Development of a nanorheometer to study rheological behaviour of confined polymers B. GUATARBES, J.P. MONTFORT, C. DERAIL

Laboratoire de Physico-Chimie des Polymères C.N.R.S. – U.M.R. 5067

AERC2006

April 27-29, Hersonissos - Crete

Development of a nanorheometer to study rheological behaviour of confined polymers

Previous works in the lab obtained on another surface force apparatus (ECL – Lyon):

For Polybutadiene in the terminal domain:

Development of a nanorheometer to study behaviour of confined polymers

- Principle of dynamic surface force apparatus
- Experimental technique
- Validation of the experimental technique with Polydimethylsiloxane (PDMS)
- Conclusions

Principle of dynamic surface force apparatus

Principle:

Measure of F and H of a viscoelastic fluid between two surfaces

- Thickness between surfaces from nm to μm
- Force range of µN

F FLUID H

Different measurements:

Drainage force measurement (dH.dt⁻¹ constant)

- Dynamic tests

Oscillatory force measurement (H constant)

G*(ω)

 η_0

Dynamic measurements with the nanorheometer

Sphere/Plate geometry Inorganic Surfaces: SiO2 **Radius** of the sphere: **0.1 to 1mm** Roughness negligible: about 1nm.µm-1 (measured with a confocal rugosimeter)

Frequency prompting with amplitude a << H

Typical Modulus range from 1 to 10⁶ Pa

Development of a nanorheometer to study behaviour of confined polymers

- Principle of dynamic surface force apparatus
- Experimental technique
 - Validation of the experimental technique with Polydimethylsiloxane (PDMS)
 - Conclusions

General features of MTS nanoindenter with DCM head

STRESS CONTROLLED APPARATUS: Force created by a coil
 DISTANCE ENSLAVEMENT: Position measured by capacitive sensor

Springs of the apparatus

General features of MTS nanoindenter with DCM head

In the case of our nanorheometer

Static and hydrodynamic measurements:

Displacement resolution: 1nm
Static measurement from 10nm to 10µm
Force resolution: 100nN
Maximum force allowed: 10mN
Speed drainage from 1 to 100nm.s⁻¹

Dynamic measurements:

- Frequency range: 10⁻² < to 10² Hz
- Amplitude of about 1nm
- Displacement resolution: 0.2nm
- Force resolution: 100nN

Parameter to be controlled: temperature

Dilatation between sphere and plate: **500nm.°C**⁻¹

Controlled temperature enclosure made with peltier moduli

Temperature range: 13°C to 35°C Precision after stabilisation: ±0.01 °C

Parameter to be controlled: geometry of the sample

Influence of the meniscus forces on the phase

Solution: use of a drop in contact with this fixed circle

Development of a nanorheometer to study behaviour of confined polymers

- Principle of dynamic surface force apparatus
- Experimental technique
- Validation of the experimental technique with Polydimethylsiloxane (PDMS)
 - Conclusions

Validation of the technique with PDMS Comparison with bulk measurements

Validation of the technique with PDMS Comparison with bulk measurements

For PDMS 60 Pa.s

Shear modulus decreases with the confinement !

A parasitic effect that is corrected: the slippage

A parasitic effect that is corrected: the slippage

Conclusions

- Modification of a commercial nanoindenter to use as a nanorheometer
- Validation of the experimental technique to use as a microrheometer with different polymers and different viscosities
- Possibility to measure and correct slippage
- Validation of the experimental technique to study interfacial rheology

Study of interfacial rheology of Poly-n-Butylacrylate

PBA grafted 80000g/mol swelled by PBA oligomer- $(F^*/a^*)=f(\omega)$

Visualisation of the h-dependence of G' at low frequency

Perspectives

- Analysis and synthesis of the results with PDMS, PBA, Polybutadiène PB
- Functionalisation of surfaces to control slippage
- Study of nanorheology of grafted surfaces
- Others applications: nanotack (tests validated), study of thin films...

Different polymers tested

Samples	Mw (g.mol ⁻¹)	η ₀ (Pa.s)	Rg (nm)
PB 8300	8300	4,15	3,4
PB 10000	10000	9,8	3,8
PB 22600	22600	70	5,5
PB 31400	31400	393	6,6
PB 61700	61700	5000	9
PDMS 90000	90000	60	8,2
PDMS 170000	170000	290	11,3
PDMS 200000	200000	500	12,2
PDMS 249000	249000	1000	14
PBA 6000	6000	33	3,1
PBA 13500	13500	200	4,6
PBA 29000	29000	1250	7,5
PBA 56000	56000	6500	9,9
PBA 92000 grafted	92000	18500	

Development of large frequency range method

Frequency range: **10⁻² < f < 10² Hz**

20/17

General features of MTS nanoindenter with DCM head

Different spheres used:

<u>Saphirre</u>

<u>Pyrex, Quartz</u> (made at UPPA) Calibration

Cheapper Surface modification allowed

Diameter from ~100 µm to ~mm

Typical G* range: 1 to 10⁶ Pa

Roughness negligible: about 1nm rms.µm⁻¹ (measured with a confocal rugosimeter)

Interest of viscoelastic measurements with this surface force apparatus

<u>Field of study:</u> Polymer flow at room temperature Typical Modulus range from 1 to 10⁶ Pa

Rheological study:

- bulk
- adsorption
- grafting

Important parameter

hydrodynamic thickness E_h

Other application: nanotack

Tests made with a flat punch of 100 μm diameter with adhesive polymers (Speed about 50 $\mu m.s^{\text{-}1}$)

Begin of pulling out

