eigenvector Φ is
expressed as Φ = BΨ(g−s), where Ψ(g−s) is an eigenvec-
tor at generation g − s, and B = Πs−1

s′=0Cλ(g−s′) .
Let W3 be the matrix of vectors which span the sub-

space orthogonal to all the eigenvectors related to the
eigenvalue λ = 3 at generation g − s. Then, in the ba-
sis related to the eigenvalue λ = 3 at generation g − s
Eq.(A14) transforms to

b2λ =(h|B(BTB)−1BT |h)
− (h|BWT

3 (W3B
TBWT

3 )
−1W3B

T |h). (E14)

The eigenvalue λ = 3 plays a fundamental role in the
whole decimation procedure. The eigenvectors related to

this eigenvalue are the so-called symmetric modes [32].
This means that for each eigenvector Φ associated to
λ = 3, the following relations hold [32]:

φi + φj + φk = 0, (E15)

for each triplet (i, j, k) of nearest-neighboring beads form-
ing the smallest triangles of the structure (see Fig. 7).
Furthermore, we have also [32]

φn = φm, (E16)

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

λ

b λ2
FIG. 8. Coefficients b2λ for a dual Sierpiński gasket of genera-
tion g = 8. The reactive beads are at extremities, as depicted
on Fig.1 in the main text. Red crosses represent the results
of the brute-force calculation (Eq. (A7)) and blue circles of
the decimation procedure (Eq. (E14)).

for each pair (n,m) of nearest-neighboring beads con-
necting the smallest triangles. Equations (E15,E16) are
linearly independent and determine the eigensubspace of
A associated to 3, they can therefore be written in ma-
trix form W3Φ = 0, from which the (sparse) matrix W3

reads.
On the contrary, the eigenvalue λ = 5, associated to

antisymmetric modes [32], does not play any role in our
problem: when the reactive beads are located at the ex-
tremities of the structure (Fig. 1b in the main text), the
coefficients b2λ vanish for symmetry reasons for λ = 5 and
for any eigenvalue generated from the eigenvalue 5.
We implemented a recursive algorithm which calcu-

lates the coefficients bλ with our decimation procedure.
The results were checked by comparing them to the out-
put of the brute force diagonalization of the dynamical
matrix, one sees on Fig. 8 that our procedure gives the
correct results. We used our decimation approach to
treat much larger structures and to generate Fig. 3 of
the main text.
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